ABSTRACT
Esophageal squamous cell carcinoma (ESCC) is a high-risk malignant tumor that has been reported in China. Some studies indicate that gut microbiota disorders can affect the occurrence and development of ESCC, but the underlying mechanism remains unclear. In this study, we aimed to explore the possible underlying mechanisms using microbiomics and metabolomics. Fifty ESCC patients and fifty healthy controls were selected as the study subjects according to sex and age, and fecal samples were collected. 16S rDNA sequencing and LCâMS were used for microbiomics and nontargeted metabolomics analyses. We found significant differences in the composition of the gut microbiota and metabolites between the ESCC patients and control individuals (P < 0.05). ESCC patients exhibited increased abundances of Fusobacteriaceae and Lactobacillus, increased levels of GibberellinA34 and decreased levels of 12-hydroxydodecanoic acid; these metabolites could be diagnostic and predictive markers of ESCC. An increase in the abundance of Enterobacteriaceae and Lactobacillus significantly reduced the content of L-aspartate and pantothenic acid, which may be involved in the occurrence and development of ESCC by downregulating the expression of proteins in the pantothenate and coenzyme A biosynthesis pathways. An imbalance in the intestinal flora may decrease the number of eosinophils in peripheral blood, resulting in the activation of an inflammatory response and immune dysfunction, leading to ESCC deterioration. We hypothesize that this imbalance in the gut microbiota can cause an imbalance in intestinal metabolites, which can activate carcinogenic metabolic pathways, affect inflammation and immune function, and play a role in the occurrence and development of ESCC.
Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gastrointestinal Microbiome , Humans , Carcinoma, Squamous Cell/pathology , Esophageal Neoplasms/pathology , Metabolomics/methodsABSTRACT
In this study, fresh mangos were packed using a custom-made antimicrobial film coated with sustained-release chlorine dioxide microcapsules. We then compared physical and chemical indexes, such as weight loss rate, firmness, chromatic aberrations, soluble solids, vitamin C, titratable acid, and other nutritional indicators, to examine changes in the mango and film during storage. Our findings revealed that control mango showed loss of edible value and commercial value after 21 days of storage, and the chlorine dioxide microcapsule antibacterial film group still retains food value and commercial value. Cross-sectional scanning electron microscopy images of the used film showed that the polylactic acid film was smooth and flat, whereas cross-sections of the antimicrobial film showed that the film was covered with voids due to deliberate release of chlorine dioxide gas during the packaging process. Thus, the antibacterial film exhibited erosion and degradation. These findings provided important insights into the use of antimicrobial films for the packaging of fruits during storage, which is essential for promoting the application of solid chlorine dioxide antimicrobial film in packaging preservation.