Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.979
Filter
Add more filters

Publication year range
1.
Nature ; 629(8014): 1126-1132, 2024 May.
Article in English | MEDLINE | ID: mdl-38750356

ABSTRACT

Plants exposed to incidences of excessive temperatures activate heat-stress responses to cope with the physiological challenge and stimulate long-term acclimation1,2. The mechanism that senses cellular temperature for inducing thermotolerance is still unclear3. Here we show that TWA1 is a temperature-sensing transcriptional co-regulator that is needed for basal and acquired thermotolerance in Arabidopsis thaliana. At elevated temperatures, TWA1 changes its conformation and allows physical interaction with JASMONATE-ASSOCIATED MYC-LIKE (JAM) transcription factors and TOPLESS (TPL) and TOPLESS-RELATED (TPR) proteins for repressor complex assembly. TWA1 is a predicted intrinsically disordered protein that has a key thermosensory role functioning through an amino-terminal highly variable region. At elevated temperatures, TWA1 accumulates in nuclear subdomains, and physical interactions with JAM2 and TPL appear to be restricted to these nuclear subdomains. The transcriptional upregulation of the heat shock transcription factor A2 (HSFA2) and heat shock proteins depended on TWA1, and TWA1 orthologues provided different temperature thresholds, consistent with the sensor function in early signalling of heat stress. The identification of the plant thermosensors offers a molecular tool for adjusting thermal acclimation responses of crops by breeding and biotechnology, and a sensitive temperature switch for thermogenetics.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Intrinsically Disordered Proteins , Temperature , Thermosensing , Thermotolerance , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation, Plant , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Repressor Proteins/metabolism , Thermosensing/genetics , Thermosensing/physiology , Thermotolerance/genetics , Thermotolerance/physiology , Transcription Factors/metabolism , Signal Transduction
2.
Nature ; 618(7966): 799-807, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316670

ABSTRACT

Plants deploy receptor-like kinases and nucleotide-binding leucine-rich repeat receptors to confer host plant resistance (HPR) to herbivores1. These gene-for-gene interactions between insects and their hosts have been proposed for more than 50 years2. However, the molecular and cellular mechanisms that underlie HPR have been elusive, as the identity and sensing mechanisms of insect avirulence effectors have remained unknown. Here we identify an insect salivary protein perceived by a plant immune receptor. The BPH14-interacting salivary protein (BISP) from the brown planthopper (Nilaparvata lugens Stål) is secreted into rice (Oryza sativa) during feeding. In susceptible plants, BISP targets O. satvia RLCK185 (OsRLCK185; hereafter Os is used to denote O. satvia-related proteins or genes) to suppress basal defences. In resistant plants, the nucleotide-binding leucine-rich repeat receptor BPH14 directly binds BISP to activate HPR. Constitutive activation of Bph14-mediated immunity is detrimental to plant growth and productivity. The fine-tuning of Bph14-mediated HPR is achieved through direct binding of BISP and BPH14 to the selective autophagy cargo receptor OsNBR1, which delivers BISP to OsATG8 for degradation. Autophagy therefore controls BISP levels. In Bph14 plants, autophagy restores cellular homeostasis by downregulating HPR when feeding by brown planthoppers ceases. We identify an insect saliva protein sensed by a plant immune receptor and discover a three-way interaction system that offers opportunities for developing high-yield, insect-resistant crops.


Subject(s)
Hemiptera , Insect Proteins , Oryza , Plant Defense Against Herbivory , Plant Proteins , Animals , Hemiptera/immunology , Hemiptera/physiology , Leucine/metabolism , Nucleotides/metabolism , Oryza/growth & development , Oryza/immunology , Oryza/metabolism , Oryza/physiology , Plant Defense Against Herbivory/immunology , Plant Defense Against Herbivory/physiology , Plant Proteins/chemistry , Plant Proteins/metabolism , Insect Proteins/metabolism , Autophagy
3.
Cell ; 155(7): 1492-506, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24360273

ABSTRACT

Single-cell genome analyses of human oocytes are important for meiosis research and preimplantation genomic screening. However, the nonuniformity of single-cell whole-genome amplification hindered its use. Here, we demonstrate genome analyses of single human oocytes using multiple annealing and looping-based amplification cycle (MALBAC)-based sequencing technology. By sequencing the triads of the first and second polar bodies (PB1 and PB2) and the oocyte pronuclei from same female egg donors, we phase the genomes of these donors with detected SNPs and determine the crossover maps of their oocytes. Our data exhibit an expected crossover interference and indicate a weak chromatid interference. Further, the genome of the oocyte pronucleus, including information regarding aneuploidy and SNPs in disease-associated alleles, can be accurately deduced from the genomes of PB1 and PB2. The MALBAC-based preimplantation genomic screening in in vitro fertilization (IVF) enables accurate and cost-effective selection of normal fertilized eggs for embryo transfer.


Subject(s)
Fertilization in Vitro , Genome, Human , Oocytes/metabolism , Sequence Analysis, DNA/methods , Adult , Aneuploidy , Blastocyst/metabolism , Female , Humans , Polar Bodies/metabolism , Polymorphism, Single Nucleotide , Single-Cell Analysis , Tissue Donors
4.
Development ; 149(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35588208

ABSTRACT

As one of the post-transcriptional regulatory mechanisms, uncoupling of transcription and translation plays an essential role in development and adulthood physiology. However, it remains elusive how thousands of mRNAs get translationally silenced while stability is maintained for hours or even days before translation. In addition to oocytes and neurons, developing spermatids display significant uncoupling of transcription and translation for delayed translation. Therefore, spermiogenesis represents an excellent in vivo model for investigating the mechanism underlying uncoupled transcription and translation. Through full-length poly(A) deep sequencing, we discovered dynamic changes in poly(A) length through deadenylation and re-polyadenylation. Deadenylation appeared to be mediated by microRNAs (miRNAs), and transcripts with shorter poly(A) tails tend to be sequestered into ribonucleoprotein (RNP) granules for translational repression and stabilization. In contrast, re-polyadenylation might allow for translocation of the translationally repressed transcripts from RNP granules to polysomes. Overall, our data suggest that miRNA-dependent poly(A) length control represents a previously unreported mechanism underlying uncoupled translation and transcription in haploid male mouse germ cells.


Subject(s)
MicroRNAs , Poly A , Animals , Haploidy , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Poly A/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Spermatids/metabolism
5.
Hum Genomics ; 18(1): 60, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858783

ABSTRACT

BACKGROUND: Epidemiological studies have revealed a significant association between impaired kidney function and certain mental disorders, particularly bipolar disorder (BIP) and major depressive disorder (MDD). However, the evidence regarding shared genetics and causality is limited due to residual confounding and reverse causation. METHODS: In this study, we conducted a large-scale genome-wide cross-trait association study to investigate the genetic overlap between 5 kidney function biomarkers (eGFRcrea, eGFRcys, blood urea nitrogen (BUN), serum urate, and UACR) and 2 mental disorders (MDD, BIP). Summary-level data of European ancestry were extracted from UK Biobank, Chronic Kidney Disease Genetics Consortium, and Psychiatric Genomics Consortium. RESULTS: Using LD score regression, we found moderate but significant genetic correlations between kidney function biomarker traits on BIP and MDD. Cross-trait meta-analysis identified 1 to 19 independent significant loci that were found shared among 10 pairs of 5 kidney function biomarkers traits and 2 mental disorders. Among them, 3 novel genes: SUFU, IBSP, and PTPRJ, were also identified in transcriptome-wide association study analysis (TWAS), most of which were observed in the nervous and digestive systems (FDR < 0.05). Pathway analysis showed the immune system could play a role between kidney function biomarkers and mental disorders. Bidirectional mendelian randomization analysis suggested a potential causal relationship of kidney function biomarkers on BIP and MDD. CONCLUSIONS: In conclusion, the study demonstrated that both BIP and MDD shared genetic architecture with kidney function biomarkers, providing new insights into their genetic architectures and suggesting that larger GWASs are warranted.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Genome-Wide Association Study , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/pathology , Bipolar Disorder/genetics , Bipolar Disorder/pathology , Polymorphism, Single Nucleotide/genetics , Kidney/physiopathology , Kidney/pathology , Genetic Predisposition to Disease , Biomarkers/blood , Glomerular Filtration Rate/genetics , Quantitative Trait Loci/genetics , Uric Acid/blood
6.
Mol Cell ; 68(1): 171-184.e6, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985503

ABSTRACT

A substantial fraction of eukaryotic transcripts are considered long non-coding RNAs (lncRNAs), which regulate various hallmarks of cancer. Here, we discovered that the lncRNA HOXB-AS3 encodes a conserved 53-aa peptide. The HOXB-AS3 peptide, not lncRNA, suppresses colon cancer (CRC) growth. Mechanistically, the HOXB-AS3 peptide competitively binds to the ariginine residues in RGG motif of hnRNP A1 and antagonizes the hnRNP A1-mediated regulation of pyruvate kinase M (PKM) splicing by blocking the binding of the ariginine residues in RGG motif of hnRNP A1 to the sequences flanking PKM exon 9, ensuring the formation of lower PKM2 and suppressing glucose metabolism reprogramming. CRC patients with low levels of HOXB-AS3 peptide have poorer prognoses. Our study indicates that the loss of HOXB-AS3 peptide is a critical oncogenic event in CRC metabolic reprogramming. Our findings uncover a complex regulatory mechanism of cancer metabolism reprogramming orchestrated by a peptide encoded by an lncRNA.


Subject(s)
Cell Transformation, Neoplastic/genetics , Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Peptides/genetics , RNA, Long Noncoding/genetics , Alternative Splicing , Amino Acid Motifs , Animals , Binding, Competitive , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Exons , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Peptides/antagonists & inhibitors , Peptides/metabolism , Protein Binding , Protein Interaction Mapping , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction
7.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35385357

ABSTRACT

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Transcriptome , Child , Humans , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
8.
Nano Lett ; 24(37): 11590-11598, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39225632

ABSTRACT

As a nonenzymatic DNA signal amplification technique, localized hybridization chain reaction (LHCR) was designed to improve the limitations in response speed and low sensitivity of conventional free diffusional HCR (hybridization chain reaction). However, it is still confronted with the challenges of complicated DNA scaffolds with low loading capacity and a time-consuming process of diffusion. Herein, we introduced modular assembly of a DNA minimal scaffold for coassembly of DNA hairpins for amplified fluorescence imaging of mRNA in situ. DNA hairpins were spatially bound to two Y-shaped modules to form H-shaped DNA modules, and then multiple H-shaped DNA modules can further assemble into an H-module-based hairpin scaffold (HHS). Benefiting from highly spatial localization and high loading capacity, the HHS system showed higher sensitivity and faster speed. It has also been proven to work perfectly in vitro and in vivo, which could provide a promising bioanalysis system for low abundance biomolecule detection.


Subject(s)
DNA , Nucleic Acid Hybridization , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/analysis , DNA/chemistry , DNA/genetics , Humans , Nucleic Acid Amplification Techniques/methods , Optical Imaging/methods
9.
J Cell Mol Med ; 28(14): e18555, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39075640

ABSTRACT

ARHGAP family genes are often used as glioma oncogenic factors, and their mechanism of action remains unexplained. Our research entailed a thorough examination of the immune microenvironment and enrichment pathways across various glioma subtypes. A distinctive 6-gene signature was developed employing the CGGA cohort, leading to insights into the disparities in clinical characteristics, mutation patterns, and immune cell infiltration among distinct risk categories. Additionally, a unique nomogram was established, grounded on ARHGAPs, with DCA curves illustrating the model's prospective clinical utility in guiding therapeutic strategies. Emphasizing the role of ARHGAP30, integral to our model, its impact on glioma severity and the credibility of our risk assessment model were substantiated through RT-qPCR, Western blot analysis, and cellular functional assays. We identified 6 ARHGAP family genes associated with glioma prognosis. Analysis using the Kaplan-Meier method indicated a correlation between elevated risk levels and adverse outcomes in glioma patients. The risk score, linked with tumour staging and IDH mutation status, emerged as an independent factor predicting prognosis. Patients in the high-risk category exhibited increased immune cell infiltration, enhanced tumour mutational burden, more pronounced expression of immune checkpoint genes, and a better response to ICB therapy. A nomogram, integrating the risk score with the pathological features of glioma patients, was developed. DCA analysis and cellular studies confirmed the model's potential to improve clinical treatment outcomes for patients. A novel ARHGAP family gene signature reveals the prognosis of glioma.


Subject(s)
Brain Neoplasms , GTPase-Activating Proteins , Gene Expression Regulation, Neoplastic , Glioma , Nomograms , Humans , Glioma/genetics , Glioma/pathology , Glioma/mortality , GTPase-Activating Proteins/genetics , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Biomarkers, Tumor/genetics , Female , Mutation/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male , Gene Expression Profiling , Transcriptome , Kaplan-Meier Estimate , Middle Aged
10.
Plant Mol Biol ; 114(3): 36, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598012

ABSTRACT

Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA-miRNA-mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA-miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.


Subject(s)
Arabidopsis , MicroRNAs , RNA, Long Noncoding , RNA, Competitive Endogenous , RNA, Long Noncoding/genetics , Abscisic Acid/pharmacology , Arabidopsis/genetics , Mannitol , MicroRNAs/genetics , RNA, Messenger , Triticum/genetics , Waxes
11.
J Am Chem Soc ; 146(19): 13519-13526, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701368

ABSTRACT

High-index facet nanoparticles with structurally complex shapes, such as tetrahexahedron (THH) and hexoctahedron (HOH), represent a class of materials that are important for catalysis, and the study of them provides a fundamental understanding of the relationship between surface structures and catalytic properties. However, the high surface energies render them thermodynamically unfavorable compared to low-index facets, thereby making their syntheses challenging. Herein, we report a method to control the shape of high-index facet Cu nanoparticles (either THH with {210} facets or HOH with {421} facets) by tuning the facet surface energy with trace amounts of Te atoms. Density functional theory (DFT) calculations reveal that the density of Te atoms on Cu nanoparticles can change the relative stability of the high-index facets associated with either the THH or HOH structures. By controlling the annealing conditions and the rate of Te dealloying from CuTe nanoparticles, the surface density of Te atoms can be deliberately adjusted, which can be used to force the formation of either THH (higher surface Te density) or HOH (lower surface Te density) nanoparticles.

12.
Am J Hum Genet ; 108(4): 709-721, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33735615

ABSTRACT

The fetal-to-adult hemoglobin switch is regulated in a developmental stage-specific manner and reactivation of fetal hemoglobin (HbF) has therapeutic implications for treatment of ß-thalassemia and sickle cell anemia, two major global health problems. Although significant progress has been made in our understanding of the molecular mechanism of the fetal-to-adult hemoglobin switch, the mechanism of epigenetic regulation of HbF silencing remains to be fully defined. Here, we performed whole-genome bisulfite sequencing and RNA sequencing analysis of the bone marrow-derived GYPA+ erythroid cells from ß-thalassemia-affected individuals with widely varying levels of HbF groups (HbF ≥ 95th percentile or HbF ≤ 5th percentile) to screen epigenetic modulators of HbF and phenotypic diversity of ß-thalassemia. We identified an ETS2 repressor factor encoded by ERF, whose promoter hypermethylation and mRNA downregulation are associated with high HbF levels in ß-thalassemia. We further observed that hypermethylation of the ERF promoter mediated by enrichment of DNMT3A leads to demethylation of γ-globin genes and attenuation of binding of ERF on the HBG promoter and eventually re-activation of HbF in ß-thalassemia. We demonstrated that ERF depletion markedly increased HbF production in human CD34+ erythroid progenitor cells, HUDEP-2 cell lines, and transplanted NCG-Kit-V831M mice. ERF represses γ-globin expression by directly binding to two consensus motifs regulating γ-globin gene expression. Importantly, ERF depletion did not affect maturation of erythroid cells. Identification of alterations in DNA methylation of ERF as a modulator of HbF synthesis opens up therapeutic targets for ß-hemoglobinopathies.


Subject(s)
Epigenesis, Genetic , Gene Expression Profiling , Repressor Proteins/deficiency , Repressor Proteins/genetics , beta-Thalassemia/genetics , gamma-Globins/genetics , Animals , Antigens, CD34/metabolism , Base Sequence , CRISPR-Cas Systems/genetics , Cell Differentiation , Cell Line , Child , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , DNA Methyltransferase 3A , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Female , Fetal Hemoglobin/genetics , Gene Editing , Humans , Male , Mice , Promoter Regions, Genetic/genetics , Reproducibility of Results , Sulfites , Whole Genome Sequencing , beta-Thalassemia/pathology
13.
Anal Chem ; 96(22): 9209-9217, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38769607

ABSTRACT

To tackle the predicament of the traditional turn-off mechanism, exploring an activated turn-on system remains an intriguing and crucial objective in biosensing fields. Herein, a dark DNA Ag nanocluster (NC) with hairpin-structured DNA containing a six-base cytosine loop (6C loop) as a template is atypically synthesized. Intriguingly, the dark DNA Ag NCs can be lit to display strong red-emission nanoclusters. Building upon these exciting findings, an unprecedented and upgraded turn-on biosensing system [entropy-driven catalysis circuit (EDCC)-Ag NCs/graphene oxide (GO)] has been created, which employs an EDCC to precisely manipulate the conformational transition of DNA Ag NCs on the GO surface from adsorption to desorption. Benefiting from the effective quenching of GO and signal amplification capability of the EDCC, the newly developed EDCC-Ag NCs/GO biosensing system displays a high signal-to-background (S/B) ratio (26-fold) and sensitivity (limit of detection as low as 0.4 pM). Meanwhile, it has good specificity, excellent stability, and reliability in both buffer and biological samples. To the best of our knowledge, it is the first example that adopts an EDCC to precisely modulate the configuration transformation of DNA Ag NCs on the GO surface to obtain a biosensor with low background, strong fluorescence, high contrast, and sensitivity. This exciting finding may provide a new route to fabricate a novel turn-on biosensor based on hairpin-templated DNA Ag NCs in the optical imaging and bioanalytical fields.


Subject(s)
Biosensing Techniques , DNA , Graphite , Metal Nanoparticles , Silver , Surface Properties , Graphite/chemistry , Silver/chemistry , Biosensing Techniques/methods , DNA/chemistry , Metal Nanoparticles/chemistry , Catalysis , Entropy , Humans
14.
Biochem Biophys Res Commun ; 704: 149708, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38417346

ABSTRACT

Glucagon like peptide-1 (GLP-1) is a peptide hormone encoded by the pre-proglucagon gene that serves multiple physiological functions, including incretin action. While GLP-1 is primarily synthesized in the L cells of the lower intestine, recent findings indicate its presence in the stomachs of both rats and humans. However, the role of gastric GLP-1 in other species remains unclear. In this study, we aimed to identify GLP-1-producing cells and examine the localization of GLP-1 production in the mouse stomach. We found that pre-proglucagon mRNA was higher in the corpus than that in the antrum of the stomach. In addition, GLP-1 immunoreactive cells were found in the gastric mucosa, and their cell number was higher in the corpus than that in the antrum. Double immunofluorescence showed that some GLP-1 immunoreactive cells displayed somatostatin immunoreactivity, whereas did not co-localize with ghrelin and gastrin. Moreover, transmembrane G protein-coupled Receptor 5 (TGR5) agonist decreased pre-proglucagon mRNA expression in SG-1 cells in a concentration-dependent manner, and in vivo experiments showed a decrease in its mRNA levels in the gastric corpus but not in the antrum. This study marks the first report of GLP-1 production in the mouse stomach. Our findings suggest that gastric pre-proglucagon mRNA expression is regulated by a distinct mechanism compared to the L cells of the lower intestine.


Subject(s)
Glucagon-Like Peptide 1 , Stomach , Animals , Mice , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor , Intestines/metabolism , Proglucagon/metabolism , RNA, Messenger/genetics , Stomach/metabolism
15.
BMC Med ; 22(1): 105, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454462

ABSTRACT

BACKGROUND: The relaxation of the "zero-COVID" policy on Dec. 7, 2022, in China posed a major public health threat recently. Complete blood count test was discovered to have complicated relationships with COVID-19 after the infection, while very few studies could track long-term monitoring of the health status and identify the characterization of hematological parameters prior to COVID-19. METHODS: Based on a 13-year longitudinal prospective health checkup cohort of ~ 480,000 participants in West China Hospital, the largest medical center in western China, we documented 998 participants with a laboratory-confirmed diagnosis of COVID-19 during the 1 month after the policy. We performed a time-to-event analysis to explore the associations of severe COVID-19 patients diagnosed, with 34 different hematological parameters at the baseline level prior to COVID-19, including the whole and the subtypes of white and red blood cells. RESULTS: A total of 998 participants with a positive SARS-CoV-2 test were documented in the cohort, 42 of which were severe cases. For white blood cell-related parameters, a higher level of basophil percentage (HR = 6.164, 95% CI = 2.066-18.393, P = 0.001) and monocyte percentage (HR = 1.283, 95% CI = 1.046-1.573, P = 0.017) were found associated with the severe COVID-19. For lymphocyte-related parameters, a lower level of lymphocyte count (HR = 0.571, 95% CI = 0.341-0.955, P = 0.033), and a higher CD4/CD8 ratio (HR = 2.473, 95% CI = 1.009-6.059, P = 0.048) were found related to the risk of severe COVID-19. We also observed that abnormality of red cell distribution width (RDW), mean corpuscular hemoglobin concentration (MCHC), and hemoglobin might also be involved in the development of severe COVID-19. The different trajectory patterns of RDW-SD and white blood cell count, including lymphocyte and neutrophil, prior to the infection were also discovered to have significant associations with the risk of severe COVID-19 (all P < 0.05). CONCLUSIONS: Our findings might help decision-makers and clinicians to classify different risk groups of population due to outbreaks including COVID-19. They could not only optimize the allocation of medical resources, but also help them be more proactive instead of reactive to long COVID-19 or even other outbreaks in the future.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Longitudinal Studies , Follow-Up Studies , Post-Acute COVID-19 Syndrome , Retrospective Studies
16.
Small ; 20(10): e2306085, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37875668

ABSTRACT

Bimetallic metal-organic framework (BMOF) exhibits better electrocatalytic performance than mono-MOF, but deciphering the precise anchoring of foreign atoms and revealing the underlying mechanisms at the atomic level remains a major challenge. Herein, a novel binuclear NiFe-MOF with precise anchoring of Fe sites is synthesized. The low-crystallinity (LC)-NiFe0.33 -MOF exhibited abundant unsaturated active sites and demonstrated excellent electrocatalytic oxygen evolution reaction (OER) performance. It achieved an ultralow overpotential of 230 mV at 10 mA cm-2 and a Tafel slope of 41 mV dec-1 . Using a combination of modulating crystallinity, X-ray absorption spectroscopy, and theoretical calculations, the accurate metal sequence of BMOF and the synergistic effect of the active sites are identified, revealing that the adjacent active site plays a significant role in regulating the catalytic performance of the endmost active site. The proposed model of BMOF electrocatalysts facilitates the investigation of efficient OER electrocatalysts and the related catalytic mechanisms.

17.
J Virol ; 97(11): e0095823, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37846983

ABSTRACT

IMPORTANCE: As an emerging porcine enteropathogenic coronavirus that has the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. However, no effective commercially available vaccines against this virus are available. In this work, we designed a spike (S) protein and receptor-binding domain (RBD) trimer as a candidate PDCoV subunit vaccine. We demonstrated that S protein induced more robust humoral and cellular immune responses than the RBD trimer in mice. Furthermore, the protective efficacy of the S protein was compared with that of inactivated PDCoV vaccines in piglets and sows. Of note, the immunized piglets and suckling pig showed a high level of NAbs and were associated with reduced virus shedding and mild diarrhea, and the high level of NAbs was maintained for at least 4 months. Importantly, we demonstrated that S protein-based subunit vaccines conferred significant protection against PDCoV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Vaccines, Subunit , Animals , Female , Humans , Mice , Coronavirus/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Deltacoronavirus , Swine , Vaccines, Subunit/administration & dosage
18.
Mol Hum Reprod ; 30(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38704863

ABSTRACT

Persistent and intense uterine contraction is a risk factor for preterm labor. We previously found that methyl-CpG-binding protein 2 (MeCP2), as a target of infection-related microRNA miR-212-3p, may play an inhibitory role in regulating myometrium contraction. However, the molecular mechanisms by which MeCP2 regulates myometrial contraction are still unknown. In this study, we found that MeCP2 protein expression was lower in myometrial specimens obtained from preterm labor cases, compared to those obtained from term labor cases. Herein, using RNA sequence analysis of global gene expression in human uterine smooth muscle cells (HUSMCs) following siMeCP2, we show that MeCP2 silencing caused dysregulation of the cholesterol metabolism pathway. Notably, MeCP2 silencing resulted in the upregulation of CYP27A1, the key enzyme involved in regulating cholesterol homeostasis, in HUSMCs. Methylation-specific PCR, chromatin immunoprecipitation, and dual luciferase reporter gene technology indicated that MeCP2 could bind to the methylated CYP27A1 promoter region and repress its transcription. Administration of siCYP27A1 in a lipopolysaccharide (LPS)-induced preterm labor mouse model delayed the onset of preterm labor. Human preterm myometrium and the LPS-induced preterm labor mouse model both showed lower expression of MeCP2 and increased expression of CYP27A1. These results demonstrated that aberrant upregulation of CYP27A1 induced by MeCP2 silencing is one of the mechanisms facilitating inappropriate myometrial contraction. CYP27A1 could be exploited as a novel therapeutic target for preterm birth.


Subject(s)
Methyl-CpG-Binding Protein 2 , Myometrium , Obstetric Labor, Premature , Uterine Contraction , Adult , Animals , Female , Humans , Mice , Pregnancy , Cholestanetriol 26-Monooxygenase/genetics , Cholestanetriol 26-Monooxygenase/metabolism , Cholesterol/metabolism , Lipopolysaccharides/pharmacology , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Myocytes, Smooth Muscle/metabolism , Myometrium/metabolism , Obstetric Labor, Premature/metabolism , Obstetric Labor, Premature/genetics , Promoter Regions, Genetic , Uterine Contraction/drug effects
19.
Nat Mater ; 22(8): 1022-1029, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37349398

ABSTRACT

In analogy to natural enzymes, an elaborated design of catalytic systems with a specifically tailored local chemical environment could substantially improve reaction kinetics, effectively combat catalyst poisoning effect and boost catalyst lifetime under unfavourable reaction conditions. Here we report a unique design of 'Ni(OH)2-clothed Pt-tetrapods' with an amorphous Ni(OH)2 shell as a water dissociation catalyst and a proton conductive encapsulation layer to isolate the Pt core from bulk alkaline electrolyte while ensuring efficient proton supply to the active Pt sites. This design creates a favourable local chemical environment to result in acidic-like hydrogen evolution reaction kinetics with a lowest Tafel slope of 27 mV per decade and a record-high specific activity and mass activity in alkaline electrolyte. The proton conductive Ni(OH)2 shell can also effectively reject impurity ions and retard the Oswald ripening, endowing a high tolerance to solution impurities and exceptional long-term durability that is difficult to achieve in the naked Pt catalysts. The markedly improved hydrogen evolution reaction activity and durability in an alkaline medium promise an attractive catalyst material for alkaline water electrolysers and renewable chemical fuel generation.

20.
Clin Exp Allergy ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39053914

ABSTRACT

Penicillins are the most frequently prescribed class of medications worldwide and first-line antibiotic of choice for most bacterial infections. They are also commonly labelled as the culprit of drug 'allergy'; leading to obligatory use of second-line antibiotics, suboptimal antibiotic therapy and increased antimicrobial resistance. However, the majority of reported penicillin 'allergy' labels are found to be incorrect after allergy testing, emphasising the importance of proper drug allergy testing and evaluation. Penicillin skin testing (PST) remains an important component of drug allergy diagnosis; however, its practice and policies significantly differ across the world. Inappropriate and non-evidence-based PST practices can lead to consequences associated with allergy mislabelling. Even within different regions of China, with a population exceeding 1.4 billion, there are marked differences in the implementation, execution and interpretation of PST. This review aims to examine the differences in PST between Mainland China, Hong Kong and the rest of the world. We critically analyse the current practice of 'pre-emptive' PST in Mainland China, which has a significant false-positive rate leading to high levels of penicillin allergy mislabelling. Non-evidence-based practices further compound the high false-positive rates of indiscriminatory PST. We postulate that inappropriate PST policies and practices may exacerbate the mislabelling of penicillin allergy, leading to unnecessary overuse of inappropriate second-line antibiotics, increasing antimicrobial resistance and healthcare costs. We advocate for the importance of more collaborative research to improve the contemporary workflow of penicillin allergy diagnosis, reduce mislabelling and promote the dissemination of evidence-based methods for allergy diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL