Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.623
Filter
Add more filters

Publication year range
1.
Genome Res ; 33(10): 1690-1707, 2023 10.
Article in English | MEDLINE | ID: mdl-37884341

ABSTRACT

The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.


Subject(s)
Metagenome , Microbiota , Sheep/genetics , Animals , Transcriptome , Rumen , Ruminants/genetics
2.
Mol Cell ; 70(2): 340-357.e8, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29628309

ABSTRACT

Whereas the actions of enhancers in gene transcriptional regulation are well established, roles of JmjC-domain-containing proteins in mediating enhancer activation remain poorly understood. Here, we report that recruitment of the JmjC-domain-containing protein 6 (JMJD6) to estrogen receptor alpha (ERα)-bound active enhancers is required for RNA polymerase II recruitment and enhancer RNA production on enhancers, resulting in transcriptional pause release of cognate estrogen target genes. JMJD6 is found to interact with MED12 in the mediator complex to regulate its recruitment. Unexpectedly, JMJD6 is necessary for MED12 to interact with CARM1, which methylates MED12 at multiple arginine sites and regulates its chromatin binding. Consistent with its role in transcriptional activation, JMJD6 is required for estrogen/ERα-induced breast cancer cell growth and tumorigenesis. Our data have uncovered a critical regulator of estrogen/ERα-induced enhancer coding gene activation and breast cancer cell potency, providing a potential therapeutic target of ER-positive breast cancers.


Subject(s)
Breast Neoplasms/enzymology , Cell Proliferation , Estrogen Receptor alpha/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Mediator Complex/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Transcriptional Activation , Animals , Binding Sites , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Estradiol/pharmacology , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/genetics , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , MCF-7 Cells , Mediator Complex/genetics , Mice, Inbred BALB C , Mice, Nude , Protein Binding , Protein Transport , Protein-Arginine N-Methyltransferases/genetics , Signal Transduction , Transcriptional Activation/drug effects
3.
Plant J ; 118(2): 373-387, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38159103

ABSTRACT

Petals in rapeseed (Brassica napus) serve multiple functions, including protection of reproductive organs, nutrient acquisition, and attraction of pollinators. However, they also cluster densely at the top, forming a thick layer that absorbs and reflects a considerable amount of photosynthetically active radiation. Breeding genotypes with large, small, or even petal-less varieties, requires knowledge of primary genes for allelic selection and manipulation. However, our current understanding of petal-size regulation is limited, and the lack of markers and pre-breeding materials hinders targeted petal-size breeding. Here, we conducted a genome-wide association study on petal size using 295 diverse accessions. We identified 20 significant single nucleotide polymorphisms and 236 genes associated with petal-size variation. Through a cross-analysis of genomic and transcriptomic data, we focused on 14 specific genes, from which molecular markers for diverging petal-size features can be developed. Leveraging CRISPR-Cas9 technology, we successfully generated a quadruple mutant of Far-Red Elongated Hypocotyl 3 (q-bnfhy3), which exhibited smaller petals compared to the wild type. Our study provides insights into the genetic basis of petal-size regulation in rapeseed and offers abundant potential molecular markers for breeding. The q-bnfhy3 mutant unveiled a novel role of FHY3 orthologues in regulating petal size in addition to previously reported functions.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Genome-Wide Association Study , CRISPR-Cas Systems , Plant Breeding , Brassica rapa/genetics , Mutagenesis
4.
Mol Psychiatry ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589563

ABSTRACT

The associations of synaptic loss with amyloid-ß (Aß) and tau pathology measured by positron emission tomography (PET) and plasma analysis in Alzheimer's disease (AD) patients are unknown. Seventy-five participants, including 26 AD patients, 19 mild cognitive impairment (MCI) patients, and 30 normal controls (NCs), underwent [18F]SynVesT-1 PET/MR scans to assess synaptic density and [18F]florbetapir and [18F]MK6240 PET/CT scans to evaluate Aß plaques and tau tangles. Among them, 19 AD patients, 12 MCI patients, and 29 NCs had plasma Aß42/40 and p-tau181 levels measured by the Simoa platform. Twenty-three individuals, 6 AD patients, 4 MCI patients, and 13 NCs, underwent [18F]SynVesT-1 PET/MRI and [18F]MK6240 PET/CT scans during a one-year follow-up assessment. The associations of Aß and tau pathology with cross-sectional and longitudinal synaptic loss were investigated using Pearson correlation analyses, generalized linear models and mediation analyses. AD patients exhibited lower synaptic density than NCs and MCI patients. In the whole cohort, global Aß deposition was associated with synaptic loss in the medial (r = -0.431, p < 0.001) and lateral (r = -0.406, p < 0.001) temporal lobes. Synaptic density in almost all regions was related to the corresponding regional tau tangles independent of global Aß deposition in the whole cohort and stratified groups. Synaptic density in the medial and lateral temporal lobes was correlated with plasma Aß42/40 (r = 0.300, p = 0.020/r = 0.289, p = 0.025) and plasma p-tau 181 (r = -0.412, p = 0.001/r = -0.529, p < 0.001) levels in the whole cohort. Mediation analyses revealed that tau tangles mediated the relationship between Aß plaques and synaptic density in the whole cohort. Baseline tau pathology was positively associated with longitudinal synaptic loss. This study suggested that tau burden is strongly linked to synaptic density independent of Aß plaques, and also can predict longitudinal synaptic loss.

5.
Nucleic Acids Res ; 51(10): 5228-5241, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37070178

ABSTRACT

Conversely to canonical splicing, back-splicing connects the upstream 3' splice site (SS) with a downstream 5'SS and generates exonic circular RNAs (circRNAs) that are widely identified and have regulatory functions in eukaryotic gene expression. However, sex-specific back-splicing in Drosophila has not been investigated and its regulation remains unclear. Here, we performed multiple RNA analyses of a variety sex-specific Drosophila samples and identified over ten thousand circular RNAs, in which hundreds are sex-differentially and -specifically back-spliced. Intriguingly, we found that expression of SXL, an RNA-binding protein encoded by Sex-lethal (Sxl), the master Drosophila sex-determination gene that is only spliced into functional proteins in females, promoted back-splicing of many female-differential circRNAs in the male S2 cells, whereas expression of a SXL mutant (SXLRRM) did not promote those events. Using a monoclonal antibody, we further obtained the transcriptome-wide RNA-binding sites of SXL through PAR-CLIP. After splicing assay of mini-genes with mutations in the SXL-binding sites, we revealed that SXL-binding on flanking exons and introns of pre-mRNAs facilitates back-splicing, whereas SXL-binding on the circRNA exons inhibits back-splicing. This study provides strong evidence that SXL has a regulatory role in back-splicing to generate sex-specific and -differential circRNAs, as well as in the initiation of sex-determination cascade through canonical forward-splicing.


Subject(s)
Drosophila Proteins , RNA, Circular , RNA-Binding Proteins , Animals , Female , Male , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , RNA/genetics , RNA/metabolism , RNA Splicing/genetics , RNA, Circular/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 119(34): e2200753119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969736

ABSTRACT

Jumonji C-domain-containing protein 6 (JMJD6), an iron (Fe2+) and α-ketoglutarate (α-KG)-dependent oxygenase, is expressed at high levels, correlated with poor prognosis, and considered as a therapeutic target in multiple cancer types. However, specific JMJD6 inhibitors that are potent in suppressing tumorigenesis have not been reported so far. We herein report that iJMJD6, a specific small-molecule inhibitor of JMJD6 with favorable physiochemical properties, inhibits the enzymatic activity of JMJD6 protein both in vitro and in cultured cells. iJMJD6 is effective in suppressing cell proliferation, migration, and invasion in multiple types of cancer cells in a JMJD6-dependent manner, while it exhibits minimal toxicity in normal cells. Mechanistically, iJMJD6 represses the expression of oncogenes, including Myc and CCND1, in accordance with JMJD6 function in promoting the transcription of these genes. iJMJD6 exhibits suitable pharmacokinetic properties and suppresses tumor growth in multiple cancer cell line- and patient-derived xenograft models safely. Furthermore, combination therapy with iJMJD6 and BET protein inhibitor (BETi) JQ1 or estrogen receptor antagonist fulvestrant exhibits synergistic effects in suppressing tumor growth. Taken together, we demonstrate that inhibition of JMJD6 enzymatic activity by using iJMJD6 is effective in suppressing oncogene expression and cancer development, providing a therapeutic avenue for treating cancers that are dependent on JMJD6 in the clinic.


Subject(s)
Antineoplastic Agents , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Neoplasms , Antineoplastic Agents/pharmacology , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic , Humans , Neoplasms/drug therapy
7.
BMC Genomics ; 25(1): 526, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807051

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a complicated neurodegenerative disease. Neuron-glial cell interactions are an important but not fully understood process in the progression of AD. We used bioinformatic methods to analyze single-nucleus RNA sequencing (snRNA-seq) data to investigate the cellular and molecular biological processes of AD. METHOD: snRNA-seq data were downloaded from Gene Expression Omnibus (GEO) datasets and reprocessed to identify 240,804 single nuclei from healthy controls and patients with AD. The cellular composition of AD was further explored using Uniform Manifold Approximation and Projection (UMAP). Enrichment analysis for the functions of the DEGs was conducted and cell development trajectory analyses were used to reveal underlying cell fate decisions. iTALK was performed to identify ligand-receptor pairs among various cell types in the pathological ecological microenvironment of AD. RESULTS: Six cell types and multiple subclusters were identified based on the snRNA-seq data. A subcluster of neuron and glial cells co-expressing lncRNA-SNHG14, myocardin-related transcription factor A (MRTFA), and MRTFB was found to be more abundant in the AD group. This subcluster was enriched in mitogen-activated protein kinase (MAPK)-, immune-, and apoptosis-related pathways. Through molecular docking, we found that lncRNA-SNHG14 may bind MRTFA and MRTFB, resulting in an interaction between neurons and glial cells. CONCLUSIONS: The findings of this study describe a regulatory relationship between lncRNA-SNHG14, MRTFA, and MRTFB in the six main cell types of AD. This relationship may contribute to microenvironment remodeling in AD and provide a theoretical basis for a more in-depth analysis of AD.


Subject(s)
Alzheimer Disease , Neuroglia , Neurons , Single-Cell Analysis , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Humans , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , Cellular Microenvironment/genetics , Computational Biology/methods
8.
J Am Chem Soc ; 146(22): 14927-14934, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38767459

ABSTRACT

Bicyclo[1.1.0]butane-containing compounds feature a unique chemical reactivity, trigger "strain-release" reaction cascades, and provide novel scaffolds with considerable utility in the drug discovery field. We report the synthesis of new bicyclo[1.1.0]butane-linked heterocycles by a nucleophilic addition of bicyclo[1.1.0]butyl anions to 8-isocyanatoquinoline, or, alternatively, iminium cations derived from quinolines and pyridines. The resulting bicyclo[1.1.0]butanes are converted with high regioselectivity to unprecedented bridged heterocycles in a rhodium(I)-catalyzed annulative rearrangement. The addition/rearrangement process tolerates a surprisingly large range of functional groups. Subsequent chemo- and stereoselective synthetic transformations of urea, alkene, cyclopropane, and aniline moieties of the 1-methylene-5-azacyclopropa[cd]indene scaffolds provide several additional new heterocyclic building blocks. X-ray structure-validated quantum mechanical DFT calculations of the reaction pathway indicate the intermediacy of rhodium carbenoid and metallocyclobutane species.

9.
Br J Cancer ; 130(4): 694-700, 2024 03.
Article in English | MEDLINE | ID: mdl-38177659

ABSTRACT

BACKGROUND: Neoadjuvant chemo-immunotherapy combination has shown remarkable advances in the management of esophageal squamous cell carcinoma (ESCC). However, the identification of a reliable biomarker for predicting the response to this chemo-immunotherapy regimen remains elusive. While computed tomography (CT) is widely utilized for response evaluation, its inherent limitations in terms of accuracy are well recognized. Therefore, in this study, we present a novel technique to predict the response of ESCC patients before receiving chemo-immunotherapy by testing volatile organic compounds (VOCs) in exhaled breath. METHODS: This study employed a prospective-specimen-collection, retrospective-blinded-evaluation design. Patients' baseline breath samples were collected and analyzed using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). Subsequently, patients were categorized as responders or non-responders based on the evaluation of therapeutic response using pathology (for patients who underwent surgery) or CT images (for patients who did not receive surgery). RESULTS: A total of 133 patients were included in this study, with 91 responders who achieved either a complete response (CR) or a partial response (PR), and 42 non-responders who had stable disease (SD) or progressive disease (PD). Among 83 participants who underwent both evaluations with CT and pathology, the paired t-test revealed significant differences between the two methods (p < 0.05). For the breath test prediction model using breath test data from all participants, the validation set demonstrated mean area under the curve (AUC) of 0.86 ± 0.06. For 83 patients with pathological reports, the breath test achieved mean AUC of 0.845 ± 0.123. CONCLUSIONS: Since CT has inherent weakness in hollow organ assessment and no other ideal biomarker has been found, our study provided a noninvasive, feasible, and inexpensive tool that could precisely predict ESCC patients' response to neoadjuvant chemo-immunotherapy combination using breath test based on HPPI-TOFMS.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Neoplasms/therapy , Esophageal Neoplasms/drug therapy , Retrospective Studies , Prospective Studies , Neoadjuvant Therapy , Breath Tests/methods , Biomarkers
10.
Cancer Immunol Immunother ; 73(1): 14, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236288

ABSTRACT

Blood-based biomarkers of immune checkpoint inhibitors (ICIs) response in patients with nasopharyngeal carcinoma (NPC) are lacking, so it is necessary to identify biomarkers to select NPC patients who will benefit most or least from ICIs. The absolute values of lymphocyte subpopulations, biochemical indexes, and blood routine tests were determined before ICIs-based treatments in the training cohort (n = 130). Then, the least absolute shrinkage and selection operator (Lasso) Cox regression analysis was developed to construct a prediction model. The performances of the prediction model were compared to TNM stage, treatment, and Epstein-Barr virus (EBV) DNA using the concordance index (C-index). Progression-free survival (PFS) was estimated by Kaplan-Meier (K-M) survival curve. Other 63 patients were used for validation cohort. The novel model composed of histologic subtypes, CD19+ B cells, natural killer (NK) cells, regulatory T cells, red blood cells (RBC), AST/ALT ratio (SLR), apolipoprotein B (Apo B), and lactic dehydrogenase (LDH). The C-index of this model was 0.784 in the training cohort and 0.735 in the validation cohort. K-M survival curve showed patients with high-risk scores had shorter PFS compared to the low-risk groups. For predicting immune therapy responses, the receiver operating characteristic (ROC), decision curve analysis (DCA), net reclassifcation improvement index (NRI) and integrated discrimination improvement index (IDI) of this model showed better predictive ability compared to EBV DNA. In this study, we constructed a novel model for prognostic prediction and immunotherapeutic response prediction in NPC patients, which may provide clinical assistance in selecting those patients who are likely to gain long-lasting clinical benefits to anti-PD-1 therapy.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Epstein-Barr Virus Infections/complications , Nasopharyngeal Carcinoma/therapy , Herpesvirus 4, Human , Immunotherapy , Prognosis , Antigens, CD19 , Nasopharyngeal Neoplasms/therapy , DNA
11.
BMC Med ; 22(1): 28, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38263021

ABSTRACT

BACKGROUND: Current hypertension guidelines recommend combination of an angiotensin-converting enzyme inhibitor or angiotensin-receptor blocker with a calcium-channel blocker or thiazide diuretic as initial antihypertensive therapy in patients with monotherapy uncontrolled hypertension. However, to what extent these two different combinations are comparable in blood pressure (BP)-lowering efficacy and safety remains under investigation, especially in the Chinese population. We investigated the BP-lowering efficacy and safety of the amlodipine/benazepril and benazepril/hydrochlorothiazide dual therapies in Chinese patients. METHODS: In a multi-center, randomized, actively controlled, parallel-group trial, we enrolled patients with stage 1 or 2 hypertension from July 2018 to June 2021 in 20 hospitals and community health centers across China. Of the 894 screened patients, 560 eligible patients were randomly assigned to amlodipine/benazepril 5/10 mg (n = 282) or benazepril/hydrochlorothiazide 10/12.5 mg (n = 278), with 213 and 212 patients, respectively, who completed the study and had a valid repeat ambulatory BP recording during follow-up and were included in the efficacy analysis. The primary outcome was the change from baseline to 24 weeks of treatment in 24-h ambulatory systolic BP. Adverse events including symptoms and clinically significant changes in physical examinations and laboratory findings were recorded for safety analysis. RESULTS: In the efficacy analysis (n = 425), the primary outcome, 24-h ambulatory systolic BP reduction, was - 13.8 ± 1.2 mmHg in the amlodipine/benazepril group and - 12.3 ± 1.2 mmHg in the benazepril/hydrochlorothiazide group, with a between-group difference of - 1.51 (p = 0.36) mmHg. The between-group differences for major secondary outcomes were - 1.47 (p = 0.18) in 24-h diastolic BP, - 2.86 (p = 0.13) and - 2.74 (p = 0.03) in daytime systolic and diastolic BP, and - 0.45 (p = 0.82) and - 0.93 (p = 0.44) in nighttime systolic and diastolic BP. In the safety analysis (n = 560), the incidence rate of dry cough was significantly lower in the amlodipine/benazepril group than in the benazepril/hydrochlorothiazide group (5.3% vs 10.1%, p = 0.04). CONCLUSIONS: The amlodipine/benazepril and benazepril/hydrochlorothiazide dual therapies were comparable in ambulatory systolic BP lowering. The former combination, compared with the latter, had a greater BP-lowering effect in the daytime and a lower incidence rate of dry cough. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03682692. Registered on 18 September 2018.


Subject(s)
Hypertension , Hypotension , Humans , Antihypertensive Agents , Amlodipine , Hydrochlorothiazide , China , Cough
12.
J Virol ; 97(6): e0059923, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37306585

ABSTRACT

Many phages, such as T4, protect their genomes against the nucleases of bacterial restriction-modification (R-M) and CRISPR-Cas systems through covalent modification of their genomes. Recent studies have revealed many novel nuclease-containing antiphage systems, raising the question of the role of phage genome modifications in countering these systems. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli and demonstrated the roles of T4 genome modifications in countering these systems. Our analysis identified at least 17 nuclease-containing defense systems in E. coli, with type III Druantia being the most abundant system, followed by Zorya, Septu, Gabija, AVAST type 4, and qatABCD. Of these, 8 nuclease-containing systems were found to be active against phage T4 infection. During T4 replication in E. coli, 5-hydroxymethyl dCTP is incorporated into the newly synthesized DNA instead of dCTP. The 5-hydroxymethylcytosines (hmCs) are further modified by glycosylation to form glucosyl-5-hydroxymethylcytosine (ghmC). Our data showed that the ghmC modification of the T4 genome abolished the defense activities of Gabija, Shedu, Restriction-like, type III Druantia, and qatABCD systems. The anti-phage T4 activities of the last two systems can also be counteracted by hmC modification. Interestingly, the Restriction-like system specifically restricts phage T4 containing an hmC-modified genome. The ghmC modification cannot abolish the anti-phage T4 activities of Septu, SspBCDE, and mzaABCDE, although it reduces their efficiency. Our study reveals the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of T4 genomic modification in countering these defense systems. IMPORTANCE Cleavage of foreign DNA is a well-known mechanism used by bacteria to protect themselves from phage infections. Two well-known bacterial defense systems, R-M and CRISPR-Cas, both contain nucleases that cleave the phage genomes through specific mechanisms. However, phages have evolved different strategies to modify their genomes to prevent cleavage. Recent studies have revealed many novel nuclease-containing antiphage systems from various bacteria and archaea. However, no studies have systematically investigated the nuclease-containing antiphage systems of a specific bacterial species. In addition, the role of phage genome modifications in countering these systems remains unknown. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli using all 2,289 genomes available in NCBI. Our studies reveal the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of genomic modification of phage T4 in countering these defense systems.


Subject(s)
Bacteriophage T4 , DNA Restriction-Modification Enzymes , Escherichia coli , Bacteriophage T4/genetics , CRISPR-Cas Systems , Escherichia coli/enzymology , Escherichia coli/virology , Genome, Viral
13.
Am J Pathol ; 193(5): 567-578, 2023 05.
Article in English | MEDLINE | ID: mdl-37080661

ABSTRACT

Protein kinase CK2 is a constitutively active and ubiquitously expressed serine/threonine kinase that is closely associated with various types of cancers, autoimmune disorders, and inflammation. However, the role of CK2 in psoriasis remains unknown. Herein, the study indicated elevated expression of CK2 in skin lesions from patients with psoriasis and from psoriasis-like mice. In the psoriasis-like mouse model, the CK2-specific inhibitor CX-4945 ameliorated imiquimod-induced psoriasis symptoms with reduced proliferation, abnormal differentiation, inflammatory cytokine production (especially IL-17A) of keratinocytes, and infiltration of γδ T cells. In in vitro studies, exogenous CK2 promoted hyperproliferation and abnormal differentiation of human keratinocytes, which were reversed by the suppression of CK2 with CX-4945 or siRNA. Furthermore, knockdown of CK2 reduced IL-17A expression and abolished IL-17A-induced proliferation and inflammatory cytokine expression in keratinocytes. Interestingly, IL-17A increased the expression of CK2 in keratinocytes, thereby establishing a positive feedback loop. In addition, suppression of CK2 inhibited the activation of STAT3 and Akt signaling pathways in human keratinocytes and imiquimod-induced psoriatic lesions of mice. These findings indicate that a highly expressed CK2 level in the skin lesions is required in the development of psoriasis by promoting epidermal hyperplasia, abnormal differentiation, and inflammatory response via regulation of the STAT3 and Akt signaling pathways. CK2 may be a target for the treatment of psoriasis.


Subject(s)
Proto-Oncogene Proteins c-akt , Psoriasis , Animals , Humans , Mice , Casein Kinase II/metabolism , Cell Differentiation , Cell Proliferation , Cytokines/metabolism , Imiquimod/adverse effects , Interleukin-17/metabolism , Keratinocytes/pathology , Mice, Inbred BALB C , Proto-Oncogene Proteins c-akt/metabolism , Psoriasis/chemically induced , Skin/metabolism , STAT3 Transcription Factor/metabolism
14.
Opt Lett ; 49(6): 1611, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489463

ABSTRACT

This publisher's note contains a correction to Opt. Lett.49, 674 (2024)10.1364/OL.509981.

15.
Opt Lett ; 49(3): 674-677, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300087

ABSTRACT

We demonstrate that through inserting a short length of highly birefringent small-core photonic crystal fiber (Hi-Bi SC-PCF) into a soliton fiber laser, the nonlinear polarization rotation effect in this laser can be manipulated, leading to continuous tuning of the output pulse parameters. In experiments, we observed that by adjusting the polarization state of light launched into the Hi-Bi SC-PCF and varying the cavity attenuation, the laser spectral width can be continuously tuned from ∼7.1 to ∼1.7 nm, corresponding to a pulse-width-tuning range from ∼350 fs to ∼1.56 ps. During the parameter tuning, the output pulses strictly follow the soliton area theory, giving an almost constant time-bandwidth-product of ∼0.31. This soliton fiber laser, being capable of continuous parameter tuning, could be applied as the seed source in ultrafast laser systems and may find some applications in nonlinear-optics and soliton-dynamics experiments.

16.
Opt Lett ; 49(11): 2982-2985, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824308

ABSTRACT

We demonstrate a compact ultrafast fiber laser system that can deliver 1.87 GHz pulse train at 1550 nm with a pulse energy of 52 pJ and an ultrashort pulse duration of 57 fs. While an acousto-optic mode-locking fiber laser was used as the seed light source at GHz rate, a stage of Er-doped fiber amplifier boosted the laser power to ∼320 mW, giving a pulse energy of ∼170 pJ. Then, a pulse compression setup was constructed, providing a high compression ratio of ∼10 with a total efficiency of ∼32%. In the cascaded compression configuration, multiple fiber samples with alternately normal and anomalous dispersion were fused together, providing efficient nonlinear spectral broadening while suppressing excessive pulse broadening over propagation. This GHz-rate ultrafast fiber laser, with compact configuration, broad optical spectrum, and high time-resolving ability could be used as the seed light source for constructing high-rate, high-power ultrafast laser systems and may find a few applications in optical measurements and microwave photonics.

17.
Eur J Nucl Med Mol Imaging ; 51(5): 1423-1435, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110710

ABSTRACT

PURPOSE: Determination of isocitrate dehydrogenase (IDH) genotype is crucial in the stratification of diagnosis and prognostication in diffuse gliomas. We sought to build and validate radiomics models and clinical features incorporated nomogram for preoperative prediction of IDH mutation status and WHO grade of diffuse gliomas with L-[methyl-11C] methionine ([11C]MET) PET/CT imaging according to the 2016 WHO classification of tumors of the central nervous system. METHODS: Consecutive 178 preoperative [11C]MET PET/CT images were retrospectively studied for radiomics analysis. One hundred six patients from PET scanner 1 were used as training dataset, and 72 patients from PET scanner 2 were used for validation dataset. [11C]MET PET and integrated CT radiomics features were extracted, respectively; three independent predictive models were built based on PET features, CT features, and combined PET/CT features, respectively. The SelectKBest method, Spearman correlation analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and machine learning algorithms were applied for feature selection and model building. After filtering the satisfactory predictive model, key clinical features were incorporated for the nomogram establishment. RESULTS: The combined [11C]MET PET/CT radiomics model, which consisted of four PET features and eight integrated CT features, was significantly associated with IDH genotype (p < 0.0001 for both training and validation datasets). Nomogram based on the [11C]MET PET/CT radiomics score, patients' age, and dichotomous tumor location status showed satisfactory discrimination capacity, and the AUC was 0.880 (95% CI, 0.726-0.998) in the training dataset and 0.866 (95% CI, 0.777-0.956) in the validation dataset. In IDH stratified WHO grade prediction, the final radiomics model consists of four PET features and two CT features had reasonable and stable differential efficacy of WHO grade II and III patients from grade IV patients in IDH-wildtype patients, and the AUC was 0.820 (95% CI, 0.541-1.000) in the training dataset and 0.766 (95% CI, 0.612-0.921) in the validation dataset. CONCLUSION: [11C]MET PET radiomics features could benefit non-invasive IDH genotype prediction, and integrated CT radiomics features could enhance the efficacy. Radiomics and clinical features incorporation could establish satisfactory nomogram for clinical application. This non-invasive predictive investigation based on our consecutive cohort from two PET scanners could provide the perspective to observe the differential efficacy and the stability of radiomics-based investigation in untreated diffuse gliomas.


Subject(s)
Brain Neoplasms , Glioma , Humans , Isocitrate Dehydrogenase/genetics , Cohort Studies , Methionine , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Retrospective Studies , Magnetic Resonance Imaging/methods , Positron Emission Tomography Computed Tomography , Radiomics , Carbon Radioisotopes , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Racemethionine , Mutation , World Health Organization
18.
BMC Cancer ; 24(1): 88, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38229045

ABSTRACT

BACKGROUND: Recently, with the advancement of medical technology, the postoperative morbidity of pelvic exenteration (PE) has gradually decreased, and it has become a curative treatment option for some patients with recurrent gynecological malignancies. However, more evidence is still needed to support its efficacy. This study aimed to explore the safety and long-term survival outcome of PE and the feasibility of umbilical single-port laparoscopic PE for gynecologic malignancies in a single medical center in China. PATIENTS AND METHODS: PE for gynecological cancers except for ovarian cancer conducted by a single surgical team in Sun Yat-sen University Cancer Center between July 2014 and December 2019 were included and the data were retrospectively analyzed. RESULTS: Forty-one cases were included and median age at diagnosis was 53 years. Cervical cancer accounted for 87.8% of all cases, and most of them received prior treatment (95.1%). Sixteen procedures were performed in 2016 and before, and 25 after 2016. Three anterior PE were performed by umbilical single-site laparoscopy. The median operation time was 460 min, and the median estimated blood loss was 600 ml. There was no perioperative death. The years of the operations was significantly associated with the length of the operation time (P = 0.0018). The overall morbidity was 52.4%, while the severe complications rate was 19.0%. The most common complication was pelvic and abdominal infection. The years of surgery was also significantly associated with the occurrence of severe complication (P = 0.040). The median follow-up time was 55.8 months. The median disease-free survival (DFS) was 17.9 months, and the median overall survival (OS) was 25.3 months. The 5-year DFS was 28.5%, and the 5-year OS was 30.8%. CONCLUSION: PE is safe for patient who is selected by a multi-disciplinary treatment, and can be a curative treatment for some patients. PE demands a high level of experience from the surgical team. Umbilical single-port laparoscopy was a technically feasible approach for APE, meriting further investigation.


Subject(s)
Genital Neoplasms, Female , Ovarian Neoplasms , Pelvic Exenteration , Uterine Cervical Neoplasms , Humans , Female , Middle Aged , Retrospective Studies , Pelvic Exenteration/adverse effects , Pelvic Exenteration/methods , Uterine Cervical Neoplasms/surgery , Uterine Cervical Neoplasms/etiology , Ovarian Neoplasms/surgery , Ovarian Neoplasms/etiology , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/surgery , Neoplasm Recurrence, Local/etiology
19.
Anal Biochem ; 687: 115444, 2024 04.
Article in English | MEDLINE | ID: mdl-38141797

ABSTRACT

Norovirus is a leading cause of acute gastroenteritis in humans. This paper presents the development of a novel dual-mode aptasensor for detecting norovirus using colorimetry and electrochemical methods. The initial colorimetric method utilizes gold nanoparticles (AuNPs) and sodium chloride to establish a positive correlation between the concentration of norovirus in a solution and the absorbance ratio A650/A520. The naked eye can detect concentrations as low as 0.1 µg/mL, corresponding to a Ct value of 33 (2.2 copies/µL, CT = 34.102-3.2185·lgX), allowing for qualitative and semi-quantitative analysis. For more accurate trace analysis, a gold electrode is modified with a thiol-modified aptamer and closed with 6-Mercapto-1-hexanol. After incubation with norovirus, the virus specifically binds to the aptamer, causing changes in its spatial structure and distance from the electrode surface. These changes can then be detected using electrochemical square wave voltammetry (SWV). Under optimal reaction conditions, the peak current from SWV exhibits a strong linear relationship with the logarithm of norovirus concentrations between 10-9 µg/mL and 10-2 µg/mL. The regression equation Y = 14.76789 + 1.03983·lgX, with an R2 value of 0.987, accurately represents this relationship. The limit of detection was determined to be 1.365 × 10-10 µg/mL. Furthermore, the aptasensor demonstrated high specificity for norovirus in fecal samples, making it a promising tool for detecting norovirus in various sample types.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Norovirus , Humans , Limit of Detection , Colorimetry/methods , Gold/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods
20.
Pharmacol Res ; 201: 107098, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325728

ABSTRACT

Neuronal death is one of the key pathologies in Alzheimer's disease (AD). How neuronal death begins in AD is far from clear, so clarifying this process may help develop effective therapies. This study collected single-cell RNA sequencing data of 85 AD samples and 83 control samples, covering the prefrontal cortex, internal olfactory cortex, superior parietal lobe, superior frontal gyrus, caudal internal olfactory cortex, somatosensory cortex, hippocampus, superior frontal cortex and peripheral blood mononuclear cells. Additionally, spatial transcriptomic data of coronal sections from 6 AppNL-G-F AD mice and 6 control C57Bl/6 J mice were acquired. The main single-cell and spatial transcriptomics results were experimentally validated in wild type and 5 × FAD mice. We found that the microglia subpopulation Mic_PTPRG can communicate with specific types of neurons (especially excitatory ExNeu_PRKN_VIRMA and inhibitory InNeu_PRKN_VIRMA neuronal subpopulations) and cause them to express PTPRG during AD progression. Within neurons, PTPRG binds and upregulates the m6A methyltransferase VIRMA, thus inhibiting translation of PRKN mRNA to prevent the clearance of damaged mitochondria in neurons through suppressing mitophagy. As the disease progresses, the energy and nutrient metabolic pathways in neurons are reprogrammed, leading to their death. Consistently, we determined that PTPTRG can physically interact with VIRMA in mouse brains and PRKN is significantly upregulated in 5 × FAD mouse brain. Altogether, our findings demonstrate that PTPRG activates the m6A methyltransferase VIRMA to block mitophagy-mediated neuronal death in AD, which is a potential pathway, through which microglia and neuronal PTPRG modify neuronal connections in the brain during AD progression.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/genetics , Leukocytes, Mononuclear , Mitophagy , Gene Expression Profiling , Methyltransferases , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL