Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Small ; 20(27): e2307210, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38279606

ABSTRACT

Sepsis is a life-threatening condition that can progress to septic shock as the body's extreme response to pathogenesis damages its own vital organs. Staphylococcus aureus (S. aureus) accounts for 50% of nosocomial infections, which are clinically treated with antibiotics. However, methicillin-resistant strains (MRSA) have emerged and can withstand harsh antibiotic treatment. To address this problem, curcumin (CCM) is employed to prepare carbonized polymer dots (CPDs) through mild pyrolysis. Contrary to curcumin, the as-formed CCM-CPDs are highly biocompatible and soluble in aqueous solution. Most importantly, the CCM-CPDs induce the release of neutrophil extracellular traps (NETs) from the neutrophils, which entrap and eliminate microbes. In an MRSA-induced septic mouse model, it is observed that CCM-CPDs efficiently suppress bacterial colonization. Moreover, the intrinsic antioxidative, anti-inflammatory, and anticoagulation activities resulting from the preserved functional groups of the precursor molecule on the CCM-CPDs prevent progression to severe sepsis. As a result, infected mice treated with CCM-CPDs show a significant decrease in mortality even through oral administration. Histological staining indicates negligible organ damage in the MRSA-infected mice treated with CCM-CPDs. It is believed that the in vivo studies presented herein demonstrate that multifunctional therapeutic CPDs hold great potential against life-threatening infectious diseases.


Subject(s)
Extracellular Traps , Methicillin-Resistant Staphylococcus aureus , Polymers , Sepsis , Animals , Sepsis/drug therapy , Extracellular Traps/drug effects , Polymers/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Neutrophils/drug effects , Carbon/chemistry , Carbon/pharmacology , Staphylococcal Infections/drug therapy , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/chemistry , Humans
2.
Anal Bioanal Chem ; 416(17): 3907-3921, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38656364

ABSTRACT

The search for bacteria-labeling agents that are more efficient and less toxic compared to existing staining dyes is ongoing. Fluorescent quantum dots and carbon dots (CDs) have been extensively researched for various bioimaging applications. Priority is given to CDs due to several advantages, including lower toxicity, versatility in tuning their properties, and better photostability compared to metal-based quantum dots. Although significant progress is still needed to replace existing dyes with CDs for bacteria labeling, they offer promising potential for further improvement in efficiency. Surface charges and functional groups have been reported as decisive factors for bacterial discrimination and live/dead assays; however, a complete guideline for preparing CDs with optimum properties for efficient staining and predicting their labeling performance is lacking. In this review, we discuss the application of fluorescent CDs for bacterial labeling and the underlying mechanisms and principles. We primarily focus on the application and mechanism of CDs for Gram differentiation, live imaging, live/dead bacteria differentiation, bacterial viability testing, biofilm imaging, and the challenges associated with application of CDs. Based on proposed mechanisms of bacterial labeling and ambiguous results reported, we provide our view and guidelines for the researchers in this field to overcome the challenges associated with bacteria labeling using fluorescent CDs.


Subject(s)
Bacteria , Carbon , Fluorescent Dyes , Quantum Dots , Bacteria/chemistry , Biofilms , Carbon/chemistry , Fluorescent Dyes/chemistry , Microbial Viability , Optical Imaging/methods , Quantum Dots/chemistry , Staining and Labeling/methods
3.
J Biol Chem ; 298(6): 101957, 2022 06.
Article in English | MEDLINE | ID: mdl-35452675

ABSTRACT

Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Quantum Dots , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Carbon , Encephalitis Virus, Japanese/chemistry , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/drug therapy , Molecular Docking Simulation , Viral Envelope Proteins/metabolism
4.
Int J Mol Sci ; 24(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37047572

ABSTRACT

Cancer immunotherapy has made breakthrough progress in cancer treatment. However, only a subset of patients benefits from immunotherapy. Given their unique structure, composition, and interactions with the immune system, carbon nanomaterials have recently attracted tremendous interest in their roles as modulators of antitumor immunity. Here, we focused on the latest advances in the immunological effects of carbon nanomaterials. We also reviewed the current preclinical applications of these materials in cancer therapy. Finally, we discussed the challenges to be overcome before the full potential of carbon nanomaterials can be utilized in cancer therapies to ultimately improve patient outcomes.


Subject(s)
Nanostructures , Neoplasms , Humans , Carbon/therapeutic use , Carbon/chemistry , Neoplasms/therapy , Nanostructures/therapeutic use , Nanostructures/chemistry , Immunotherapy , Medical Oncology
5.
J Nanobiotechnology ; 20(1): 235, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35590324

ABSTRACT

BACKGROUND: MXenes with interesting optical and electrical properties have been attractive in biomedical applications such as antibacterial and anticancer agents, but their low photogeneration efficiency of reactive oxygen species (ROS) and poor stability are major concerns against microbial resistance. METHODS: Water-dispersible single layer Ti3C2Tx-based MXene through etching tightly stacked MAX phase precursor using a minimally intensive layer delamination method. After addition of Cu(II) ions, the adsorbed Cu(II) ions underwent self-redox reactions with the surface oxygenated moieties of MXene, leading to in situ formation of Cu2O species to yield Cu2O/Ti3C2Tx nanosheets (heterostructures). RESULTS: Under NIR irradiation, the Cu2O enhanced generation of electron-hole pairs, which boosted the photocatalytic production of superoxide and subsequent transformation into hydrogen peroxide. Broad-spectrum antimicrobial performance of Cu2O/Ti3C2Tx nanosheets with sharp edges is attributed to the direct contact-induced membrane disruption, localized photothermal therapy, and in situ generated cytotoxic free radicals. The minimum inhibitory concentration of Cu2O/Ti3C2Tx nanosheets reduced at least tenfold upon NIR laser irradiation compared to pristine Cu2O/Ti3C2Tx nanosheets. The Cu2O/Ti3C2Tx nanosheets were topically administrated on the methicillin-resistant Staphylococcus aureus (MRSA) infected wounds on diabetic mice. CONCLUSION: Upon NIR illumination, Cu2O/Ti3C2Tx nanosheets eradicated MRSA and their associated biofilm to promote wound healing. The Cu2O/Ti3C2Tx nanosheets with superior catalytic and photothermal properties have a great scope as an effective antimicrobial modality for the treatment of infected wounds.


Subject(s)
Diabetes Mellitus, Experimental , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Oxidation-Reduction , Titanium/pharmacology
6.
J Nanobiotechnology ; 19(1): 448, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34952588

ABSTRACT

BACKGROUND: Shrimp aquaculture has suffered huge economic losses over the past decade due to the outbreak of acute hepatopancreatic necrosis disease (AHPND), which is mainly caused by the bacteria Vibrio parahaemolyticus (V. parahaemolyticus) with the virulence pVA1 plasmid, which encodes a secretory photorhabdus insect-related (Pir) toxin composed of PirA and PirB proteins. The Pir toxin mainly attacks the hepatopancreas, a major metabolic organ in shrimp, thereby causing necrosis and loss of function. The pandemic of antibiotic-resistant strains makes the impact worse. METHODS: Mild pyrolysis of a mixture of polysaccharide dextran 70 and the crosslinker 1,8-diaminooctane at 180 â„ƒ for 3 h to form carbonized nanogels (DAO/DEX-CNGs) through controlled cross-linking and carbonization. The multifunctional therapeutic CNGs inherit nanogel-like structures and functional groups from their precursor molecules. RESULTS: DAO/DEX-CNGs manifest broad-spectrum antibacterial activity against Vibrio parahaemolyticus responsible for AHPND and even multiple drug-resistant strains. The polymer-like structures and functional groups on graphitic-carbon within the CNGs exhibit multiple treatment effects, including disruption of bacterial membranes, elevating bacterial oxidative stress, and neutralization of PirAB toxins. The inhibition of Vibrio in the midgut of infected shrimp, protection of hepatopancreas tissue from Pir toxin, and suppressing overstimulation of the immune system in severe V. parahaemolyticus infection, revealing that CNGs can effectively guard shrimp from Vibrio invasion. Moreover, shrimps fed with DAO/DEX-CNGs were carefully examined, such as the expression of the immune-related genes, hepatopancreas biopsy, and intestinal microbiota. Few adverse effects on shrimps were observed. CONCLUSION: Our work proposes brand-new applications of multifunctional carbon-based nanomaterials as efficient anti-Vibrio agents in the aquatic industry that hold great potential as feed additives to reduce antibiotic overuse in aquaculture.


Subject(s)
Anti-Infective Agents/therapeutic use , Nanogels/therapeutic use , Vibrio Infections/drug therapy , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Artemia/microbiology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Carbon/chemistry , Dextrans/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hepatopancreas/pathology , Nanogels/chemistry , Nanogels/toxicity , Toxins, Biological/chemistry , Toxins, Biological/metabolism , Vibrio Infections/prevention & control , Vibrio Infections/veterinary , Vibrio parahaemolyticus/drug effects , Vibrio parahaemolyticus/pathogenicity
7.
Int J Mol Sci ; 22(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063782

ABSTRACT

In this study, we demonstrate the synthesis of carbonized nanogels (CNGs) from an amino acid (lysine hydrochloride) using a simple pyrolysis method, resulting in effective viral inhibition properties against infectious bronchitis virus (IBV). The viral inhibition of CNGs was studied using both in vitro (bovine ephemeral fever virus (BEFV) and pseudorabies virus (PRV)) and in ovo (IBV) models, which indicated that the CNGs were able to prevent virus attachment on the cell membrane and penetration into the cell. A very low concentration of 30 µg mL-1 was found to be effective (>98% inhibition) in IBV-infected chicken embryos. The hatching rate and pathology of IBV-infected chicken embryos were greatly improved in the presence of CNGs. CNGs with distinctive virus-neutralizing activities show great potential as a virostatic agent to prevent the spread of avian viruses and to alleviate the pathology of infected avian species.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Infectious bronchitis virus/drug effects , Lysine/pharmacology , Nanogels/administration & dosage , Protective Agents/pharmacology , Animals , Cell Line , Chickens/virology , Chlorocebus aethiops , Coronavirus Infections/virology , Cricetinae , Ephemeral Fever Virus, Bovine/drug effects , Female , Herpesvirus 1, Suid/drug effects , Poultry Diseases/drug therapy , Poultry Diseases/virology , Rats , Rats, Sprague-Dawley , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
8.
Anal Chem ; 92(20): 13997-14005, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32856458

ABSTRACT

Recent research has revealed the use of graphene oxide (GO) and its derivatives as a potential biomaterial because of their attractive physicochemical characteristics and functional properties. However, if GO and related derivatives are to become useful materials for biomedical applications, it will be necessary to evaluate their biodistribution for health and safety considerations. To obtain a more accurate biodistribution for GO, we (i) developed a postadministration labeling strategy employing DNA-conjugated gold nanoparticles (DNA-AuNPs) to selectively label administered GO in Solvable-treated tissue samples and (ii) constructed an automatic sample pretreatment scheme (using a C18-packed minicolumn) to effectively separate the DNA-AuNP-labeled GO from the unbound DNA-AuNPs and the dissolved tissue matrices, thereby enabling ultrasensitive, interference-free quantification of GO through measurement (inductively coupled plasma mass spectrometry) of the Au signal intensities. The DNA-AuNPs can bind to GO in a concentration- and time-dependent manner. After optimizing the labeling conditions (DNA length, incubation pH, DNA-AuNP concentration, and incubation time) and the separation scheme (sample loading flow rate, rinsing volume, and eluent composition), we found that A20R20-AuNPs (R20: random DNA sequence including A, T, C, and G) had the strongest binding affinity for labeling of the administered GO (dissociation constant: 36.0 fM) and that the method's detection limit reached 9.3 ag L-1 with a calibration curve having a working range from 10-1 to 1010 fg L-1. Moreover, this approach revealed that the intravenously administered GO accumulated predominantly in the liver and spleen at 1 and 12 h post administration, with apparent discrepancies in the concentrations measured using pre- and postadministration labeling strategies.


Subject(s)
DNA/chemistry , Gold/chemistry , Graphite/analysis , Mass Spectrometry/methods , Metal Nanoparticles/chemistry , Animals , Graphite/administration & dosage , Graphite/pharmacokinetics , Limit of Detection , Male , Plasma Gases/chemistry , Rats , Rats, Sprague-Dawley , Tissue Distribution
9.
Appl Microbiol Biotechnol ; 104(12): 5259-5272, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32291486

ABSTRACT

As petro-based production generates numerous environmental impacts and their associated technological concerns, bio-based production has been well recognized these days as a modern alternative to manufacture chemical products in a more renewable, environmentally friendly, and sustainable manner. Herein, we report the development of a microbial bioprocess for high-level and potentially economical production of 3-hydroxyvalerate (3-HV), a valuable special chemical with multiple applications in chemical, biopolymer, and pharmaceutical industries, from glycerol, which can be cheaply and renewably refined as a byproduct from biodiesel production. We used our recently derived 3-HV-producing Escherichia coli strains for bioreactor characterization under various culture conditions. In the parental strain, 3-HV biosynthesis was limited by the intracellular availability of propionyl-CoA, whose formation was favored by anaerobic conditions, which often compromised cell growth. With appropriate strain engineering, we demonstrated that 3-HV can be effectively produced under both microaerobic (close to anaerobic) and aerobic conditions, which determine the direction of dissimilated carbon flux toward the succinate node in the tricarboxylic acid (TCA) cycle. We first used the ∆sdhA single mutant strain, in which the dissimilated carbon flux was primarily directed to the Sleeping beauty mutase (Sbm) pathway (via the reductive TCA branch, with enhanced cell growth under microaerobic conditions, achieving 3.08 g L-1 3-HV in a fed-batch culture. In addition, we used the ∆sdhA-∆iclR double mutant strain, in which the dissimilated carbon flux was directed from the TCA cycle to the Sbm pathway via the deregulated glyoxylate shunt, for cultivation under rather aerobic conditions. In addition to demonstrating effective cell growth, this strain has shown impressive 3-HV biosynthesis (up to 10.6 g L-1), equivalent to an overall yield of 18.8% based on consumed glycerol, in aerobic fed-batch culture. This study not only represents one of the most effective bio-based production of 3-HV from structurally unrelated carbons to date, but also highlights the importance of integrated strain engineering and bioprocessing strategies to enhance bio-based production.Key points• TCA cycle engineering was applied to enhance 3-HV biosynthesis in E. coli. • Effects of oxygenic conditions on 3-HV in E. coli biosynthesis were investigated. • Bioreactor characterization of 3-HV biosynthesis in E. coli was performed.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Pentanoic Acids/metabolism , Acyl Coenzyme A/metabolism , Batch Cell Culture Techniques , Bioreactors , Citric Acid Cycle , Escherichia coli Proteins/genetics , Fermentation , Industrial Microbiology
10.
Small ; 15(41): e1902641, 2019 10.
Article in English | MEDLINE | ID: mdl-31468672

ABSTRACT

It is demonstrated that carbon quantum dots derived from curcumin (Cur-CQDs) through one-step dry heating are effective antiviral agents against enterovirus 71 (EV71). The surface properties of Cur-CQDs, as well as their antiviral activity, are highly dependent on the heating temperature during synthesis. The one-step heating of curcumin at 180 °C preserves many of the moieties of polymeric curcumin on the surfaces of the as-synthesized Cur-CQDs, resulting in superior antiviral characteristics. It is proposed that curcumin undergoes a series of structural changes through dehydration, polymerization, and carbonization to form core-shell CQDs whose surfaces remain a pyrolytic curcumin-like polymer, boosting the antiviral activity. The results reveal that curcumin possesses insignificant inhibitory activity against EV71 infection in RD cells [half-maximal effective concentration (EC50 ) >200 µg mL-1 ] but exhibits high cytotoxicity toward RD cells (half-maximal cytotoxic concentration (CC50 ) <13 µg mL-1 ). The EC50 (0.2 µg mL-1 ) and CC50 (452.2 µg mL-1 ) of Cur-CQDs are >1000-fold lower and >34-fold higher, respectively, than those of curcumin, demonstrating their far superior antiviral capabilities and high biocompatibility. In vivo, intraperitoneal administration of Cur-CQDs significantly decreases mortality and provides protection against virus-induced hind-limb paralysis in new-born mice challenged with a lethal dose of EV71.


Subject(s)
Antiviral Agents/pharmacology , Carbon/chemistry , Curcumin/pharmacology , Quantum Dots/chemistry , Animals , Brain/virology , Cell Death/drug effects , Curcumin/chemistry , Enterovirus/drug effects , Eukaryotic Initiation Factor-4G/metabolism , Female , Male , Mice, Inbred ICR , Muscles/virology , Phosphorylation/drug effects , Quantum Dots/ultrastructure , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Virion/drug effects , Virion/metabolism , X-Ray Diffraction , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Anal Chem ; 90(12): 7283-7291, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29787232

ABSTRACT

Stereospecific recognition of chiral molecules is ubiquitous in chemical and biological systems, thus leading to strong demand for the development of enantiomeric drugs, enantioselective sensors, and asymmetric catalysts. In this study, we demonstrate the ratio of d-Cys and l-Cys playing an important role in determining the optical properties and the structures of self-assembled Cys-Au(I) supramolecules prepared through a simple reaction of tetrachloroaurate(III) with chiral cysteine (Cys). The irregularly shaped -[d-Cys-Au(I)] n- or - [l-Cys-Au(I)] n- supramolecules with a size larger than 500 nm possessing strong absorption in the near-UV region and chiroptical characteristics were only obtained from the reaction of Au(III) with d-Cys or l-Cys. On the other hand, spindle-shaped -[d/l-Cys-Au(I)] n- supramolecules were formed when using Au(III) with mixtures of d/l-Cys. Our results have suggested that Au(I)···Au(I) aurophilic interactions, and stacked hydrogen bonding and zwitterionic interactions between d/l-Cys ligands are important in determining their structures. The NaBH4-mediated reduction induces the formation of photoluminescent gold nanoclusters (Au NCs) embedded in the chiral -[d-Cys-Au(I)] n- or -[l-Cys-Au(I)] n- supramolecules with a quantum yield of ca. 10%. The as-formed Au NCs/-[d-Cys-Au(I)] n- and Au NCs/-[l-Cys-Au(I)] n- are an enantiospecific substrate that can trap l-carnitine and d-carnitine, respectively, and function as a nanomatrix for surface-assisted laser desorption/ionization mass spectrometry (LDI-MS). The high absorption efficiency of laser energy, analyte-binding capacity, and homogeneity of the Au NCs/-[Cys-Au(I)] n- allow for quantitation of enantiomeric carnitine down to the micromolar regime with high reproducibility. The superior efficiency of the Au NCs/-[d-Cys-Au(I)] n- substrate has been further validated by quantification of l-carnitine in dietary supplements with accuracy and precision. Our study has opened a new avenue for chiral quantitation of various analytes through LDI-MS using metal nanocomposites consisting of NCs and metal-ligand complexes.


Subject(s)
Carnitine/analysis , Nanocomposites/chemistry , Cysteine/chemistry , Gold/chemistry , Lasers , Reproducibility of Results , Stereoisomerism
13.
Phys Chem Chem Phys ; 19(19): 12085-12093, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28443925

ABSTRACT

In this study, we prepared photoluminescent l-cysteine (Cys)-capped gold nanoclusters (Cys-Au NCs) via NaBH4-mediated reduction of aggregated coordination polymers (supramolecules) of -[Cys-Au(i)]n-. The -[Cys-Au(i)]n- supramolecules with interesting chiral properties were formed through simple reactions of chloroauric acid (HAuCl4) with Cys at certain pH values (pH 3-7). The -[Cys-Au(i)]n- polymers could self-assemble into -[Cys-Au(i)]n- supramolecules with irregular morphologies and diameters larger than 500 nm through stacked hydrogen bonding and zwitterionic interactions between Cys ligands and through Au(i)Au(i) aurophilic interactions in solutions with pH values ≤7. The photoluminescent Au NCs (quantum yield = 11.6%) dominated by a Au13 core were embedded in -[Cys-Au(i)]n- supramolecules after NaBH4-mediated reduction. The optical and structural properties of Cys-Au NCs/-[Cys-Au(i)]n- nanocomposites were investigated, revealing that the interaction between Cys ligands plays a critical role in the self-assembly of -[Cys-Au(i)]n- supramolecules and in the formation of photoluminescent Cys-Au NCs embedded in the supramolecules. To further demonstrate that the photoluminescence properties and structures of the nanocomposites are mediated by the intermolecular forces of thiol ligands, other thiol ligands (l-penicillamine, l-homocysteine, 3-mercaptopropionic acid, and l-glutathione) and a ligand-crosslinking agent [bis(sulfosuccinimidyl) suberate; BS3] were used. We concluded that the electrostatic interactions, hydrogen bonding and steric effects dominate the polymer self-assembly into thiol-ligand-Au(i) supramolecules and thus the formation of Au NCs. Our study provides insights into the bottom-up synthesis of photoluminescent Au NCs from thiol-ligand-Au(i) complexes, polymers, and supramolecules. The hybrid Au NCs/-[Cys-Au(i)]n- nanocomposites can potentially be employed as drug carriers and bioimaging agents.


Subject(s)
Gold/chemistry , Ligands , Metal Nanoparticles/chemistry , Chlorides/chemistry , Gold Compounds/chemistry , Hydrogen-Ion Concentration , Light , Luminescence , Oxidation-Reduction , Polymers
14.
Anal Chem ; 86(4): 2065-72, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24451013

ABSTRACT

Functional logic gates based on lead ions (Pb(2+)) and mercury ions (Hg(2+)) that induce peroxidase-like activities in gold nanoparticles (Au NPs) in the presence of platinum (Pt(4+)) and bismuth ions (Bi(3+)) are presented. The "AND" logic gate is constructed using Pt(4+)/Pb(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Pt(4+)/Pb(2+)(AND)-Au NPPOX". When Pt(4+) and Pb(2+) coexist, strong metallophilic interactions (between Pt and Pb atoms/ions) and aurophilic interactions (between Au and Pb/Pt atoms/ions) result in significant increases in the deposition of Pt and Pb atoms/ions onto the Au NPs, leading to enhanced peroxidase-like activity. The "INHIBIT" logic gate is fabricated by using Bi(3+) and Hg(2+) as the input and the peroxidase-like activity of the Au NPs as the output; this logic gate is denoted as "Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX". High peroxidase-like activity of Au NPs in the presence of Bi(3+) is a result of the various valence (oxidation) states of Bi(3+) and Au (Au(+)/Au(0)) atoms on the nanoparticle's surface. When Bi(3+) and Hg(2+) coexist, strong Hg-Au amalgamation results in a large decrease in the peroxidase-like activity of the Au NPs. These two probes (Pt(4+)/Pb(2+)(AND)-Au NPPOX and Bi(3+)/Hg(2+)(INHIBIT)-Au NPPOX) allow selective detection of Pb(2+) and Hg(2+) down to nanomolar quantities. The practicality of these two probes has been validated by analysis of Pb(2+) and Hg(2+) in environmental water samples (tap water, river water, and lake water). In addition, an integrated logic circuit based on the color change (formation of reddish resorufin product) and generation of O2 bubbles from these two probes has been constructed, allowing visual detection of Pb(2+) and Hg(2+) in aqueous solution.


Subject(s)
Gold/chemistry , Heavy Ions , Lead/analysis , Mercury/analysis , Metal Nanoparticles/chemistry , Peroxidase/chemistry , Water Pollutants, Chemical/analysis
15.
Anal Chem ; 86(6): 3167-73, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24552451

ABSTRACT

We have developed an assay based on gold nanoparticle-modified mixed cellulose ester membrane (Au NPs-MCEM) coupled with laser-induced desorption/ionization mass spectrometry (LDI-MS)-for the detection of arsenic(III) ions (arsenite, AsO2(-)) in aqueous solution. When the Au NPs reacted with lead ions (Pb(2+)) in alkaline solution (5 mM glycine-NaOH, pH 12), Au-Pb complexes, PbO, and Pb(OH) were formed immediately on the Au NP surfaces. The Pb species reacted rapidly with subsequently added AsO2(-) to form PbOAs2O3, (PbO)2As2O3, and/or (PbO)3As2O3 shells (2-5 nm) on the Au NPs' surfaces. As a result, significant observable aggregation of the Au NPs occurred in the solution. This Pb(2+)/Au NP probe allowed the detection of AsO2(-) at concentrations as low as 0.6 µM with high selectivity (at least 100-fold over other anions and metal ions). To further improve the sensitivity, we prepared Au NPs-MCEM for the LDI-MS-based detection of AsO2(-) ions. The intensity of the signal for the [Pb](+) ions in the mass spectra increased when the Au NPs-MCEM reacted with AsO2(-); in contrast, the intensity of the signal for [Au](+) ions decreased. Accordingly, the [Pb](+)/[Au](+) peak ratio increased upon increasing the AsO2(-) concentration over the range from 10 nM to 10 µM. The limit of detection at a signal-to-noise ratio of 3 was 2.5 nM, far below the action level of As (133 nM, ca. 10 ppb) permitted by the US EPA for drinking water. Relative to other nanoparticle-based arsenic sensors, this approach is rapid, specific, and sensitive; in addition, it can be applied to the detection of AsO2(-) in natural water samples (in this case, streamwater, lake water, tap water, groundwater, and mineral water).


Subject(s)
Arsenic/analysis , Cellulose/chemistry , Gold/chemistry , Membranes, Artificial , Nanoparticles , Microscopy, Electron, Transmission
16.
Analyst ; 139(22): 5977-82, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25267979

ABSTRACT

We report a rapid and simple assay for colorimetric visualization of thrombin at nanomolar levels using functional gold nanoparticles (FAuNPs) coupled with microporous membranes. We used a 29-mer thiolated-thrombin-binding-aptamer (TBA29) to prepare TBA29 functionalized AuNPs (TBA29-AuNPs) for the selective detection of human thrombin. The sensing mechanism is based on the principle of TBA29-AuNPs flowing down through the nitrocellulose membrane (NCM) pores at different flow rates after binding to thrombin. Compared with free TBA29-AuNPs, when thrombin-TBA29-AuNPs were dropped on the NCM, the particles flowed down more easily through the NCM pores along with the buffer solution due to the increase in the gravity of particles. Therefore, color intensities of TBA29-AuNPs on the NCM depended on the concentration of thrombin; the color intensity was lighter when the concentration of thrombin was higher. Thrombin can be detected at the nanomolar level with the naked eye using this colorimetric probe. A protein G modified AuNP based probe (PG-AuNPs/NCM) was employed to detect human immunoglobulin G (hIgG) in plasma samples to demonstrate the practicality of our sensing system. Also, fibrinogen modified Au NPs were analyzed to demonstrate that this concept of detection could be extended to other proteins or systems, by functionalizing with suitable molecules.


Subject(s)
Colorimetry/methods , Gold/chemistry , Membranes, Artificial , Metal Nanoparticles , Proteins/analysis , Gold/blood
17.
Analyst ; 139(9): 2221-8, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24634911

ABSTRACT

Fluorescence quenching is an interesting phenomenon which is highly useful in developing fluorescence based sensors. A thorough understanding of the fluorescence quenching mechanism is essential to develop efficient sensors. In this work, we investigate different aspects governing the nitrite ion-induced fluorescence quenching of luminescent bovine serum albumin stabilized gold nanoclusters (BSA-Au NCs) and their application for detection of nitrite in urine. The probable events leading to photoluminescence (PL) quenching by nitrite ions were discussed on the basis of the results obtained from ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence measurements, circular dichroism (CD) spectroscopy, zeta potential and dynamic light scattering (DLS) studies. These studies suggested that PL quenching mainly occurred through the oxidation of Au(0) atoms to Au(i) atoms in the core of BSA-Au NCs mediated by nitrite ions. The interference caused by certain species such as Hg(2+), Cu(2+), CN(-), S(2-), glutathione, cysteine, etc. during the nitrite determination by fluorescence quenching was eliminated by using masking agents and optimising the conditions. Based on these findings we proposed a BSA-Au NC-modified membrane based sensor which would be more convenient for the real life applications such as nitrite detection in urine samples. The BSA-Au NC-modified nitrocellulose membrane (NCM) enabled the detection of nitrite at a level as low as 100 nM in aqueous solutions. This Au NC-based paper probe was validated to exhibit good performance for nitrite analysis in environmental water and urine samples, which makes it useful in practical applications.


Subject(s)
Gold/chemistry , Nanostructures , Nitrites/chemistry , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence/methods , Luminescence
18.
Colloids Surf B Biointerfaces ; 234: 113676, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056413

ABSTRACT

The amyloid cascade and tau hypotheses both hold significant implications for the pathogenesis of Alzheimer's disease (AD). Curcumin shows potential by inhibiting the aggregation of amyloid beta (Aß) and reducing tau hyperphosphorylation, however, its use is limited due to issues with solubility and bioavailability. Carbon dots, recognized for their high biocompatibility and optimal water solubility, have demonstrated the capability to inhibit either Aß or tau aggregation. Nonetheless, their effects on tau hyperphosphorylation are yet to be extensively explored. This study aims to evaluate the water-soluble curcumin-derived carbon quantum dots (Cur-CQDs) synthesized via an eco-friendly method, designed to preserve the beneficial effects of curcumin while overcoming solubility challenges. The synthesis of Cur-CQDs involves a single-step dry heating process using curcumin, resulting in dots that exhibit negligible cytotoxicity to SH-SY5Y cells at the examined concentrations. Notably, Cur-CQDs have shown the ability to simultaneously mitigate Aß aggregation and tau hyperphosphorylation. Therefore, it is suggested that Cur-CQDs may hold potential for AD treatment, a hypothesis deserving of further research.


Subject(s)
Alzheimer Disease , Curcumin , Neuroblastoma , Quantum Dots , Humans , Amyloid beta-Peptides , Curcumin/pharmacology , Carbon , Alzheimer Disease/drug therapy , Water
19.
J Mater Chem B ; 12(31): 7604-7617, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38984474

ABSTRACT

Four-dimensional (4D) printing of hydrogels enabled the fabrication of complex scaffold geometries out of static parts. Although current 4D fabrication strategies are promising for creating vascular parts such as tubes, developing branched networks or tubular junctions is still challenging. Here, for the first time, a 4D printing approach is employed to fabricate T-shaped perfusable bifurcation using an extrusion-based multi-material 3D printing process. An alginate/methylcellulose-based dual-component hydrogel system (with defined swelling behavior) is nanoengineered with carbonized alginate (∼100 nm) to introduce anti-oxidative, anti-inflammatory, and anti-thrombotic properties and shape-shifting properties. A computational model to predict shape deformations in the printed hydrogels with defined infill angles was designed and further validated experimentally. Shape deformations of the 3D-printed flat sheets were achieved by ionic cross-linking. An undisrupted perfusion of a dye solution through a T-junction with minimal leakage mimicking blood flow through vessels is also demonstrated. Moreover, human umbilical vein endothelial and fibroblast cells seeded with printed constructs show intact morphology and excellent cell viability. Overall, the developed strategy paves the way for manufacturing self-actuated vascular bifurcations with remarkable anti-thrombotic properties to potentially treat coronary artery diseases.


Subject(s)
Alginates , Biocompatible Materials , Human Umbilical Vein Endothelial Cells , Hydrogels , Printing, Three-Dimensional , Tissue Scaffolds , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Humans , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Alginates/chemistry , Cell Survival/drug effects , Tissue Engineering , Nanotechnology
20.
Adv Healthc Mater ; 13(7): e2302881, 2024 03.
Article in English | MEDLINE | ID: mdl-38130100

ABSTRACT

Ocular angiogenesis, associated with diseases such as retinopathy of prematurity and diabetic retinopathy, is a leading cause of irreversible vision loss. Herein, carbon nanodonuts (CNDs) with a donut-shaped structure are synthesized using sodium alginate (SA) and 1,8-diaminooctane (DAO) through a one-step thermal process. The formation of SA/DAO-CNDs occurs through a crosslinking reaction between SA and DAO, creating amide bonds followed by partial carbonization. In human retinal pigment epithelial cells exposed to H2 O2 or lipopolysaccharide, the SA/DAO-CNDs display a more than fivefold reduction in reactive oxygen species and proinflammatory cytokines, such as IL-6 and IL-1ß, when compared to carbonized nanomaterials produced exclusively from SA. Furthermore, the CNDs effectively inhibit vascular endothelial growth factor A-165 (VEGF-A165 )-induced cell migration and tube formation in human umbilical vein endothelial cells due to their strong affinity for VEGF-A165 , with a dissociation constant of 2.2 × 10-14  M, over 1600 times stronger than the commercial drug bevacizumab (Avastin). Trypsin digestion coupled with LC-MS/MS analysis reveals that VEGF-A165 interacts with SA/DAO-CNDs through its heparin-binding domain, leading to activity loss. The SA/DAO-CNDs demonstrate excellent biocompatibility and potent anti-angiogenic effects in chicken embryos and rabbit eyes. These findings suggest that SA/DAO-CNDs hold promise as a therapeutic agent for treating various angiogenesis-related ocular diseases.


Subject(s)
Tandem Mass Spectrometry , Vascular Endothelial Growth Factor A , Animals , Chick Embryo , Humans , Rabbits , Vascular Endothelial Growth Factor A/metabolism , Chromatography, Liquid , Bevacizumab/pharmacology , Angiogenesis Inhibitors/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL