Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 754
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Bioinformatics ; 40(Suppl 1): i347-i356, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38940178

ABSTRACT

MOTIVATION: RNA design shows growing applications in synthetic biology and therapeutics, driven by the crucial role of RNA in various biological processes. A fundamental challenge is to find functional RNA sequences that satisfy given structural constraints, known as the inverse folding problem. Computational approaches have emerged to address this problem based on secondary structures. However, designing RNA sequences directly from 3D structures is still challenging, due to the scarcity of data, the nonunique structure-sequence mapping, and the flexibility of RNA conformation. RESULTS: In this study, we propose RiboDiffusion, a generative diffusion model for RNA inverse folding that can learn the conditional distribution of RNA sequences given 3D backbone structures. Our model consists of a graph neural network-based structure module and a Transformer-based sequence module, which iteratively transforms random sequences into desired sequences. By tuning the sampling weight, our model allows for a trade-off between sequence recovery and diversity to explore more candidates. We split test sets based on RNA clustering with different cut-offs for sequence or structure similarity. Our model outperforms baselines in sequence recovery, with an average relative improvement of 11% for sequence similarity splits and 16% for structure similarity splits. Moreover, RiboDiffusion performs consistently well across various RNA length categories and RNA types. We also apply in silico folding to validate whether the generated sequences can fold into the given 3D RNA backbones. Our method could be a powerful tool for RNA design that explores the vast sequence space and finds novel solutions to 3D structural constraints. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/ml4bio/RiboDiffusion.


Subject(s)
Nucleic Acid Conformation , RNA Folding , RNA , RNA/chemistry , Computational Biology/methods , Algorithms , Software , Neural Networks, Computer , Sequence Analysis, RNA/methods
2.
Nat Mater ; 23(6): 810-817, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684883

ABSTRACT

For halide perovskites that are susceptible to photolysis and ion migration, iodide-related defects, such as iodine (I2) and iodine vacancies, are inevitable. Even a small number of these defects can trigger self-accelerating chemical reactions, posing serious challenges to the durability of perovskite solar cells. Fortunately, before I2 can damage the perovskites under illumination, they generally diffuse over a long distance. Therefore, detrimental I2 can be captured by interfacial materials with strong iodide/polyiodide (Ix-) affinities, such as fullerenes and perfluorodecyl iodide. However, fullerenes in direct contact with perovskites fail to confine Ix- ions within the perovskite layer but cause detrimental iodine vacancies. Perfluorodecyl iodide, with its directional Ix- affinity through halogen bonding, can both capture and confine Ix-. Therefore, inverted perovskite solar cells with over 10 times improved ultraviolet irradiation and thermal-light stabilities (under 85 °C and 1 sun illumination), and 1,000 times improved reverse-bias stability (under ISOS-V ageing tests) have been developed.

3.
Plant Physiol ; 194(4): 2709-2723, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38206193

ABSTRACT

Plants and their associated microbes live in complicated, changeable, and unpredictable environments. They usually interact with each other in many ways through multidimensional, multiscale, and multilevel coupling manners, leading to challenges in the coexistence of randomness and determinism or continuity and discreteness. Gaining a deeper understanding of these diverse interaction mechanisms can facilitate the development of data-mining theories and methods for complex systems, coupled modeling for systems with different spatiotemporal scales and functional properties, or even a universal theory of information and information interactions. In this study, we use a "closed-loop" model to present a plant-microbe interaction system and describe the probable functions of microbial natural products. Specifically, we report a rhizosphere species, Streptomyces ginsengnesis G7, which produces polyketide lydicamycins and other active metabolites. Interestingly, these distinct molecules have the potential to function both as antibiotics and as herbicides for crop protection. Detailed laboratory experiments conducted in Arabidopsis (Arabidopsis thaliana), combined with a comprehensive bioinformatics analysis, allow us to rationalize a model for this specific plant-microbe interaction process. Our work reveals the benefits of exploring otherwise neglected resources for the identification of potential functional molecules and provides a reference to better understand the system biology of complex ecosystems.


Subject(s)
Arabidopsis , Microbiota , Panax , Streptomyces , Rhizosphere , Plants/metabolism , Soil Microbiology
4.
FASEB J ; 38(13): e23701, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38941193

ABSTRACT

Zearalenone (ZEN) is a mycotoxin known for its estrogen-like effects, which can disrupt the normal physiological function of endometrial cells and potentially lead to abortion in female animals. However, the precise mechanism by which ZEN regulates endometrial function remains unclear. In this study, we found that the binding receptor estrogen receptors for ZEN is extensively expressed across various segments of the uterus and within endometrial cells, and a certain concentration of ZEN treatment reduced the proliferation capacity of goat endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs). Meanwhile, cell cycle analysis revealed that ZEN treatment leaded to cell cycle arrest in goat EECs and ESCs. To explore the underlying mechanism, we investigated the mitochondrial quality control systems and observed that ZEN triggered excessive mitochondrial fission and disturbed the balance of mitochondrial fusion-fission dynamics, impaired mitochondrial biogenesis, increased mitochondrial unfolded protein response and mitophagy in goat EECs and ESCs. Additionally, ZEN treatment reduced the activities of mitochondrial respiratory chain complexes, heightened the production of hydrogen peroxide and reactive oxygen species, and caused cellular oxidative stress and mitochondrial dysfunction. These results suggest that ZEN has adverse effects on goat endometrium cells by disrupting the mitochondrial quality control system and affecting cell cycle and proliferation. Understanding the underlying molecular pathways involved in ZEN-induced mitochondrial dysfunction and its consequences on cell function will provide critical insights into the reproductive toxicity of ZEN and contribute to safeguarding the health and wellbeing of animals and humans exposed to this mycotoxin.


Subject(s)
Cell Proliferation , Endometrium , Goats , Mitochondria , Zearalenone , Animals , Female , Endometrium/cytology , Endometrium/metabolism , Endometrium/drug effects , Zearalenone/toxicity , Zearalenone/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cells, Cultured , Mitochondrial Dynamics/drug effects , Mitophagy/drug effects , Stromal Cells/metabolism , Stromal Cells/drug effects , Stromal Cells/cytology
5.
J Am Chem Soc ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39265069

ABSTRACT

Circularly polarized (CP) organic light-emitting diodes (OLEDs) have attracted attention in potential applications, including novel display and photonic technologies. However, conventional approaches cannot meet the requirements of device performance, such as high dissymmetry factor, high directionality, narrowband emission, simplified device structure, and low costs. Here, we demonstrate spin-valley-locked CP-OLEDs without chiral emitters but based on photonic spin-orbit coupling, where photons with opposite CP characteristics are emitted from different optical valleys. These spin-valley-locked OLEDs exhibit a narrowband emission of 16 nm, a high external quantum efficiency of 3.65%, a maximum luminance of near 98,000 cd/m2, and a gEL of up to 1.80, which are among the best performances of active single-crystal CP-OLEDs, achieved with a simple device structure. This strategy opens an avenue for practical applications toward three-dimensional displays and on-chip CP-OLEDs.

6.
Biochem Biophys Res Commun ; 727: 150313, 2024 10 01.
Article in English | MEDLINE | ID: mdl-38954981

ABSTRACT

Sepsis, a life-threatening condition resulting in multiple organ dysfunction, is characterized by a dysregulated immune response to infection. Current treatment options are limited, leading to unsatisfactory outcomes for septic patients. Here, we present a series of studies utilizing compact bone mesenchymal stem cells (CB-MSCs) and their derived paracrine mediators, especially exosome (CB-MSCs-Exo), to treat mice with cecal ligation and puncture-induced sepsis. Our results demonstrate that CB-MSCs treatment significantly improves the survival rate of septic mice by mitigating excessive inflammatory response and attenuating sepsis-induced organ injuries. Furthermore, CB-MSCs-conditioned medium, CB-MSCs secretome (CB-MSCs-Sec), and CB-MSCs-Exo exhibit potent anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage (RAW264.7). Intriguingly, intravenous administration of CB-MSCs-Exo confers superior protection against inflammation and organ damage in septic mice compared to CB-MSCs in certain aspects. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomic analysis, we identify a range of characterized proteins derived from the paracrine activity of CB-MSCs, involved in critical biological processes such as immunomodulation and apoptosis. Our findings highlight that the paracrine products of CB-MSCs could serve as a promising cell-free therapeutic agent for sepsis.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Mice, Inbred C57BL , Paracrine Communication , Sepsis , Animals , Sepsis/therapy , Sepsis/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , RAW 264.7 Cells , Exosomes/metabolism , Exosomes/transplantation , Male , Mesenchymal Stem Cell Transplantation/methods , Lipopolysaccharides , Culture Media, Conditioned/pharmacology
7.
J Transl Med ; 22(1): 770, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143617

ABSTRACT

BACKGROUND: Satellite glial cells (SGCs) in the dorsal root ganglia (DRG) play a pivotal role in the formation of neuropathic pain (NP). Sciatic nerve stimulation (SNS) neuromodulation was reported to alleviate NP and reduce neuroinflammation. However, the mechanisms underlying SNS in the DRG remain unclear. This study aimed to elucidate the mechanism of electric stimulation in reducing NP, focusing on the DRG. METHODS: L5 nerve root ligation (NRL) NP rat model was studied. Ipsilateral SNS performed 1 day after NRL. Behavioral tests were performed to assess pain phenotypes. NanoString Ncounter technology was used to explore the differentially expressed genes and cellular pathways. Activated SGCs were characterized in vivo and in vitro. The histochemical alterations of SGCs, macrophages, and neurons in DRG were examined in vivo on post-injury day 8. RESULTS: NRL induced NP behaviors including decreased pain threshold and latency on von Frey and Hargreaves tests. We found that following nerve injury, SGCs were hyperactivated, neurotoxic and had increased expression of NP-related ion channels including TRPA1, Cx43, and SGC-neuron gap junctions. Mechanistically, nerve injury induced reciprocal activation of SGCs and M1 macrophages via cytokines including IL-6, CCL3, and TNF-α mediated by the HIF-1α-NF-κB pathways. SNS suppressed SGC hyperactivation, reduced the expression of NP-related ion channels, and induced M2 macrophage polarization, thereby alleviating NP and associated neuroinflammation in the DRG. CONCLUSIONS: NRL induced hyperactivation of SGCs, which had increased expression of NP-related ion channels. Reciprocal activation of SGCs and M1 macrophages surrounding the primary sensory neurons was mediated by the HIF-1α and NF-κB pathways. SNS suppressed SGC hyperactivation and skewed M1 macrophage towards M2. Our findings establish SGC activation as a crucial pathomechanism in the gliopathic alterations in NP, which can be modulated by SNS neuromodulation.


Subject(s)
Disease Models, Animal , Ganglia, Spinal , Neuralgia , Neuroinflammatory Diseases , Rats, Sprague-Dawley , Sciatic Nerve , Animals , Ganglia, Spinal/metabolism , Neuralgia/therapy , Neuralgia/metabolism , Male , Neuroinflammatory Diseases/metabolism , Sciatic Nerve/pathology , Macrophages/metabolism , Neuroglia/metabolism , Rats , Behavior, Animal
8.
Chemistry ; 30(57): e202402667, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39109456

ABSTRACT

A novel room-temperature liquid crystal of tetraphenylethylene derivative (TPE-DHAB) was synthesized using an ionic self-assembly strategy. The TPE-DHAB complex exhibits typical aggregation-induced emission properties and a unique helical supramolecular structure. Moreover, the generation and handedness inversion of circularly polarized luminescence (CPL) can be achieved through further chiral solvation, providing a facile approach to fabricate room-temperature liquid crystalline materials with controllable supramolecular structures and tunable CPL properties through a synergistic strategy of ionic self-assembly and chiral solvation process.

9.
Br J Anaesth ; 133(5): 983-997, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39322470

ABSTRACT

BACKGROUND: Analgesia is an important effect of volatile anaesthetics, for which the spinal cord is a critical neural target. However, how supraspinal mechanisms modulate analgesic potency of volatile anaesthetics is not clear. We investigated the contribution of the central amygdala (CeA) to the analgesic effects of isoflurane and sevoflurane. METHODS: Analgesic potencies of volatile anaesthetics were tested during optogenetic and chemogenetic inhibition of CeA neurones. In vivo calcium imaging was used to measure neuronal activities of CeA neuronal subtypes under volatile anaesthesia. Contributions of the sodium leak channel (NALCN) in GABAergic CeA (CeAGABA) neurones to analgesic effects of volatile anaesthetics were explored by specific NALCN knockdown. Electrophysiological recordings on acute brain slices were applied to measure volatile anaesthetic modulation of CeA neuronal activity by NALCN. RESULTS: Optogenetic or chemogenetic silencing CeA neurones reduced the analgesic effects of isoflurane or sevoflurane in vivo. The calcium signals of CeAGABA neurones increased during exposure to isoflurane or sevoflurane at analgesic concentrations. Knockdown of NALCN in CeAGABA neurones attenuated antinociceptive effects of isoflurane, sevoflurane, or both. For example, mean concentrations of isoflurane, sevoflurane, or both that induced immobility to tail-flick stimuli were significantly increased (isoflurane: 1.17 [0.05] vol% vs 1.24 [0.04] vol%, P=0.01; sevoflurane: 2.65 [0.07] vol% vs 2.81 [0.07] vol%; P<0.001). In brain slices, isoflurane, sevoflurane, or both at clinical concentrations increased NALCN-mediated holding currents and conductance in CeAGABA neurones, which increased excitability of CeAGABA neurones in an NALCN-dependent manner. CONCLUSIONS: The analgesic potencies of volatile anaesthetics are partially mediated by modulation of NALCN in CeAGABA neurones.


Subject(s)
Anesthetics, Inhalation , Central Amygdaloid Nucleus , Isoflurane , Sevoflurane , Animals , Anesthetics, Inhalation/pharmacology , Sevoflurane/pharmacology , Mice , Isoflurane/pharmacology , Central Amygdaloid Nucleus/drug effects , Central Amygdaloid Nucleus/metabolism , Male , Mice, Inbred C57BL , Sodium Channels/drug effects , Sodium Channels/metabolism , Neurons/drug effects , Neurons/metabolism , Analgesics/pharmacology
10.
Int J Hyperthermia ; 41(1): 2338542, 2024.
Article in English | MEDLINE | ID: mdl-38684224

ABSTRACT

OBJECTIVE: To investigate the changes in liver and kidney function, red blood cell (RBC) count and hemoglobin (HGB) levels in patients undergoing ultrasound-guided percutaneous microwave ablation (UPMWA) for uterine fibroids on postoperative day 1. METHODS: The changes in liver and kidney function, RBC count and HGB levels in 181 patients who underwent selective UPMWA in the Second Affiliated Hospital of Shantou University Medical College, China, between August 2017 and January 2023 were retrospectively analyzed. RESULTS: All patients underwent UPMWA for uterine fibroids; 179 patients had multiple uterine fibroids and 2 patients had single uterine fibroids. The maximum fibroid diameter ranged from 18 to 140 mm, with an average of 68.3 mm. Ultrasound imaging was used to confirm that the blood flow signal within the mass had disappeared in all patients, indicating that the ablation was effective. Within 24 h, compared with before UPMWA, levels of total bilirubin, direct bilirubin, indirect bilirubin and aspartate aminotransferase had significantly increased (p < 0.01), whereas levels of total protein, albumin, globulin, alanine aminotransferase, creatinine and urea had significantly decreased (p < 0.01). Acute kidney injury (AKI) occurred in 1 of the 181 patients. The RBC count and HGB levels decreased significantly after UPMWA (p < 0.01). CONCLUSION: Ultrasound-guided percutaneous microwave ablation for uterine fibroids can impose a higher detoxification load on the liver and cause thermal damage to and the destruction of RBCs within local circulation, potentially leading to AKI. Protein levels significantly decreased after UPMWA. Therefore, perioperative organ function protection measures and treatment should be actively integrated into clinical practice to improve prognosis and enhance recovery.


Subject(s)
Hemoglobins , Leiomyoma , Humans , Female , Leiomyoma/surgery , Leiomyoma/blood , Leiomyoma/diagnostic imaging , Adult , Middle Aged , Hemoglobins/metabolism , Hemoglobins/analysis , Erythrocyte Count , Kidney/diagnostic imaging , Kidney/surgery , Liver/diagnostic imaging , Liver/metabolism , Liver/surgery , Retrospective Studies , Microwaves/therapeutic use
11.
Anesth Analg ; 138(1): 198-209, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-36753442

ABSTRACT

BACKGROUND: General anesthetics (eg, propofol and volatile anesthetics) enhance the slow-delta oscillations of the cortical electroencephalogram (EEG), which partly results from the enhancement of (γ-aminobutyric acid [GABA]) γ-aminobutyric acid-ergic (GABAergic) transmission. There is a GABAergic excitatory-inhibitory shift during postnatal development. Whether general anesthetics can enhance slow-delta oscillations in the immature brain has not yet been unequivocally determined. METHODS: Perforated patch-clamp recording was used to confirm the reversal potential of GABAergic currents throughout GABAergic development in acute brain slices of neonatal rats. The power density of the electrocorticogram and the minimum alveolar concentrations (MAC) of isoflurane and/or sevoflurane were measured in P4-P21 rats. Then, the effects of bumetanide, an inhibitor of the Na + -K + -2Cl - cotransporter (NKCC1) and K + -Cl - cotransporter (KCC2) knockdown on the potency of volatile anesthetics and the power density of the EEG were determined in vivo. RESULTS: Reversal potential of GABAergic currents were gradually hyperpolarized from P4 to P21 in cortical pyramidal neurons. Bumetanide enhanced the hypnotic effects of volatile anesthetics at P5 (for MAC LORR , isoflurane: 0.63% ± 0.07% vs 0.81% ± 0.05%, 95% confidence interval [CI], -0.257 to -0.103, P < .001; sevoflurane: 1.46% ± 0.12% vs 1.66% ± 0.09%, 95% CI, -0.319 to -0.081, P < .001); while knockdown of KCC2 weakened their hypnotic effects at P21 in rats (for MAC LORR , isoflurane: 0.58% ± 0.05% to 0.77% ± 0.20%, 95% CI, 0.013-0.357, P = .003; sevoflurane: 1.17% ± 0.04% to 1.33% ± 0.04%, 95% CI, 0.078-0.244, P < .001). For cortical EEG, slow-delta oscillations were the predominant components of the EEG spectrum in neonatal rats. Isoflurane and/or sevoflurane suppressed the power density of slow-delta oscillations rather than enhancement of it until GABAergic maturity. Enhancement of slow-delta oscillations under volatile anesthetics was simulated by preinjection of bumetanide at P5 (isoflurane: slow-delta changed ratio from -0.31 ± 0.22 to 1.57 ± 1.15, 95% CI, 0.67-3.08, P = .007; sevoflurane: slow-delta changed ratio from -0.46 ± 0.25 to 0.95 ± 0.97, 95% CI, 0.38-2.45, P = .014); and suppressed by KCC2-siRNA at P21 (isoflurane: slow-delta changed ratio from 16.13 ± 5.69 to 3.98 ± 2.35, 95% CI, -18.50 to -5.80, P = .002; sevoflurane: slow-delta changed ratio from 0.13 ± 2.82 to 3.23 ± 2.49, 95% CI, 3.02-10.79, P = .003). CONCLUSIONS: Enhancement of cortical EEG slow-delta oscillations by volatile anesthetics may require mature GABAergic inhibitory transmission during neonatal development.


Subject(s)
Anesthesia , Anesthetics, General , Anesthetics, Inhalation , Isoflurane , Methyl Ethers , Symporters , Rats , Animals , Isoflurane/pharmacology , Sevoflurane/pharmacology , Animals, Newborn , Bumetanide/pharmacology , gamma-Aminobutyric Acid/pharmacology , Electroencephalography , Hypnotics and Sedatives , Anesthetics, Inhalation/pharmacology
12.
Ecotoxicol Environ Saf ; 285: 117091, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39341136

ABSTRACT

Few studies have investigated the associations between phthalate exposure and kidney function indicators in adults by simultaneously performing covariate-adjusted creatinine standardization, cumulative risk assessment, and mixture analysis. Thus, we applied these methods simultaneously to investigate the aforementioned associations in an adult population. This cross-sectional study analyzed data (N = 839) from a community-based arm of the Taiwan Biobank. The levels of 10 urinary phthalate metabolites were measured and calculated as the sum of the molar concentrations of the dibutyl phthalate metabolite (ΣDBPm) and di(2-ethylhexyl) phthalate (DEHP) metabolite (ΣDEHPm). The hazard index (HI) and daily intake (DI) were estimated by measuring the urinary levels of the phthalate metabolite. Kidney function biomarkers were assessed by measuring the following: blood urea nitrogen (BUN), uric acid, the albumin-to-creatinine ratio (ACR), and the estimated glomerular filtration rate (eGFR). Generalized linear models were implemented to examine the associations between exposure to individual phthalates, HI scores, and kidney function biomarkers. We also employed Bayesian kernel machine regression (BKMR) to analyze the relationships between exposure to various combinations of phthalates and kidney function. ΣDEHPm levels were significantly and positively associated with BUN and ACR levels, and ΣDBPm levels were positively associated with ACR levels. In addition, eGFR was negatively associated with ΣDBPm and ΣDEHPm levels. In the BKMR model, a mixture of 10 phthalate metabolites was significantly associated with BUN, uric acid, ACR, and eGFR results. Higher DIDEHP and higher DIDnBP values were significantly associated with lower eGFRs and higher ACRs, respectively. Higher DIDiBP and DIDEP values were significantly associated with higher uric acid levels. A higher HI was significantly associated with lower eGFRs and higher ACRs. Our results suggest that exposure to environmental phthalates is associated with impaired kidney function in Taiwanese adults.


Subject(s)
Environmental Exposure , Environmental Pollutants , Glomerular Filtration Rate , Kidney , Phthalic Acids , Humans , Taiwan , Risk Assessment , Phthalic Acids/urine , Male , Female , Middle Aged , Cross-Sectional Studies , Adult , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Environmental Pollutants/urine , Glomerular Filtration Rate/drug effects , Kidney/drug effects , Biomarkers/urine , Biomarkers/blood , Creatinine/urine , Creatinine/blood , Aged , Kidney Function Tests , Bayes Theorem , Blood Urea Nitrogen
13.
Sensors (Basel) ; 24(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38894102

ABSTRACT

This study develops a comprehensive robotic system, termed the robot cognitive system, for complex environments, integrating three models: the engagement model, the intention model, and the human-robot interaction (HRI) model. The system aims to enhance the naturalness and comfort of HRI by enabling robots to detect human behaviors, intentions, and emotions accurately. A novel dual-arm-hand mobile robot, Mobi, was designed to demonstrate the system's efficacy. The engagement model utilizes eye gaze, head pose, and action recognition to determine the suitable moment for interaction initiation, addressing potential eye contact anxiety. The intention model employs sentiment analysis and emotion classification to infer the interactor's intentions. The HRI model, integrated with Google Dialogflow, facilitates appropriate robot responses based on user feedback. The system's performance was validated in a retail environment scenario, demonstrating its potential to improve the user experience in HRIs.


Subject(s)
Robotics , Humans , Robotics/methods , Emotions/physiology , User-Computer Interface , Man-Machine Systems
14.
J Environ Manage ; 360: 121083, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739994

ABSTRACT

With the exacerbation of global climate change and the growing environmental awareness among the general public, the concept of green consumption has gained significant attention across various sectors of society. As a representative example of green consumer products, energy-saving products play a crucial role in the timely realization of dual carbon goals. However, an analysis of online comments regarding energy-saving products reveals that the majority of these products still exhibit shortcomings in terms of efficacy, noise level, cost-effectiveness, and particularly, energy-saving appliances. This study focuses on the user-generated online comments data from the Taobao e-commerce platform for Grade 1 energy-saving refrigerators. By employing text mining techniques, the study aims to extract the essential information and sentiments expressed in the comments, in order to explore the consumption characteristics of Grade 1 energy-saving refrigerators. Moreover, the LBBA (LDA-Bert-BiLSTM-Attention) model is utilized to investigate the consumer topics of interest and emotional features. Initially, the LDA model is adopted to identify the attributes and weights of consumer concerns. Subsequently, the Bert model is pre-trained with the online comment data, and combined with the BiLSTM algorithm and Attention mechanism to predict sentiment categories. Finally, a transfer learning approach is utilized to determine the sentiment inclination of user-generated online comments and to identify the primary driving factors behind each sentiment category. This research employs sentiment analysis on online comments data regarding energy-saving products to uncover consumer sentiment attributes and emotional characteristics. It provides decision-makers with a comprehensive and systematic understanding of public consumption intentions, offering decision support for the efficient operation and management of the energy-saving product market.


Subject(s)
Algorithms , Climate Change , Humans
15.
Fish Physiol Biochem ; 50(2): 653-666, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214794

ABSTRACT

Low temperature is one of the most common abiotic stresses for aquatic ectotherms. Ambient low temperatures reduce the metabolic rate of teleosts, therefore, teleosts have developed strategies to modulate their physiological status for energy saving in response to cold stress, including behaviors, circulatory system, respiratory function, and metabolic adjustments. Many teleosts are social animals and they can live in large schools to serve a variety of functions, including predator avoidance, foraging efficiency, and reproduction. However, the impacts of acute cold stress on social behaviors of fish remain unclear. In the present study, we test the hypothesis that zebrafish alter their social behaviors for energy saving as a strategy in response to acute cold stress. We found that acute cold stress increased shoaling behavior that reflected a save-energy strategy for fish to forage and escape from the predators under cold stress. The aggressive levels measured by fighting behavior tests and mirror fighting tests were reduced by cold treatment. In addition, we also found that acute cold stress impaired the learning ability but did not affect memory. Our findings provided evidence that acute cold stress alters the social behaviors of aquatic ectotherms for energy saving; knowledge of their responses to cold is essential for their conservation and management.


Subject(s)
Cold-Shock Response , Zebrafish , Animals , Zebrafish/physiology , Cold Temperature , Aggression , Behavior, Animal/physiology
16.
Cent Eur J Immunol ; 49(1): 70-76, 2024.
Article in English | MEDLINE | ID: mdl-38812600

ABSTRACT

Inflammatory bowel disease (IBD) is a group of diseases characterized by refractory and chronic inflammation of the bowel, which can be treated with biologics in clinical practice. Anti-tumor necrosis factor α (TNF-α) agents, which are among the most widely used biologics, alleviate the inflammatory activity in a variety of ways. Helicobacter pylori is a Gram-negative bacterium that colonizes the gastric mucosa, which could cause chronic inflammation and even induce gastric cancer. However, it has been suggested that H. pylori has a potential protective role in IBD patients. Yet there has been limited research on the mechanisms of the effect of H. pylori infection in IBD patients, and whether there is an interaction between H. pylori and anti-TNF-α agents. This review aims to summarize the possible mechanisms of H. pylori and anti-TNF-α agents in the development and treatment of IBD, and to explore the possible interaction between H. pylori infection and anti-TNF-α agents.

17.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 499-505, 2024 May 15.
Article in Zh | MEDLINE | ID: mdl-38802911

ABSTRACT

OBJECTIVES: To summarize the clinical data of 7 children with activated phosphoinositide 3-kinase delta syndrome (APDS) and enhance understanding of the disease. METHODS: A retrospective analysis was conducted on clinical data of 7 APDS children admitted to Hunan Provincial People's Hospital from January 2019 to August 2023. RESULTS: Among the 7 children (4 males, 3 females), the median age of onset was 30 months, and the median age at diagnosis was 101 months. Recurrent respiratory tract infections, hepatosplenomegaly, and multiple lymphadenopathy were observed in all 7 cases. Sepsis was observed in 5 cases, otitis media and multiple caries were observed in 3 cases, and diarrhea and joint pain were observed in 2 cases. Lymphoma and systemic lupus erythematosus were observed in 1 case each. Fiberoptic bronchoscopy was performed in 4 cases, revealing scattered nodular protrusions in the bronchial lumen. The most common respiratory pathogen was Streptococcus pneumoniae (4 cases). Six patients had a p.E1021K missense mutation, and one had a p.434-475del splice site mutation. CONCLUSIONS: p.E1021K is the most common mutation site in APDS children. Children who present with one or more of the following symptoms: recurrent respiratory tract infections, hepatosplenomegaly, multiple lymphadenopathy, otitis media, and caries, and exhibit scattered nodular protrusions on fiberoptic bronchoscopy, should be vigilant for APDS. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(5): 499-505.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Humans , Female , Male , Child, Preschool , Child , Class I Phosphatidylinositol 3-Kinases/genetics , Retrospective Studies , Respiratory Tract Infections , Mutation , Primary Immunodeficiency Diseases/genetics , Infant
18.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 716-722, 2024 Jul 15.
Article in Zh | MEDLINE | ID: mdl-39014948

ABSTRACT

OBJECTIVES: To investigate the role of calprotectin S100 A8/A9 complex in evaluating the condition of children with severe Mycoplasma pneumoniae pneumonia (SMPP). METHODS: A prospective study was conducted among 136 children with Mycoplasma pneumoniae pneumonia (MPP) and 30 healthy controls. According to the severity of the condition, the children with MPP were divided into mild subgroup (40 children) and SMPP subgroup (96 children). The levels of S100 A8/A9 complex and related inflammatory factors were compared between the MPP group and the healthy control group, as well as between the two subgroups of MPP. The role of S100 A8/A9 in assessing the severity of MPP was explored. RESULTS: The MPP group had a significantly higher level of S100 A8/A9 than the healthy control group, with a significantly greater increase in the SMPP subgroup (P<0.05). The multivariate logistic regression analysis showed that the increases in serum C reactive protein (CRP) and S100A8/A9 were closely associated with SMPP (P<0.05). The receiver operating characteristic (ROC) curve analysis showed that the combined measurement of serum S100 A8/A9 and CRP had an area under the ROC curve of 0.904 in predicting SMPP, which was significantly higher than the AUC of S100 A8/A9 or CRP alone (P<0.05), with a specificity of 0.718 and a sensitivity of 0.952. CONCLUSIONS: S100 A8/A9 is closely associated with the severity of MPP, and the combination of S100 A8/A9 with CRP is more advantageous for assessing the severity of MPP in children.


Subject(s)
Calgranulin A , Calgranulin B , Pneumonia, Mycoplasma , Humans , Pneumonia, Mycoplasma/blood , Pneumonia, Mycoplasma/diagnosis , Male , Female , Calgranulin A/blood , Calgranulin B/blood , Child, Preschool , Child , Prospective Studies , Logistic Models , Severity of Illness Index , C-Reactive Protein/analysis , Leukocyte L1 Antigen Complex/blood , Leukocyte L1 Antigen Complex/analysis , Infant
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(9): 961-966, 2024.
Article in Zh | MEDLINE | ID: mdl-39267512

ABSTRACT

A 2-year-and-10-month-old boy presented with multiple masses in the neck and chest for over 3 months. The child had a history of unstable walking, with hard lumps visible at the injury sites after falls, which would resolve on their own. Following a recent injury, a mass was discovered in the posterior neck, protruding above the skin surface and accompanied by limited joint movement. Gradually, new masses were found on the left side of the neck, back near the scapular lower angle, in the scapular fossa, and along the left axillary midline. Magnetic resonance imaging examination showed diffuse low signal on T1-weighted images and high signal on T2-weighted images in the bilateral posterior neck and back muscles two months ago. A CT scan revealed muscle swelling, with areas of patchy low density and multiple nodular high-density ossifications within some muscles. Genetic testing results indicated a mutation in the ACVR1 gene, leading to the final diagnosis of progressive ossifying myositis in this patient. This article summarizes the etiology, diagnosis, and treatment of one case of progressive ossifying myositis, providing a reference for clinicians.


Subject(s)
Activin Receptors, Type I , Mutation , Myositis Ossificans , Humans , Male , Myositis Ossificans/genetics , Myositis Ossificans/diagnostic imaging , Activin Receptors, Type I/genetics , Child, Preschool
20.
Plant J ; 110(5): 1305-1318, 2022 06.
Article in English | MEDLINE | ID: mdl-35293046

ABSTRACT

Rice (Oryza sativa) is a leading source of dietary cadmium (Cd), a non-essential heavy metal that poses a serious threat to human health. There are significant variations in grain-Cd levels in natural rice populations, which make the breeding of low-Cd rice a cost-effective way to mitigate grain-Cd accumulation. However, the genetic factors that regulate grain-Cd accumulation have yet to be fully established, thereby hindering the development of low-Cd varieties. Here, we reported a low-Cd quantitative trait locus, CF1, that has the potential to reduce Cd accumulation in rice grains. CF1 is allelic to the metal transporter OsYSL2, which transports Fe from the roots to the shoots. However, it is incapable of binding Cd, and thus, reduces grain-Cd levels indirectly rather than directly in the form of upward delivery. Further analysis showed that high expression levels of CF1 improve Fe nutrition in the shoots, subsequently inhibiting Cd uptake by systemically inhibiting expression of the main Cd uptake gene OsNramp5 in the roots. Compared with the CF1 allele from '02428' (CF102428 ), higher expression levels of CF1 from 'TQ' (CF1TQ ) increased the Fe contents and decreased Cd levels in rice grains. In natural rice populations, CF1TQ was found to be a minor allele, while CF102428 is present in most japonica rice, suggesting that CF1TQ could be widely integrated into the japonica rice genome to generate low-Cd varieties. Overall, these results broaden our mechanistic understanding of the natural variation in grain-Cd accumulation, supporting marker-assisted selection of low-Cd rice.


Subject(s)
Cadmium , Oryza , Cadmium/metabolism , Edible Grain/metabolism , Oryza/metabolism , Plant Breeding , Plant Roots
SELECTION OF CITATIONS
SEARCH DETAIL