Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Am J Pathol ; 194(6): 1137-1153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749609

ABSTRACT

Preclinical models that display spontaneous metastasis are necessary to improve the therapeutic options for hormone receptor-positive breast cancers. Within this study, detailed cellular and molecular characterization was conducted on MCa-P1362, a newly established mouse model of metastatic breast cancer that is syngeneic in BALB/c mice. MCa-P1362 cancer cells express estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2. MCa-P1362 cancer cells proliferate in vitro and in vivo in response to estrogen, yet do not depend on steroid hormones for growth and tumor progression. Analysis of MCa-P1362 tumor explants revealed the tumors contained a mixture of cancer cells and mesenchymal stromal cells. Through transcriptomic and functional analyses of both cancer and stromal cells, stem cells were detected within both populations. Functional studies demonstrated that MCa-P1362 cancer stem cells drove tumor initiation, whereas stromal cells from these tumors contributed to drug resistance. MCa-P1362 may serve as a useful preclinical model to investigate the cellular and molecular basis of breast tumor progression and therapeutic resistance.


Subject(s)
Adenocarcinoma , Mesenchymal Stem Cells , Mice, Inbred BALB C , Receptor, ErbB-2 , Receptors, Estrogen , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Female , Humans , Receptor, ErbB-2/metabolism , Mice , Receptors, Estrogen/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Receptors, Progesterone/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/metabolism
2.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34725151

ABSTRACT

Liver metastasis is a major cause of mortality for patients with colorectal cancer (CRC). Mismatch repair-proficient (pMMR) CRCs make up about 95% of metastatic CRCs, and are unresponsive to immune checkpoint blockade (ICB) therapy. Here we show that mouse models of orthotopic pMMR CRC liver metastasis accurately recapitulate the inefficacy of ICB therapy in patients, whereas the same pMMR CRC tumors are sensitive to ICB therapy when grown subcutaneously. To reveal local, nonmalignant components that determine CRC sensitivity to treatment, we compared the microenvironments of pMMR CRC cells grown as liver metastases and subcutaneous tumors. We found a paucity of both activated T cells and dendritic cells in ICB-treated orthotopic liver metastases, when compared with their subcutaneous tumor counterparts. Furthermore, treatment with Feline McDonough sarcoma (FMS)-like tyrosine kinase 3 ligand (Flt3L) plus ICB therapy increased dendritic cell infiltration into pMMR CRC liver metastases and improved mouse survival. Lastly, we show that human CRC liver metastases and microsatellite stable (MSS) primary CRC have a similar paucity of T cells and dendritic cells. These studies indicate that orthotopic tumor models, but not subcutaneous models, should be used to guide human clinical trials. Our findings also posit dendritic cells as antitumor components that can increase the efficacy of immunotherapies against pMMR CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Liver Neoplasms, Experimental/drug therapy , Animals , Cell Line, Tumor , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , DNA Mismatch Repair , Dendritic Cells , Drug Screening Assays, Antitumor , Humans , Interferon-gamma/therapeutic use , Liver Neoplasms, Experimental/immunology , Liver Neoplasms, Experimental/secondary , Male , Mice, Inbred C57BL
3.
Ann Surg ; 278(6): e1164-e1174, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37185230

ABSTRACT

OBJECTIVE: The aim was to determine preoperative gut microbiota metabolites that may be associated with postoperative delirium (POD) development in patients and further study in rodents. SUMMARY BACKGROUND DATA: POD occurs in 9% to 50% of older patients undergoing anesthesia/surgery but lacks effective treatments or prevention. High-throughput metabolomics using liquid chromatography with tandem mass spectrometry has accelerated disease-related biomarkers discovery. We performed metabolomic studies in humans to identify potential metabolite biomarkers linked to POD and examined potential mechanisms in rodents. METHODS: We performed a prospective observational cohort study to examine the metabolomic changes that were associated with the development of POD. Then the gut microbiota-related metabolomic changes were recapitulated by gut microbiota perturbation in rodents. POD was assessed in mice using a battery of behavioral tests including novel objective test, Y-maze test, open-field test, and buried food test. The mechanisms through which gut microbiota-related metabolomic changes influenced POD were examined using chemogenetics. RESULTS: Indole-3-propionic acid (IPA) is a gut microbiota metabolite that belongs to the indole family. Baseline plasma levels of IPA were significantly inversely correlated with the onset of POD in 103 (17 cases) human individuals. This relationship was validated in preclinical mouse models for POD: reducing IPA levels through gut microbiota perturbation promoted POD-like behavior. More importantly, IPA administration deterred POD-like behavior. Colonization of germ-free mice with mutant Clostridium sporogenes that did not produce IPA-promoted POD-like behavior. Chemogenetic studies revealed that the protective effect of IPA in mice was mediated, in part, by peroxisome proliferator-activated receptor gamma coactivator 1-alpha in hippocampal interneurons. CONCLUSIONS: Gut microbiota-derived IPA is an important molecule implicated in the pathogenesis of POD, which could potentially be harnessed for POD prevention.


Subject(s)
Emergence Delirium , Gastrointestinal Microbiome , Humans , Mice , Animals , Prospective Studies , Indoles/metabolism , Indoles/pharmacology , Biomarkers
4.
Proc Natl Acad Sci U S A ; 116(22): 10674-10680, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31040208

ABSTRACT

Cancer-associated fibroblasts (CAFs) can either suppress or support T lymphocyte activity, suggesting that CAFs may be reprogrammable to an immunosupportive state. Angiotensin receptor blockers (ARBs) convert myofibroblast CAFs to a quiescent state, but whether ARBs can reprogram CAFs to promote T lymphocyte activity and enhance immunotherapy is unknown. Moreover, ARB doses are limited by systemic adverse effects such as hypotension due to the importance of angiotensin signaling outside tumors. To enhance the efficacy and specificity of ARBs in cancer with the goal of revealing their effects on antitumor immunity, we developed ARB nanoconjugates that preferentially accumulate and act in tumors. We created a diverse library of hundreds of acid-degradable polymers and chemically linked ARBs to the polymer most sensitive to tumor pH. These tumor microenvironment-activated ARBs (TMA-ARBs) remain intact and inactive in circulation while achieving high concentrations in tumors, wherein they break down to active ARBs. This tumor-preferential activity enhances the CAF-reprogramming effects of ARBs while eliminating blood pressure-lowering effects. Notably, TMA-ARBs alleviate immunosuppression and improve T lymphocyte activity, enabling dramatically improved responses to immune-checkpoint blockers in mice with primary as well as metastatic breast cancer.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Immunotherapy/methods , Neoplasms , Tumor Microenvironment/drug effects , Animals , Cell Line, Tumor , Drug Delivery Systems , Female , Hydrogen-Ion Concentration , Male , Mice , Neoplasms/physiopathology , Neoplasms/therapy , Polymers/chemistry
5.
Proc Natl Acad Sci U S A ; 116(10): 4558-4566, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30700545

ABSTRACT

Metastatic breast cancers (mBCs) are largely resistant to immune checkpoint blockade, but the mechanisms remain unclear. Primary breast cancers are characterized by a dense fibrotic stroma, which is considered immunosuppressive in multiple malignancies, but the stromal composition of breast cancer metastases and its role in immunosuppression are largely unknown. Here we show that liver and lung metastases of human breast cancers tend to be highly fibrotic, and unlike primary breast tumors, they exclude cytotoxic T lymphocytes (CTLs). Unbiased analysis of the The Cancer Genome Atlas database of human breast tumors revealed a set of genes that are associated with stromal T-lymphocyte exclusion. Among these, we focused on CXCL12 as a relevant target based on its known roles in immunosuppression in other cancer types. We found that the CXCL12 receptor CXCR4 is highly expressed in both human primary tumors and metastases. To gain insight into the role of the CXCL12/CXCR4 axis, we inhibited CXCR4 signaling pharmacologically and found that plerixafor decreases fibrosis, alleviates solid stress, decompresses blood vessels, increases CTL infiltration, and decreases immunosuppression in murine mBC models. By deleting CXCR4 in αSMA+ cells, we confirmed that these immunosuppressive effects are dependent on CXCR4 signaling in αSMA+ cells, which include cancer-associated fibroblasts as well as other cells such as pericytes. Accordingly, CXCR4 inhibition more than doubles the response to immune checkpoint blockers in mice bearing mBCs. These findings demonstrate that CXCL12/CXCR4-mediated desmoplasia in mBC promotes immunosuppression and is a potential target for overcoming therapeutic resistance to immune checkpoint blockade in mBC patients.


Subject(s)
Breast Neoplasms/therapy , Immunotherapy , Receptors, CXCR4/antagonists & inhibitors , T-Lymphocytes/cytology , Animals , Breast Neoplasms/pathology , Female , Humans , Mice , Neoplasm Metastasis , Tumor Microenvironment
6.
Hepatology ; 71(4): 1247-1261, 2020 04.
Article in English | MEDLINE | ID: mdl-31378984

ABSTRACT

BACKGROUND AND AIMS: Activation of the antitumor immune response using programmed death receptor-1 (PD-1) blockade showed benefit only in a fraction of patients with hepatocellular carcinoma (HCC). Combining PD-1 blockade with antiangiogenesis has shown promise in substantially increasing the fraction of patients with HCC who respond to treatment, but the mechanism of this interaction is unknown. APPROACH AND RESULTS: We recapitulated these clinical outcomes using orthotopic-grafted or induced-murine models of HCC. Specific blockade of vascular endothelial receptor 2 (VEGFR-2) using a murine antibody significantly delayed primary tumor growth but failed to prolong survival, while anti-PD-1 antibody treatment alone conferred a minor survival advantage in one model. However, dual anti-PD-1/VEGFR-2 therapy significantly inhibited primary tumor growth and doubled survival in both models. Combination therapy reprogrammed the immune microenvironment by increasing cluster of differentiation 8-positive (CD8+ ) cytotoxic T cell infiltration and activation, shifting the M1/M2 ratio of tumor-associated macrophages and reducing T regulatory cell (Treg) and chemokine (C-C motif) receptor 2-positive monocyte infiltration in HCC tissue. In these models, VEGFR-2 was selectively expressed in tumor endothelial cells. Using spheroid cultures of HCC tissue, we found that PD-ligand 1 expression in HCC cells was induced in a paracrine manner upon anti-VEGFR-2 blockade in endothelial cells in part through interferon-gamma expression. Moreover, we found that VEGFR-2 blockade increased PD-1 expression in tumor-infiltrating CD4+ cells. We also found that under anti-PD-1 therapy, CD4+ cells promote normalized vessel formation in the face of antiangiogenic therapy with anti-VEGFR-2 antibody. CONCLUSIONS: We show that dual anti-PD-1/VEGFR-2 therapy has a durable vessel fortification effect in HCC and can overcome treatment resistance to either treatment alone and increase overall survival in both anti-PD-1 therapy-resistant and anti-PD-1 therapy-responsive HCC models.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Antibodies/therapeutic use , Carcinoma, Hepatocellular/blood supply , Cell Line, Tumor , Liver Neoplasms/blood supply , Lymphocytes, Tumor-Infiltrating , Mice , Neoplasms, Experimental , Programmed Cell Death 1 Receptor/immunology , Spheroids, Cellular , T-Lymphocytes, Cytotoxic , Tumor-Associated Macrophages , Vascular Endothelial Growth Factor Receptor-2/immunology
7.
Anesth Analg ; 132(4): 1146-1155, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32889847

ABSTRACT

BACKGROUND: Gut microbiota, a consortium of diverse microorganisms residing in the gastrointestinal tract, has emerged as a key player in neuroinflammatory responses, supporting the functional relevance of the "gut-brain axis." Chronic-constriction injury of the sciatic nerve (CCI) is a commonly used animal model of neuropathic pain with a major input from T cell-mediated immune responses. In this article, we sought to examine whether gut microbiota influences CCI neuropathic pain, and, if so, whether T-cell immune responses are implicated. METHODS: We used a mixture of wide-spectrum oral antibiotics to perturbate gut microbiota in mice and then performed CCI in these animals. Nociceptive behaviors, including mechanical allodynia and thermal hyperalgesia, were examined before and after CCI. Additionally, we characterized the spinal cord infiltrating T cells by examining interferon (IFN)-γ, interleukin (IL)-17, and Foxp3. Using a Foxp3-GFP-DTR "knock-in" mouse model that allows punctual depletion of regulatory T cells, we interrogated the role of these cells in mediating the effects of gut microbiota in the context of CCI neuropathic pain. RESULTS: We found that oral antibiotics induced gut microbiota changes and attenuated the development of CCI neuropathic pain, as demonstrated by dampened mechanical allodynia and thermal hyperalgesia. Percentages of IFN-γ-producing Th1 cells and Foxp3+ regulatory T cells were significantly different between animals that received oral antibiotics (Th1 mean = 1.0, 95% confidence interval [CI], 0.9-1.2; Foxp3 mean = 8.1, 95% CI, 6.8-9.3) and those that received regular water (Th1 mean = 8.4, 95% CI, 7.8-9.0, P < .01 oral antibiotics versus water, Cohen's d = 18.8; Foxp 3 mean = 2.8, 95% CI, 2.2-3.3, P < .01 oral antibiotics versus water, Cohen's d = 6.2). These T cells characterized a skewing from a proinflammatory to an anti-inflammatory immune profile induced by gut microbiota changes. Moreover, we depleted Foxp3+ regulatory T cells and found that their depletion reversed the protection of neuropathic pain mediated by gut microbiota changes, along with a dramatic increase of IFN-γ-producing Th1 cell infiltration in the spinal cord (before depletion mean = 2.8%, 95% CI, 2.2-3.5; after depletion mean = 9.1%, 95% CI, 7.2-11.0, p < .01 before versus after, Cohen's d = 5.0). CONCLUSIONS: Gut microbiota plays a critical role in CCI neuropathic pain. This role is mediated, in part, through modulating proinflammatory and anti-inflammatory T cells.


Subject(s)
Bacteria/immunology , Cytokines/metabolism , Gastrointestinal Microbiome , Inflammation Mediators/metabolism , Intestines/microbiology , Sciatica/immunology , Spinal Cord/immunology , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Behavior, Animal , Disease Models, Animal , Dysbiosis , Female , Gastrointestinal Microbiome/drug effects , Host-Pathogen Interactions , Intestines/drug effects , Male , Mice, Inbred C57BL , Mice, Transgenic , Pain Threshold , Sciatica/metabolism , Sciatica/microbiology , Sciatica/physiopathology , Spinal Cord/metabolism , T-Lymphocytes, Regulatory/metabolism , Th1 Cells/metabolism
8.
J Neurooncol ; 136(1): 63-71, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29081036

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and highly malignant primary brain tumor, which is virtually incurable due to its therapeutic resistance to radiation and chemotherapy. To develop novel therapeutic approaches for treatment of GBM, we examined the role of miR-378 on tumor growth, angiogenesis, and radiation response in ectopic and orthotopic U87 glioblastoma models. Cell and tumor growth rates, in vitro and in vivo radiation sensitivities, and tumor vascular density were evaluated in U87-GFP and U87-miR-378 tumor lines. Ectopic tumor response to radiation was evaluated under normal blood flow and clamp hypoxic conditions. Results show that in vitro, miR-378 expression moderately increased cell growth rate and plating efficiency, but did not alter radiation sensitivity. U87-miR-378 tumors exhibited a higher transplantation take rate than U87-GFP tumors. In vivo, under oxygenated condition, subcutaneous U87-miR-378 tumors receiving 25 Gy showed a tendency for longer tumor growth delay (TGD) than control U87-GFP tumors. In contrast, under hypoxic condition, U87-miR-378 xenografts exhibited substantially shorter TGD than U87-GFP tumors, indicating that under normal blood flow conditions, U87-miR-378 tumors were substantially more oxygenated than U87-GFP tumors. Intracranial multi-photon laser-scanning microscopy demonstrated increased vascular density of U87-miR-378 versus control U87-GFP tumors. Finally, miR-378 increased TGD following 12 Gy irradiation in U87 intracranial xenografts, and significantly prolonged survival of U87-miR-378 tumor-bearing mice (P = 0.04). In conclusion, higher miR-378 expression in U87-miR-378 cells promotes tumor growth, angiogenesis, radiation-induced TGD, and prolongs survival of orthotopic tumor-bearing hosts. Regulation of VEGFR2 by miR-378 significantly increased vascular density and oxygenation in U87 xenografts.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , MicroRNAs/metabolism , Radiation Tolerance , Animals , Cell Line, Tumor , Cell Proliferation/radiation effects , Heterografts/radiation effects , Humans , Male , Mice, Nude , Neovascularization, Pathologic/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Proc Natl Acad Sci U S A ; 112(47): 14676-81, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26554010

ABSTRACT

Hearing loss is the main limitation of radiation therapy for vestibular schwannoma (VS), and identifying treatment options that minimize hearing loss are urgently needed. Treatment with bevacizumab is associated with tumor control and hearing improvement in neurofibromatosis type 2 (NF2) patients; however, its effect is not durable and its mechanism of action on nerve function is unknown. We modeled the effect anti-VEGF therapy on neurological function in the sciatic nerve model and found that it improves neurological function by alleviating tumor edema, which may further improve results by decreasing muscle atrophy and increasing nerve regeneration. Using a cranial window model, we showed that anti-VEGF treatment may achieve these effects via normalizing the tumor vasculature, improving vessel perfusion, and delivery of oxygenation. It is known that oxygen is a potent radiosensitizer; therefore, we further demonstrated that combining anti-VEGF with radiation therapy can achieve a better tumor control and help lower the radiation dose and, thus, minimize radiation-related neurological toxicity. Our results provide compelling rationale for testing combined therapy in human VS.


Subject(s)
Neurofibromatosis 2/complications , Neuroma, Acoustic/physiopathology , Neuroma, Acoustic/radiotherapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antibodies/pharmacology , Antibodies/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Radiation , Edema/complications , Edema/pathology , Humans , Mice , Muscular Atrophy/complications , Muscular Atrophy/pathology , Nerve Regeneration/drug effects , Neurofibromatosis 2/physiopathology , Neurofibromin 2/deficiency , Neurofibromin 2/metabolism , Neuroma, Acoustic/blood supply , Neuroma, Acoustic/drug therapy , Radiation Tolerance/drug effects , Rotarod Performance Test , Sciatic Nerve/drug effects , Sciatic Nerve/pathology , Sciatic Nerve/ultrastructure , Signal Transduction/drug effects , Treatment Outcome , Vascular Endothelial Growth Factor A/metabolism
10.
Int J Cancer ; 139(12): 2791-2801, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27543953

ABSTRACT

The surface proteoglycan/glycoprotein layer (glycocalyx) on tumor cells has been associated with cellular functions that can potentially enable invasion and metastasis. In addition, aggressive tumor cells with high metastatic potential have enhanced invasion rates in response to interstitial flow stimuli in vitro. Our previous studies suggest that heparan sulfate (HS) in the glycocalyx plays an important role in this flow mediated mechanostransduction and upregulation of invasive and metastatic potential. In this study, highly metastatic renal cell carcinoma cells were genetically modified to suppress HS production by knocking down its synthetic enzyme NDST1. Using modified Boyden chamber and microfluidic assays, we show that flow-enhanced invasion is suppressed in HS deficient cells. To assess the ability of these cells to metastasize in vivo, parental or knockdown cells expressing fluorescence reporters were injected into kidney capsules in SCID mice. Histological analysis confirmed that there was a large reduction (95%) in metastasis to distant organs by tumors formed from the NDST1 knockdown cells compared to control cells with intact HS. The ability of these cells to invade surrounding tissue was also impaired. The substantial inhibition of metastasis and invasion upon reduction of HS suggests an active role for the tumor cell glycocalyx in tumor progression.


Subject(s)
Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Heparan Sulfate Proteoglycans/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Animals , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Cell Movement/genetics , Disease Models, Animal , Gene Expression , Gene Knockout Techniques , Humans , Kidney Neoplasms/genetics , Male , Mice , Mice, SCID , Neoplasm Metastasis , Phenotype , RNA Interference , RNA, Small Interfering/genetics , Spheroids, Cellular , Sulfotransferases/genetics , Sulfotransferases/metabolism , Tumor Burden , Tumor Cells, Cultured
11.
Hepatology ; 61(5): 1591-602, 2015 May.
Article in English | MEDLINE | ID: mdl-25529917

ABSTRACT

UNLABELLED: Sorafenib, a broad tyrosine kinase inhibitor, is the only approved systemic therapy for advanced hepatocellular carcinoma (HCC) but provides limited survival benefits. Recently, immunotherapy has emerged as a promising treatment strategy, but its role remains unclear in HCCs, which are associated with decreased cytotoxic CD8(+) T-lymphocyte infiltration in both murine and human tumors. Moreover, in mouse models after sorafenib treatment intratumoral hypoxia is increased and may fuel evasive resistance. Using orthotopic HCC models, we now show that increased hypoxia after sorafenib treatment promotes immunosuppression, characterized by increased intratumoral expression of the immune checkpoint inhibitor programmed death ligand-1 and accumulation of T-regulatory cells and M2-type macrophages. We also show that the recruitment of immunosuppressive cells is mediated in part by hypoxia-induced up-regulation of stromal cell-derived 1 alpha. Inhibition of the stromal cell-derived 1 alpha receptor (C-X-C receptor type 4 or CXCR4) using AMD3100 prevented the polarization toward an immunosuppressive microenvironment after sorafenib treatment, inhibited tumor growth, reduced lung metastasis, and improved survival. However, the combination of AMD3100 and sorafenib did not significantly change cytotoxic CD8(+) T-lymphocyte infiltration into HCC tumors and did not modify their activation status. In separate experiments, antibody blockade of the programmed death ligand-1 receptor programmed death receptor-1 (PD-1) showed antitumor effects in treatment-naive tumors in orthotopic (grafted and genetically engineered) models of HCC. However, anti-PD-1 antibody treatment had additional antitumor activity only when combined with sorafenib and AMD3100 and not when combined with sorafenib alone. CONCLUSION: Anti-PD-1 treatment can boost antitumor immune responses in HCC models; when used in combination with sorafenib, anti-PD-1 immunotherapy shows efficacy only with concomitant targeting of the hypoxic and immunosuppressive microenvironment with agents such as CXCR4 inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Immunotherapy/methods , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Niacinamide/analogs & derivatives , Phenylurea Compounds/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Receptors, CXCR4/antagonists & inhibitors , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Animals , Humans , Mice , Niacinamide/therapeutic use , Sorafenib
12.
Hepatology ; 59(4): 1435-47, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24242874

ABSTRACT

UNLABELLED: Sorafenib--a broad kinase inhibitor--is a standard therapy for advanced hepatocellular carcinoma (HCC) and has been shown to exert antifibrotic effects in liver cirrhosis, a precursor of HCC. However, the effects of sorafenib on tumor desmoplasia--and its consequences on treatment resistance--remain unknown. We demonstrate that sorafenib has differential effects on tumor fibrosis versus liver fibrosis in orthotopic models of HCC in mice. Sorafenib intensifies tumor hypoxia, which increases stromal-derived factor 1 alpha (SDF-1α) expression in cancer and stromal cells and, subsequently, myeloid differentiation antigen-positive (Gr-1(+)) myeloid cell infiltration. The SDF-1α/C-X-C receptor type 4 (CXCR4) pathway directly promotes hepatic stellate cell (HSC) differentiation and activation through the mitogen-activated protein kinase pathway. This is consistent with the association between SDF-1α expression with fibrotic septa in cirrhotic liver tissues as well as with desmoplastic regions of human HCC samples. We demonstrate that after treatment with sorafenib, SDF-1α increased the survival of HSCs and their alpha-smooth muscle actin and collagen I expression, thus increasing tumor fibrosis. Finally, we show that Gr-1(+) myeloid cells mediate HSC differentiation and activation in a paracrine manner. CXCR4 inhibition, using AMD3100 in combination with sorafenib treatment, prevents the increase in tumor fibrosis--despite persistently elevated hypoxia--in part by reducing Gr-1(+) myeloid cell infiltration and inhibits HCC growth. Similarly, antibody blockade of Gr-1 reduces tumor fibrosis and inhibits HCC growth when combined with sorafenib treatment. CONCLUSION: Blocking SDF-1α/CXCR4 or Gr-1(+) myeloid cell infiltration may reduce hypoxia-mediated HCC desmoplasia and increase the efficacy of sorafenib treatment.


Subject(s)
CD11b Antigen/metabolism , Carcinoma, Hepatocellular/metabolism , Chemokine CXCL12/metabolism , Liver Cirrhosis/metabolism , Liver/metabolism , Myeloid Cells/pathology , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Receptors, CXCR4/metabolism , Receptors, Chemokine/metabolism , Animals , Carbon Tetrachloride/adverse effects , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Disease Models, Animal , Hepatocyte Growth Factor/deficiency , Hepatocyte Growth Factor/genetics , Liver/drug effects , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C3H , Mice, Knockout , Myeloid Cells/metabolism , Niacinamide/pharmacology , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Receptors, Platelet-Derived Growth Factor/drug effects , Signal Transduction/physiology , Sorafenib
13.
Proc Natl Acad Sci U S A ; 109(43): 17561-6, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23045683

ABSTRACT

The recent approval of a prostate cancer vaccine has renewed hope for anticancer immunotherapies. However, the immunosuppressive tumor microenvironment may limit the effectiveness of current immunotherapies. Antiangiogenic agents have the potential to modulate the tumor microenvironment and improve immunotherapy, but they often are used at high doses in the clinic to prune tumor vessels and paradoxically may compromise various therapies. Here, we demonstrate that targeting tumor vasculature with lower vascular-normalizing doses, but not high antivascular/antiangiogenic doses, of an anti-VEGF receptor 2 (VEGFR2) antibody results in a more homogeneous distribution of functional tumor vessels. Furthermore, lower doses are superior to the high doses in polarizing tumor-associated macrophages from an immune inhibitory M2-like phenotype toward an immune stimulatory M1-like phenotype and in facilitating CD4(+) and CD8(+) T-cell tumor infiltration. Based on this mechanism, scheduling lower-dose anti-VEGFR2 therapy with T-cell activation induced by a whole cancer cell vaccine therapy enhanced anticancer efficacy in a CD8(+) T-cell-dependent manner in both immune-tolerant and immunogenic murine breast cancer models. These findings indicate that vascular-normalizing lower doses of anti-VEGFR2 antibody can reprogram the tumor microenvironment away from immunosuppression toward potentiation of cancer vaccine therapies. Given that the combinations of high doses of bevacizumab with chemotherapy have not improved overall survival of breast cancer patients, our study suggests a strategy to use antiangiogenic agents in breast cancer more effectively with active immunotherapy and potentially other anticancer therapies.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Breast Neoplasms/blood supply , Immunotherapy , Tumor Microenvironment , Animals , Breast Neoplasms/immunology , Female , Humans , Mice , Vascular Endothelial Growth Factor Receptor-2/immunology
14.
Cancers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893082

ABSTRACT

NF2-related Schwannomatosis (NF2-SWN) is a disease that needs new solutions. The hallmark of NF2-SWN, a dominantly inherited neoplasia syndrome, is bilateral vestibular schwannomas (VSs), which progressively enlarge, leading to sensorineural hearing loss, tinnitus, facial weakness, and pain that translates to social impairment and clinical depression. Standard treatments for growing VSs include surgery and radiation therapy (RT); however, both carry the risk of further nerve damage that can result in deafness and facial palsy. The resultant suffering and debility, in combination with the paucity of therapeutic options, make the effective treatment of NF2-SWN a major unmet medical need. A better understanding of these mechanisms is essential to developing novel therapeutic targets to control tumor growth and improve patients' quality of life. Previously, we developed the first orthotopic cerebellopontine angle mouse model of VSs, which faithfully mimics tumor-induced hearing loss. In this model, we observed that mice exhibit symptoms of ataxia and vestibular dysfunction. Therefore, we further developed a panel of five tests suitable for the mouse VS model and investigated how tumor growth and treatment affect gait, coordination, and motor function. Using this panel of ataxia tests, we demonstrated that both ataxia and motor function deteriorated concomitantly with tumor progression. We further demonstrated that (i) treatment with anti-VEGF resulted in tumor size reduction, mitigated ataxia, and improved rotarod performance; (ii) treatment with crizotinib stabilized tumor growth and led to improvements in both ataxia and rotarod performance; and (iii) treatment with losartan did not impact tumor growth nor ameliorate ataxia or motor function. Our studies demonstrated that these methods, paired with hearing tests, enable a comprehensive evaluation of tumor-induced neurological deficits and facilitate the assessment of the effectiveness of novel therapeutics to improve NF2 treatments.

15.
Cell Death Dis ; 15(4): 298, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678042

ABSTRACT

Irradiation (IR) induces immunogenic cell death (ICD) in tumors, but it rarely leads to the abscopal effect (AE); even combining IR with immune checkpoint inhibitors has shown only anecdotal success in inducing AEs. In this study, we aimed to enhance the IR-induced immune response and generate reproducible AEs using the anti-alcoholism drug, disulfiram (DSF), complexed with copper (DSF/Cu) to induce tumor ICD. We measured ICD in vitro and in vivo. In mouse tumor models, DSF/Cu was injected intratumorally followed by localized tumor IR, creating an in situ cancer vaccine. We determined the anticancer response by primary tumor rejection and assessed systemic immune responses by tumor rechallenge and the occurrence of AEs relative to spontaneous lung metastasis. In addition, we analyzed immune cell subsets and quantified proinflammatory and immunosuppressive chemokines/cytokines in the tumor microenvironment (TME) and blood of the vaccinated mice. Immune cell depletion was investigated for its effects on the vaccine-induced anticancer response. The results showed that DSF/Cu and IR induced more potent ICD under hypoxia than normoxia in vitro. Low-dose intratumoral (i.t.) injection of DSF/Cu and IR(12Gy) demonstrated strong anti-primary and -rechallenged tumor effects and robust AEs in mouse models. These vaccinations also increased CD8+ and CD4+ cell numbers while decreasing Tregs and myeloid-derived suppressor cells in the 4T1 model, and increased CD8+, dendritic cells (DC), and decreased Treg cell numbers in the MCa-M3C model. Depleting both CD8+ and CD4+ cells abolished the vaccine's anticancer response. Moreover, vaccinated tumor-bearing mice exhibited increased TNFα levels and reduced levels of immunosuppressive chemokines/cytokines. In conclusion, our novel approach generated an anticancer immune response that results in a lack of or low tumor incidence post-rechallenge and robust AEs, i.e., absence of or decreased spontaneous lung metastasis in tumor-bearing mice. This approach is readily translatable to clinical settings and may increase IR-induced AEs in cancer patients.


Subject(s)
Breast Neoplasms , Cancer Vaccines , Copper , Disulfiram , Immunogenic Cell Death , Disulfiram/pharmacology , Animals , Cancer Vaccines/pharmacology , Cancer Vaccines/immunology , Female , Mice , Immunogenic Cell Death/drug effects , Copper/pharmacology , Humans , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment/drug effects , Mice, Inbred BALB C
16.
Cancer Immunol Res ; 12(4): 400-412, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38260999

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Adding blockade of the anti-programmed cell death protein (PD)-1 pathway to gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers but with low response rates. Here, we studied the effects of anti-cytotoxic T lymphocyte antigen (CTLA)-4 when combined with anti-PD-1 and gemcitabine/cisplatin in orthotopic murine models of ICC. This combination therapy led to substantial survival benefits and reduction of morbidity in two aggressive ICC models that were resistant to immunotherapy alone. Gemcitabine/cisplatin treatment increased tumor-infiltrating lymphocytes and normalized the ICC vessels and, when combined with dual CTLA-4/PD-1 blockade, increased the number of activated CD8+Cxcr3+IFNγ+ T cells. CD8+ T cells were necessary for the therapeutic benefit because the efficacy was compromised when CD8+ T cells were depleted. Expression of Cxcr3 on CD8+ T cells is necessary and sufficient because CD8+ T cells from Cxcr3+/+ but not Cxcr3-/- mice rescued efficacy in T cell‒deficient mice. Finally, rational scheduling of anti-CTLA-4 "priming" with chemotherapy followed by anti-PD-1 therapy achieved equivalent efficacy with reduced overall drug exposure. These data suggest that this combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.


Subject(s)
Cholangiocarcinoma , Cisplatin , Gemcitabine , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/metabolism , Cisplatin/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Gemcitabine/therapeutic use , Tumor Microenvironment
17.
bioRxiv ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37333242

ABSTRACT

Preclinical models that display spontaneous metastasis are necessary to improve therapeutic options for hormone receptor positive breast cancers. In this study, we conducted a detailed cellular and molecular characterization of MCa-P1362, a novel syngeneic Balb/c mouse model of metastatic breast cancer. MCa-P1362 cancer cells expressed estrogen receptors (ER), progesterone receptors (PR), and HER-2 receptors. MCa-P1362 cells proliferate in vitro and in vivo in response to estrogen, yet do not depend on steroid hormones for tumor progression. Further characterization of MCa-P1362 tumor explants shows that they contain a mixture of epithelial cancer cells and stromal cells. Based on transcriptomic and functional analyses of cancer and stromal cells, stem cells are present in both populations. Functional studies demonstrate that crosstalk between cancer and stromal cells promotes tumor growth, metastasis, and drug resistance. MCa-P1362 may serve as a useful preclinical model to investigate the cellular and molecular basis of hormone receptor positive tumor progression and therapeutic resistance.

18.
Phys Med Biol ; 68(5)2023 02 27.
Article in English | MEDLINE | ID: mdl-36731139

ABSTRACT

Objective. Irradiation at FLASH dose rates (>40 Gy s-1) has received great attention due to its reported normal tissue sparing effect. The FLASH effect was originally observed in electron irradiations but has since been shown to also occur with both photon and proton beams. Several mechanisms have been proposed to explain the tissue sparing at high dose rates, including effects involving oxygen, such as depletion of oxygen within the irradiated cells. In this study, we investigated the protective role of FLASH proton irradiation on the skin when varying the oxygen concentration.Approach. Our double scattering proton system provided a 1.2 × 1.6 cm2elliptical field at a dose rate of ∼130 Gy s-1. The conventional dose rate was ∼0.4 Gy s-1. The legs of the FVB/N mice were marked with two tattooed dots and fixed in a holder for exposure. To alter the skin oxygen concentration, the mice were breathing pure oxygen or had their legs tied to restrict blood flow. The distance between the two dots was measured to analyze skin contraction over time.Main results. FLASH irradiation mitigated skin contraction by 15% compared to conventional dose rate irradiation. The epidermis thickness and collagen deposition at 75 d following 25 to 30 Gy exposure suggested a long-term protective function in the skin from FLASH irradiation. Providing the mice with oxygen or reducing the skin oxygen concentration removed the dose-rate-dependent difference in response.Significance. FLASH proton irradiation decreased skin contraction, epidermis thickness and collagen deposition compared to standard dose rate irradiations. The observed oxygen-dependence of the FLASH effect is consistent with, but not conclusive of, fast oxygen depletion during the exposure.


Subject(s)
Proton Therapy , Protons , Mice , Animals , Proton Therapy/methods , Oxygen , Skin , Photons , Radiotherapy Dosage
19.
Res Sq ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37645899

ABSTRACT

Irradiation (IR) induces immunogenic cell death (ICD) in tumors, but it rarely leads to the abscopal effect (AE). However, combining IR with immune checkpoint inhibitors has shown anecdotal success in inducing AEs. In this study, we aimed to enhance the IR-induced immune response and generate reproducible AEs using the anti-alcoholism drug disulfiram (DSF) and copper complex (DSF/Cu) via induction of tumor ICD. We measured ICD in vitro and in vivo. In mouse tumor models, DSF/Cu was injected intratumorally followed by localized tumor IR, creating an in situ cancer vaccine. We determined the anti-cancer response by primary tumor rejection and assessed systemic immune responses by tumor rechallenge and the occurrence of AEs, i.e., spontaneous lung metastasis. Additionally, we analyzed immune cell subsets and quantified proinflammatory and immunosuppressive chemokines/cytokines in the tumor microenvironment (TME) and blood of the vaccinated mice. Immune cell depletion was investigated for its effects on the vaccine-induced anti-cancer response. The results showed that DSF/Cu and IR induced more potent ICD under hypoxia than normoxia in vitro. Low-dose intratumoral injection of DSF/Cu and IR demonstrated strong anti-primary and -rechallenged tumor effects and robust AEs in mouse models. These vaccinations also increased CD8 + and CD4 + cell numbers while decreasing Tregs and myeloid-derived suppressor cells in the 4T1 model, and increased CD8+, DC, and decreased Treg cell numbers in the MCa-M3C model. Depleting both CD8 + and CD4 + cells abolished the vaccine's anticancer response. Moreover, vaccinated tumor-bearing mice exhibited increased TNFα levels and reduced levels of immunosuppressive chemokines/cytokines. In conclusion, our novel approach generated an anti-cancer immune response, resulting in a lack of or low tumor incidence post-rechallenge and robust AEs, i.e., the absence of or decreased spontaneous lung metastasis in tumor-bearing mice. This approach is readily translatable to clinical settings and may increase IR-induced AEs in cancer patients.

20.
Cancers (Basel) ; 15(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37190197

ABSTRACT

Ultra-high dose rate irradiation has been reported to protect normal tissues more than conventional dose rate irradiation. This tissue sparing has been termed the FLASH effect. We investigated the FLASH effect of proton irradiation on the intestine as well as the hypothesis that lymphocyte depletion is a cause of the FLASH effect. A 16 × 12 mm2 elliptical field with a dose rate of ~120 Gy/s was provided by a 228 MeV proton pencil beam. Partial abdominal irradiation was delivered to C57BL/6j and immunodeficient Rag1-/-/C57 mice. Proliferating crypt cells were counted at 2 days post exposure, and the thickness of the muscularis externa was measured at 280 days following irradiation. FLASH irradiation did not reduce the morbidity or mortality of conventional irradiation in either strain of mice; in fact, a tendency for worse survival in FLASH-irradiated mice was observed. There were no significant differences in lymphocyte numbers between FLASH and conventional-dose-rate mice. A similar number of proliferating crypt cells and a similar thickness of the muscularis externa following FLASH and conventional dose rate irradiation were observed. Partial abdominal FLASH proton irradiation at 120 Gy/s did not spare normal intestinal tissue, and no difference in lymphocyte depletion was observed. This study suggests that the effect of FLASH irradiation may depend on multiple factors, and in some cases dose rates of over 100 Gy/s do not induce a FLASH effect and can even result in worse outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL