Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.235
Filter
Add more filters

Publication year range
1.
Nature ; 588(7839): 693-698, 2020 12.
Article in English | MEDLINE | ID: mdl-33177715

ABSTRACT

Despite its success in achieving the long-term survival of 10-30% of treated individuals, immune therapy is still ineffective for most patients with cancer1,2. Many efforts are therefore underway to identify new approaches that enhance such immune 'checkpoint' therapy3-5 (so called because its aim is to block proteins that inhibit checkpoint signalling pathways in T cells, thereby freeing those immune cells to target cancer cells). Here we show that inhibiting PCSK9-a key protein in the regulation of cholesterol metabolism6-8-can boost the response of tumours to immune checkpoint therapy, through a mechanism that is independent of PCSK9's cholesterol-regulating functions. Deleting the PCSK9 gene in mouse cancer cells substantially attenuates or prevents their growth in mice in a manner that depends on cytotoxic T cells. It also enhances the efficacy of immune therapy that is targeted at the checkpoint protein PD1. Furthermore, clinically approved PCSK9-neutralizing antibodies synergize with anti-PD1 therapy in suppressing tumour growth in mouse models of cancer. Inhibiting PCSK9-either through genetic deletion or using PCSK9 antibodies-increases the expression of major histocompatibility protein class I (MHC I) proteins on the tumour cell surface, promoting robust intratumoral infiltration of cytotoxic T cells. Mechanistically, we find that PCSK9 can disrupt the recycling of MHC I to the cell surface by associating with it physically and promoting its relocation and degradation in the lysosome. Together, these results suggest that inhibiting PCSK9 is a promising way to enhance immune checkpoint therapy for cancer.


Subject(s)
Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Neoplasms/drug therapy , Neoplasms/immunology , PCSK9 Inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Female , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Lysosomes/metabolism , Mice , Neoplasms/metabolism , Neoplasms/pathology , Proprotein Convertase 9/deficiency , Proprotein Convertase 9/genetics , Proprotein Convertase 9/immunology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , Xenograft Model Antitumor Assays
2.
Nature ; 586(7827): 120-126, 2020 10.
Article in English | MEDLINE | ID: mdl-32968282

ABSTRACT

The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood1-3. Here, to identify a phenotypically robust core set of genes and pathways that enable cancer cells to evade killing mediated by cytotoxic T lymphocytes (CTLs), we performed genome-wide CRISPR screens across a panel of genetically diverse mouse cancer cell lines that were cultured in the presence of CTLs. We identify a core set of 182 genes across these mouse cancer models, the individual perturbation of which increases either the sensitivity or the resistance of cancer cells to CTL-mediated toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated manner in which genes and pathways act in cancer cells to orchestrate their evasion of CTLs, and shows that discrete functional modules that control the interferon response and tumour necrosis factor (TNF)-induced cytotoxicity are dominant sub-phenotypes. Our data establish a central role for genes that were previously identified as negative regulators of the type-II interferon response (for example, Ptpn2, Socs1 and Adar1) in mediating CTL evasion, and show that the lipid-droplet-related gene Fitm2 is required for maintaining cell fitness after exposure to interferon-γ (IFNγ). In addition, we identify the autophagy pathway as a conserved mediator of the evasion of CTLs by cancer cells, and show that this pathway is required to resist cytotoxicity induced by the cytokines IFNγ and TNF. Through the mapping of cytokine- and CTL-based genetic interactions, together with in vivo CRISPR screens, we show how the pleiotropic effects of autophagy control cancer-cell-intrinsic evasion of killing by CTLs and we highlight the importance of these effects within the tumour microenvironment. Collectively, these data expand our knowledge of the genetic circuits that are involved in the evasion of the immune system by cancer cells, and highlight genetic interactions that contribute to phenotypes associated with escape from killing by CTLs.


Subject(s)
Genome/genetics , Genomics , Neoplasms/genetics , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Tumor Escape/genetics , Tumor Escape/immunology , Animals , Autophagy , Cell Line, Tumor , Female , Genes, Neoplasm/genetics , Humans , Interferon-gamma/immunology , Male , Mice , NF-kappa B/metabolism , Reproducibility of Results , Signal Transduction
3.
Proc Natl Acad Sci U S A ; 120(21): e2220684120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186836

ABSTRACT

Brain insulin signaling controls peripheral energy metabolism and plays a key role in the regulation of mood and cognition. Epidemiological studies have indicated a strong connection between type 2 diabetes (T2D) and neurodegenerative disorders, especially Alzheimer's disease (AD), linked via dysregulation of insulin signaling, i.e., insulin resistance. While most studies have focused on neurons, here, we aim to understand the role of insulin signaling in astrocytes, a glial cell type highly implicated in AD pathology and AD progression. To this end, we created a mouse model by crossing 5xFAD transgenic mice, a well-recognized AD mouse model that expresses five familial AD mutations, with mice carrying a selective, inducible insulin receptor (IR) knockout in astrocytes (iGIRKO). We show that by age 6 mo, iGIRKO/5xFAD mice exhibited greater alterations in nesting, Y-maze performance, and fear response than those of mice with the 5xFAD transgenes alone. This was associated with increased Tau (T231) phosphorylation, increased Aß plaque size, and increased association of astrocytes with plaques in the cerebral cortex as assessed using tissue CLARITY of the brain in the iGIRKO/5xFAD mice. Mechanistically, in vitro knockout of IR in primary astrocytes resulted in loss of insulin signaling, reduced ATP production and glycolic capacity, and impaired Aß uptake both in the basal and insulin-stimulated states. Thus, insulin signaling in astrocytes plays an important role in the control of Aß uptake, thereby contributing to AD pathology, and highlighting the potential importance of targeting insulin signaling in astrocytes as a site for therapeutics for patients with T2D and AD.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Astrocytes/metabolism , Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Mice, Transgenic , Phenotype , Disease Models, Animal
4.
Proc Natl Acad Sci U S A ; 120(18): e2204621120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098055

ABSTRACT

The unique cancer-associated immunosuppression in brain, combined with a paucity of infiltrating T cells, contributes to the low response rate and poor treatment outcomes of T cell-based immunotherapy for patients diagnosed with glioblastoma multiforme (GBM). Here, we report on a self-assembling paclitaxel (PTX) filament (PF) hydrogel that stimulates macrophage-mediated immune response for local treatment of recurrent glioblastoma. Our results suggest that aqueous PF solutions containing aCD47 can be directly deposited into the tumor resection cavity, enabling seamless hydrogel filling of the cavity and long-term release of both therapeutics. The PTX PFs elicit an immune-stimulating tumor microenvironment (TME) and thus sensitizes tumor to the aCD47-mediated blockade of the antiphagocytic "don't eat me" signal, which subsequently promotes tumor cell phagocytosis by macrophages and also triggers an antitumor T cell response. As adjuvant therapy after surgery, this aCD47/PF supramolecular hydrogel effectively suppresses primary brain tumor recurrence and prolongs overall survivals with minimal off-target side effects.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Paclitaxel , Glioblastoma/drug therapy , Glioblastoma/pathology , Tumor-Associated Macrophages/pathology , Neoplasm Recurrence, Local/drug therapy , Hydrogels/therapeutic use , Immunotherapy/methods , Tumor Microenvironment , Cell Line, Tumor , Brain Neoplasms/drug therapy
5.
Plant J ; 118(6): 2154-2168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558071

ABSTRACT

Verticillium wilt (VW) is a devasting disease affecting various plants, including upland cotton, a crucial fiber crop. Despite its impact, the genetic basis underlying cotton's susceptibility or defense against VW remains unclear. Here, we conducted a genome-wide association study on VW phenotyping in upland cotton and identified a locus on A13 that is significantly associated with VW resistance. We then identified a cystathionine ß-synthase domain gene at A13 locus, GhCBSX3A, which was induced by Verticillium dahliae. Functional analysis, including expression silencing in cotton and overexpression in Arabidopsis thaliana, confirmed that GhCBSX3A is a causal gene at the A13 locus, enhancing SAR-RBOHs-mediated apoplastic oxidative burst. We found allelic variation on the TATA-box of GhCBSX3A promoter attenuated its expression in upland cotton, thereby weakening VW resistance. Interestingly, we discovered that altered artificial selection of GhCBSX3A_R (an elite allele for VW) under different VW pressures during domestication and other improved processes allows specific human needs to be met. Our findings underscore the importance of GhCBSX3A in response to VW, and we propose a model for defense-associated genes being selected depending on the pathogen's pressure. The identified locus and gene serve as promising targets for VW resistance enhancement in cotton through genetic engineering.


Subject(s)
Ascomycota , Disease Resistance , Gossypium , Plant Diseases , Plant Proteins , Gossypium/genetics , Gossypium/microbiology , Gossypium/immunology , Gossypium/metabolism , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Ascomycota/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Genome-Wide Association Study , Respiratory Burst , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Arabidopsis/metabolism , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Plants, Genetically Modified , Verticillium
6.
Mol Psychiatry ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122778

ABSTRACT

Astrocytes are multi-functional glial cells in the central nervous system that play critical roles in modulation of metabolism, extracellular ion and neurotransmitter levels, and synaptic plasticity. Astrocyte-derived signaling molecules mediate many of these modulatory functions of astrocytes, including vesicular release of ATP. In the present study, we used a unique genetic mouse model to investigate the functional significance of astrocytic exocytosis of ATP. Using primary cultured astrocytes, we show that loss of vesicular nucleotide transporter (Vnut), a primary transporter responsible for loading cytosolic ATP into the secretory vesicles, dramatically reduces ATP loading into secretory lysosomes and ATP release, without any change in the molecular machinery of exocytosis or total intracellular ATP content. Deletion of astrocytic Vnut in adult mice leads to increased anxiety, depressive-like behaviors, and decreased motivation for reward, especially in females, without significant impact on food intake, systemic glucose metabolism, cognition, or sociability. These behavioral alterations are associated with significant decreases in the basal extracellular dopamine levels in the nucleus accumbens. Likewise, ex vivo brain slices from these mice show a strong trend toward a reduction in evoked dopamine release in the nucleus accumbens. Mechanistically, the reduced dopamine signaling we observed is likely due to an increased expression of monoamine oxidases. Together, these data demonstrate a key modulatory role of astrocytic exocytosis of ATP in anxiety, depressive-like behavior, and motivation for reward, by regulating the mesolimbic dopamine circuitry.

7.
Exp Cell Res ; 437(1): 113992, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38492634

ABSTRACT

BACKGROUND: Hepatic fibrosis, a common pathological process that occurs in end-stage liver diseases, is a serious public health problem and lacks effective therapy. Notoginsenoside R1 (NR1) is a small molecule derived from the traditional Chinese medicine Sanqi, exhibiting great potential in treating diverse metabolie disorders. Here we aimed to enquired the role of NR1 in liver fibrosis and its underlying mechanism in hepatoprotective effects. METHODS: We investigated the anti-fibrosis effect of NR1 using CCl4-induced mouse mode of liver fibrosis as well as TGF-ß1-activated JS-1, LX-2 cells and primary hepatic stellate cell. Cell samples treated by NR1 were collected for transcriptomic profiling analysis. PPAR-γ mediated TGF-ß1/Smads signaling was examined using PPAR-γ selective inhibitors and agonists intervention, immunofluorescence staining and western blot analysis. Additionally, we designed and studied the binding of NR1 to PPAR-γ using molecular docking. RESULTS: NR1 obviously attenuated liver histological damage, reduced serum ALT, AST levels, and decreased liver fibrogenesis markers in mouse mode. Mechanistically, NR1 elevated PPAR-γ and decreased TGF-ß1, p-Smad2/3 expression. The TGF-ß1/Smads signaling pathway and fibrotic phenotype were altered in JS-1 cells after using PPAR-γ selective inhibitors and agonists respectively, confirming PPAR-γ played a pivotal protection role inNR1 treating liver fibrosis. Further molecular docking indicated NR1 had a strong binding tendency to PPAR-γ with minimum free energy. CONCLUSIONS: NR1 attenuates hepatic stellate cell activation and hepatic fibrosis by elevating PPAR-γ to inhibit TGF-ß1/Smads signalling. NR1 may be a potential candidate compound for reliving liver fibrosis.


Subject(s)
Ginsenosides , Hepatic Stellate Cells , Transforming Growth Factor beta1 , Animals , Mice , Fibrosis , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Molecular Docking Simulation , PPAR gamma/metabolism , Transforming Growth Factor beta1/metabolism
8.
Proc Natl Acad Sci U S A ; 119(31): e2120028119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35878027

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic ß-cells. One of the earliest aspects of this process is the development of autoantibodies and T cells directed at an epitope in the B-chain of insulin (insB:9-23). Analysis of microbial protein sequences with homology to the insB:9-23 sequence revealed 17 peptides showing >50% identity to insB:9-23. Of these 17 peptides, the hprt4-18 peptide, found in the normal human gut commensal Parabacteroides distasonis, activated both human T cell clones from T1D patients and T cell hybridomas from nonobese diabetic (NOD) mice specific to insB:9-23. Immunization of NOD mice with P. distasonis insB:9-23 peptide mimic or insB:9-23 peptide verified immune cross-reactivity. Colonization of female NOD mice with P. distasonis accelerated the development of T1D, increasing macrophages, dendritic cells, and destructive CD8+ T cells, while decreasing FoxP3+ regulatory T cells. Western blot analysis identified P. distasonis-reacting antibodies in sera of NOD mice colonized with P. distasonis and human T1D patients. Furthermore, adoptive transfer of splenocytes from P. distasonis-treated mice to NOD/SCID mice enhanced disease phenotype in the recipients. Finally, analysis of human children gut microbiome data from a longitudinal DIABIMMUNE study revealed that seroconversion rates (i.e., the proportion of individuals developing two or more autoantibodies) were consistently higher in children whose microbiome harbored sequences capable of producing the hprt4-18 peptide compared to individuals who did not harbor it. Taken together, these data demonstrate the potential role of a gut microbiota-derived insB:9-23-mimic peptide as a molecular trigger of T1D pathogenesis.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Molecular Mimicry , Peptides , Animals , Autoantibodies/immunology , Bacteroidetes , CD8-Positive T-Lymphocytes , Child , Diabetes Mellitus, Type 1/pathology , Female , Humans , Insulin/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Peptides/chemistry
9.
Nano Lett ; 24(1): 130-139, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38150297

ABSTRACT

Photothermal immunotherapy has become a promising strategy for tumor treatment. However, the intrinsic drawbacks like light instability, poor immunoadjuvant effect, and poor accumulation of conventional inorganic or organic photothermal agents limit their further applications. Based on the superior carrying capacity and active tumor targeting property of living bacteria, an immunoadjuvant-intensified and engineered tumor-targeting bacterium was constructed to achieve effective photothermal immunotherapy. Specifically, immunoadjuvant imiquimod (R837)-loaded thermosensitive liposomes (R837@TSL) were covalently decorated onto Rhodobacter sphaeroides (R.S) to obtain nanoimmunoadjuvant-armed bacteria (R.S-R837@TSL). The intrinsic photothermal property of R.S combined R837@TSL to achieve in situ near-infrared (NIR) laser-controlled release of R837. Meanwhile, tumor immunogenic cell death (ICD) caused by photothermal effect of R.S-R837@TSL, synergizes with released immunoadjuvants to promote maturation of dendritic cells (DCs), which enhance cytotoxic T lymphocytes (CTLs) infiltration for further tumor eradication. The photosynthetic bacteria armed with immunoadjuvant-loaded liposomes provide a strategy for immunoadjuvant-enhanced cancer photothermal immunotherapy.


Subject(s)
Nanoparticles , Neoplasms , Rhodobacter sphaeroides , Humans , Adjuvants, Immunologic , Liposomes , Imiquimod , Neoplasms/pathology , Immunotherapy , Cell Line, Tumor , Phototherapy
10.
Am J Respir Cell Mol Biol ; 71(1): 121-132, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587806

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways characterized by impaired lung function induced by cigarette smoke (CS). Reduced DACH1 (dachshund homolog 1) expression has a detrimental role in numerous disorders, but its role in COPD remains understudied. This study aimed to elucidate the role and underlying mechanism of DACH1 in airway inflammation in COPD by measuring DACH1 expression in lung tissues of patients with COPD. Airway epithelium-specific DACH1-knockdown mice and adenoassociated virus-transfected DACH1-overexpressing mice were used to investigate the role of DACH1 and the potential for therapeutic targeting in experimental COPD caused by CS. Furthermore, we discovered a potential mechanism of DACH1 in inflammation induced by CS extract stimulation in vitro. Compared with nonsmokers and smokers without COPD, patients with COPD had reduced DACH1 expression, especially in the airway epithelium. Airway epithelium-specific DACH1 knockdown aggravated airway inflammation and lung function decline caused by CS in mice, whereas DACH1 overexpression protected mice from airway inflammation and lung function decline. DACH1 knockdown and overexpression promoted and inhibited IL-6 and IL-8 secretion, respectively, in 16HBE human bronchial epidermal cells after CS extract stimulation. NRF2 (nuclear factor erythroid 2-related factor 2) was discovered to be a novel downstream target of DACH1, which binds directly to its promoter. By activating NRF2 signaling, DACH1 induction reduced inflammation. DACH1 levels are lower in smokers and nonsmoking patients with COPD than in nonsmokers. DACH1 has protective effects against inflammation induced by CS by activating the NRF2 signaling pathway. Targeting DACH1 is a potentially viable therapeutic approach for COPD treatment.


Subject(s)
Eye Proteins , NF-E2-Related Factor 2 , Pulmonary Disease, Chronic Obstructive , Signal Transduction , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Animals , NF-E2-Related Factor 2/metabolism , Humans , Mice , Male , Eye Proteins/metabolism , Eye Proteins/genetics , Inflammation/metabolism , Inflammation/pathology , Mice, Inbred C57BL , Middle Aged , Female , Lung/metabolism , Lung/pathology , Aged , Transcription Factors/metabolism , Transcription Factors/genetics
11.
J Cell Mol Med ; 28(4): e18120, 2024 02.
Article in English | MEDLINE | ID: mdl-38358010

ABSTRACT

Our previous study confirmed that umbilical cord mesenchymal stem cells-exosomes (ucMSC-Ex) inhibit apoptosis of pancreatic acinar cells to exert protective effects. However, the relationship between apoptosis and autophagy in traumatic pancreatitis (TP) has rarely been reported. We dissected the transcriptomics after pancreatic trauma and ucMSC-Ex therapy by high-throughput sequencing. Additionally, we used rapamycin and MHY1485 to regulate mTOR. HE, inflammatory factors and pancreatic enzymatic assays were used to comprehensively determine the local versus systemic injury level, fluorescence staining and electron microscopy were used to detect the effect of autophagy, and observe the expression levels of autophagy-related markers at the gene and protein levels. High-throughput sequencing identified that autophagy played a crucial role in the pathophysiological process of TP and ucMSC-Ex therapy. The results of electron microscopy, immunofluorescence staining, polymerase chain reaction and western blot suggested that therapeutic effect of ucMSC-Ex was mediated by activation of autophagy in pancreatic acinar cells through inhibition of mTOR. ucMSC-Ex can attenuate pancreas injury by inhibiting mTOR to regulate acinar cell autophagy after TP. Future studies will build on the comprehensive sequencing of RNA carried by ucMSC-Ex to predict and verify specific non-coding RNA.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Pancreatitis , Humans , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Umbilical Cord , TOR Serine-Threonine Kinases/metabolism , Pancreatitis/metabolism , Autophagy/genetics , Apoptosis
12.
Gastroenterology ; 164(7): 1189-1201.e13, 2023 06.
Article in English | MEDLINE | ID: mdl-36898551

ABSTRACT

BACKGROUND & AIMS: Inflammatory bowel disease (IBD) is a widespread gastrointestinal inflammatory disorder with globally increasing incidence. Clostridioides difficile infection (CDI) often occurs in patients with intestinal dysbiosis, such as after antibiotic therapy. Patients with IBD have increased incidence of CDI and the clinical outcome of IBD is reportedly worsened by CDI. However, the underlying reasons remain poorly understood. METHODS: We performed a retrospective single-center and a prospective multicenter analysis of CDI in patients with IBD, including genetic typing of C difficile isolates. Furthermore, we performed a CDI mouse model to analyze the role of the sorbitol metabolization locus that we found distinguished the main IBD- and non-IBD-associated sequence types (STs). Moreover, we analyzed sorbitol concentration in the feces of patients with IBD and healthy individuals. RESULTS: We detected a significant association of specific lineages with IBD, particularly increased abundance of ST54. We found that in contrast to the otherwise clinically predominant ST81, ST54 harbors a sorbitol metabolization locus and was able to metabolize sorbitol in vitro and in vivo. Notably, in the mouse model, ST54 pathogenesis was dependent on intestinal inflammation-induced conditions and the presence of sorbitol. Furthermore, we detected significantly increased sorbitol concentrations in the feces of patients with active IBD vs patients in remission or healthy controls. CONCLUSIONS: Sorbitol and sorbitol utilization in the infecting C difficile strain play major roles for the pathogenesis and epidemiology of CDI in patients with IBD. CDI in patients with IBD may thus be avoided or improved by elimination of dietary sorbitol or suppression of host-derived sorbitol production.


Subject(s)
Clostridioides difficile , Clostridium Infections , Inflammatory Bowel Diseases , Animals , Mice , Retrospective Studies , Sorbitol/therapeutic use , Prospective Studies , Inflammatory Bowel Diseases/therapy , Clostridium Infections/epidemiology , Clostridium Infections/drug therapy , Bacteria/genetics
13.
BMC Plant Biol ; 24(1): 69, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38262947

ABSTRACT

BACKGROUND: The early allopolyploid Brassica napus was a hybrid of two Brassica species, that had undergone a whole genome duplication event followed by genome restructuring, including deletions and small scale duplications. A large number of homologous genes appeared functional divergence during species domestication. Due to the high conservation of de novo glycerolipid biosynthesis, multiple homologues of glycerol-3-phosphate acyltransferases (GPATs) have been found in B. napus. Moreover, the functional variances among these homologous GPAT-encoding genes are unclear. RESULTS: In this study, four B. napus homologous genes encoding glycerol-3-phosphate acyltransferase 9 (BnaGPAT9) were characterized. Although a bioinformatics analysis indicated high protein sequence similarity, the homologues demonstrated tissue-specific expression patterns and functional divergence. Yeast genetic complementation assays revealed that BnaGPAT9-A1/C1 homologues but not BnaGPAT9-A10/C9 homologues encoded functional GPAT enzymes. Furthermore, a single nucleotide polymorphism of BnaGPAT9-C1 that occurred during the domestication process was associated with enzyme activity and contributed to the fatty acid composition. The seed-specific expression of BnGPAT9-C11124A increased the erucic acid content in the transformant seeds. CONCLUSIONS: This study revealed that BnaGPAT9 gene homologues evolved into functionally divergent forms with important roles in erucic acid biosynthesis.


Subject(s)
Brassica napus , Erucic Acids , Glycerol , Glycerol-3-Phosphate O-Acyltransferase , Saccharomyces cerevisiae , Seeds , Phosphates
14.
BMC Med ; 22(1): 200, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755647

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the most common primary malignant bone tumor and is highly prone to metastasis. OS can metastasize to the lymph node (LN) through the lymphatics, and the metastasis of tumor cells reestablishes the immune landscape of the LN, which is conducive to the growth of tumor cells. However, the mechanism of LN metastasis of osteosarcoma and remodeling of the metastatic lymph node (MLN) microenvironment is not clear. METHODS: Single-cell RNA sequencing of 18 samples from paracancerous, primary tumor, and lymph nodes was performed. Then, new signaling axes closely related to metastasis were identified using bioinformatics, in vitro experiments, and immunohistochemistry. The mechanism of remodeling of the LN microenvironment in tumor cells was investigated by integrating single-cell and spatial transcriptomics. RESULTS: From 18 single-cell sequencing samples, we obtained 117,964 cells. The pseudotime analysis revealed that osteoblast(OB) cells may follow a differentiation path from paracancerous tissue (PC) → primary tumor (PT) → MLN or from PC → PT, during the process of LN metastasis. Next, in combination of bioinformatics, in vitro and in vivo experiments, and immunohistochemistry, we determined that ETS2/IBSP, a new signal axis, might promote LN metastasis. Finally, single-cell and spatial dissection uncovered that OS cells could reshape the microenvironment of LN by interacting with various cell components, such as myeloid, cancer-associated fibroblasts (CAFs), and NK/T cells. CONCLUSIONS: Collectively, our research revealed a new molecular mechanism of LN metastasis and clarified how OS cells influenced the LN microenvironment, which might provide new insight for blocking LN metastasis.


Subject(s)
Bone Neoplasms , Lymph Nodes , Lymphatic Metastasis , Osteosarcoma , Single-Cell Analysis , Transcriptome , Tumor Microenvironment , Osteosarcoma/pathology , Osteosarcoma/genetics , Humans , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Animals , Mice , Cell Line, Tumor , Gene Expression Profiling
15.
Small ; : e2406397, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223859

ABSTRACT

Silicon heterojunction (SHJ) solar cells have set world-record efficiencies among single-junction silicon solar cells, accelerating their commercial deployment. Despite these clear efficiency advantages, the high costs associated with low-temperature silver pastes (LTSP) for metallization have driven the search for more economical alternatives in mass production. 2D transition metal carbides (MXenes) have attracted significant attention due to their tunable optoelectronic properties and metal-like conductivity, the highest among all solution-processed 2D materials. MXenes have emerged as a cost-effective alternative for rear-side electrodes in SHJ solar cells. However, the use of MXene electrodes has so far been limited to lab-scale SHJ solar cells. The efficiency of these devices has been constrained by a fill factor (FF) of under 73%, primarily due to suboptimal charge transport at the contact layer/MXene interface. Herein, a silver nanowire (AgNW)-assisted Ti3C2Tx MXene electrode contact is introduced and explores the potential of this hybrid electrode in industry-scale solar cells. By incorporating this hybrid electrode into SHJ solar cells, 9.0 cm2 cells are achieved with an efficiency of 24.04% (FF of 81.64%) and 252 cm2 cells with an efficiency of 22.17% (FF of 76.86%), among the top-performing SHJ devices with non-metallic electrodes to date. Additionally, the stability and cost-effectiveness of these solar cells are discussed.

16.
Am Heart J ; 273: 83-89, 2024 07.
Article in English | MEDLINE | ID: mdl-38679189

ABSTRACT

BACKGROUND: In patients with or at risk for atherosclerotic vascular disease, statins reduce the incidence of major adverse cardiovascular events, but the majority of US adults with an indication for statin therapy are not prescribed statins at guideline-recommended intensity. Clinicians' limited time to address preventative care issues is cited as one factor contributing to gaps in statin prescribing. Centralized pharmacy services can fulfill a strategic role for population health management through outreach, education, and statin prescribing for patients at elevated ASCVD risk, but best practices for optimizing referrals of appropriate patients are unknown. STUDY DESIGN AND OBJECTIVES: SUPER LIPID (NCT05537064) is a program consisting of two pragmatic clinical trials testing the effect of nudges in increasing referrals of appropriate patients to a centralized pharmacy service for lipid management, conducted within 11 primary care practices in a large community health system. In both trials, patients were eligible for inclusion if they had an assigned primary care provider (PCP) in a participating practice and were not prescribed a high- or moderate-intensity statin despite an indication, identified via an electronic health record (EHR) algorithm. Trial #1 was a stepped wedge trial, conducted at a single practice with randomization at the PCP level, of an interruptive EHR message that appeared during eligible patients' visits and facilitated referral to the pharmacy service. For the first 3 months, no PCPs received the message; for the second 3 months, half were randomly selected to receive the message; and for the last 3 months, all PCPs received the message. Trial #2 was a cluster-randomized trial conducted at 10 practices, with randomization at the practice level. Practices were randomized to usual care or to have eligible patients automatically referred to centralized pharmacy services via a referral order placed in PCPs EHR inboxes for co-signature. In both trials, when a patient was referred to centralized pharmacy services, a pharmacist reviewed the patient's chart, contacted the patient, and initiated statin therapy if the patient agreed. The primary endpoint of both trials was the proportion of patients prescribed a statin; secondary endpoints include the proportion of patients prescribed a statin at guideline-recommended intensity, the proportion of patients filling a statin prescription, and serum low-density lipoprotein level. CONCLUSIONS: SUPER LIPID is a pair of pragmatic clinical trials assessing the effectiveness of two strategies to encourage referral of appropriate patients to a centralized pharmacy service for lipid management. The trial results will develop the evidence base for simple, scalable, EHR-based strategies to integrate clinical pharmacists into population health management and increase appropriate statin prescribing. CLINICAL TRIAL REGISTRATION: clinicaltrials.gov; NCT05537064.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Referral and Consultation , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Male , Female , Primary Health Care , Middle Aged
17.
Mol Carcinog ; 63(7): 1362-1377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38656551

ABSTRACT

Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial ß oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/ß-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice, Nude , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Animals , Mice , Cell Line, Tumor , Cell Movement , Wnt Signaling Pathway , Prognosis , Carcinogenesis/genetics
18.
Planta ; 259(5): 95, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512412

ABSTRACT

MAIN CONCLUSIONS: A novel image-based screening method for precisely identifying genotypic variations in rapeseed RSA under waterlogging stress was developed. Five key root traits were confirmed as good indicators of waterlogging and might be employed in breeding, particularly when using the MFVW approach. Waterlogging is a vital environmental factor that has detrimental effects on the growth and development of rapeseed (Brassica napus L.). Plant roots suffer from hypoxia under waterlogging, which ultimately confers yield penalty. Therefore, it is crucially important to understand the genetic variation of root system architecture (RSA) in response to waterlogging stress to guide the selection of new tolerant cultivars with favorable roots. This research was conducted to investigate RSA traits using image-based screening techniques to better understand how RSA changes over time during waterlogging at the seedling stage. First, we performed a t-test by comparing the relative root trait value between four tolerant and four sensitive accessions. The most important root characteristics associated with waterlogging tolerance at 12 h are total root length (TRL), total root surface area (TRSA), total root volume (TRV), total number of tips (TNT), and total number of forks (TNF). The root structures of 448 rapeseed accessions with or without waterlogging showed notable genetic diversity, and all traits were generally restrained under waterlogging conditions, except for the total root average diameter. Additionally, according to the evaluation and integration analysis of 448 accessions, we identified that five traits, TRL, TRSA, TRV, TNT, and TNF, were the most reliable traits for screening waterlogging-tolerant accessions. Using analysis of the membership function value (MFVW) and D-value of the five selected traits, 25 extremely waterlogging-tolerant materials were screened out. Waterlogging significantly reduced RSA, inhibiting root growth compared to the control. Additionally, waterlogging increased lipid peroxidation, accompanied by a decrease in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). This study effectively improves our understanding of the response of RSA to waterlogging. The image-based screening method developed in this study provides a new scientific guidance for quickly examining the basic RSA changes and precisely predicting waterlogging-tolerant rapeseed germplasms, thus expanding the genetic diversity of waterlogging-tolerant rapeseed germplasm available for breeding.


Subject(s)
Brassica napus , Brassica rapa , Plant Breeding , Seedlings/physiology , Phenotype , Genotype
19.
Cancer Causes Control ; 35(4): 635-645, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38001334

ABSTRACT

PURPOSE: The incidence and mortality rates of colorectal cancer (CRC) remain consistently high in rural populations. Telehealth can improve screening uptake by overcoming individual and environmental disadvantages in rural communities. The present study aimed to characterize varying barriers to CRC screening between rural individuals with and without experience in using telehealth. METHOD: The cross-sectional study surveyed 250 adults aged 45-75 residing in rural U.S. states of Alaska, Idaho, Oregon, and Washington from June to September 2022. The associations between CRC screening and four sets of individual and environmental factors specific to rural populations (i.e., demographic characteristics, accessibility, patient-provider factors, and psychological factors) were assessed among respondents with and without past telehealth adoption. RESULT: Respondents with past telehealth use were more likely to screen if they were married, had a better health status, had experienced discrimination in health care, and had perceived susceptibility, screening efficacy, and cancer fear, but less likely to screen when they worried about privacy or had feelings of embarrassment, pain, and discomfort. Among respondents without past telehealth use, the odds of CRC screening decreased with busy schedules, travel burden, discrimination in health care, and lower perceived needs. CONCLUSION: Rural individuals with and without previous telehealth experience face different barriers to CRC screening. The finding suggests the potential efficacy of telehealth in mitigating critical barriers to CRC screening associated with social, health care, and built environments of rural communities.


Subject(s)
Colorectal Neoplasms , Telemedicine , Adult , Humans , Rural Population , Cross-Sectional Studies , Early Detection of Cancer/psychology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/prevention & control , Washington/epidemiology
20.
IUBMB Life ; 76(7): 451-463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38269750

ABSTRACT

In clinical practice, the diagnosis of ulcerative colitis (UC) mainly relies on a comprehensive analysis of a series of signs and symptoms of patients. The current biomarkers for diagnosis of UC and prognostic prediction of anti-TNF-α therapy are inaccurate. The present study aimed to perform an integrative analysis of gene expression profiles in patients with UC. A total of seven datasets from the GEO database that met our strict inclusion criteria were included. After identifying differentially expressed genes (DEGs) between UC patients and healthy individuals, the diagnostic and prognostic utility of the DEGs were then analyzed via least absolute shrinkage and selection operator and support-vector machine recursive feature elimination. Subgroup analyses of the treated and untreated groups, as well as the treatment-response group and non-response group, were also performed. Furthermore, the relationship between the expressions of UC-related genes and infiltration of immune cells in the course of treatment was also investigated. Immunohistochemical (IHC) assay was used to verify the gene expression in inflamed UC tissues. When considering all the applied methods, DUOX2, PI3, S100P, MMP7, and S100A8 had priority to be defined as the characteristic genes among DEGs. The area under curve (AUC) of the five genes, which were all consistently over-expressed, based on an external validation dataset, were all above 0.94 for UC diagnosis. Four of the five genes (DUOX2, PI3, MMP7, and S100A8) were down-regulated between treatment-responsive and nonresponsive patients. A significant difference was also observed concerning the infiltration of immune cells, including macrophage and neutrophil, between the two groups (treatment responsive and nonresponsive). The changes in the expression of DUOX2 and MMP7 based on the IHC assay were highly consistent with the results obtained in the current study. This confirmed the mild to moderate diagnostic and predictive value of DUOX2 and MMP7 in patients with UC. The conducted analyses showed that the expression profile of the five identified biomarkers accurately detects UC, whereas four of the five genes evidently predicted the response to anti-TNF-α therapy.


Subject(s)
Colitis, Ulcerative , Tumor Necrosis Factor-alpha , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/pathology , Tumor Necrosis Factor-alpha/genetics , Gene Expression Profiling , Biomarkers/metabolism , Prognosis , Matrix Metalloproteinase 7/genetics , Transcriptome , Dual Oxidases/genetics , Dual Oxidases/metabolism , Gene Expression Regulation/drug effects , Female , Case-Control Studies
SELECTION OF CITATIONS
SEARCH DETAIL