Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(2): e2213528120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595700

ABSTRACT

Flow batteries are a promising energy storage solution. However, the footprint and capital cost need further reduction for flow batteries to be commercially viable. The flow cell, where electron exchange takes place, is a central component of flow batteries. Improving the volumetric power density of the flow cell (W/Lcell) can reduce the size and cost of flow batteries. While significant progress has been made on flow battery redox, electrode, and membrane materials to improve energy density and durability, conventional flow batteries based on the planar cell configuration exhibit a large cell size with multiple bulky accessories such as flow distributors, resulting in low volumetric power density. Here, we introduce a submillimeter bundled microtubular (SBMT) flow battery cell configuration that significantly improves volumetric power density by reducing the membrane-to-membrane distance by almost 100 times and eliminating the bulky flow distributors completely. Using zinc-iodide chemistry as a demonstration, our SBMT cell shows peak charge and discharge power densities of 1,322 W/Lcell and 306.1 W/Lcell, respectively, compared with average charge and discharge power densities of <60 W/Lcell and 45 W/Lcell, respectively, of conventional planar flow battery cells. The battery cycled for more than 220 h corresponding to >2,500 cycles at off-peak conditions. Furthermore, the SBMT cell has been demonstrated to be compatible with zinc-bromide, quinone-bromide, and all-vanadium chemistries. The SBMT flow cell represents a device-level innovation to enhance the volumetric power of flow batteries and potentially reduce the size and cost of the cells and the entire flow battery.


Subject(s)
Body Fluids , Bromides , Cell Size , Dietary Fiber , Zinc
2.
Nanoscale ; 16(11): 5613-5623, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38412042

ABSTRACT

Modern silicone-based epidermal electronics engineered for body temperature sensing represent a pivotal development in the quest for advancing preventive medicine and enhancing post-surgical monitoring. While these compact and highly flexible electronics empower real-time monitoring in dynamic environments, a noteworthy limitation is the challenge in regulating the infiltration or obstruction of heat from the external environment into the surface layers of these electronics. The study presents a cost-effective temperature sensing solution by embedding wireless electronics in a multi-layered elastomeric composite to meet the dual needs of enhanced thermal insulation for encapsulation in contact with air and improved thermal conductivity for the substrate in contact with the skin. The encapsulating composite benefits from the inclusion of hollow silica microspheres, which reduce the thermal conductivity by 40%, while non-spherical aluminum nitride enhances the thermal conductivity of the substrate by 370%. The addition of particles to the respective composites inevitably leads to an increase in modulus. Two composite elements are engineered to coexist while maintaining a matching low modulus of 3.4 MPa and a stretchability exceeding 30%, all without compromising the optimized thermal properties. Consecutive thermal, electrical, and mechanical characterization confirms the sensor's capacity for precise body temperature monitoring during a single day's lifespan, while also assessing the influence of behavioral factors on body temperature.

3.
ACS Appl Mater Interfaces ; 15(5): 6807-6816, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36700920

ABSTRACT

Small-scale, primary electrochemical energy storage devices ("microbatteries") are critical power sources for microelectromechanical system (MEMS)-based sensors and actuators. However, the achievable volumetric and gravimetric energy densities of microbatteries are typically insufficient for intermediate-term applications of MEMS-enabled distributed internet-connected devices. Further, in the increasing subset of Internet of Things (IoT) nodes, where actuation is desired, the peak power density of the microbattery must be simultaneously considered. Metal-air approaches to achieving microbatteries are attractive, as the anode and cathode are amenable to miniaturization; however, further improvements in energy density can be obtained by minimizing the electrolyte volume. To investigate these potential improvements, this work studied very lean hydrogel electrolytes based on poly(vinyl alcohol) (PVA). Integration of high potassium hydroxide (KOH) loading into the PVA hydrogel improved electrolyte performance. The addition of potassium carbonate (K2CO3) to the KOH-PVA gel decreased the carbonation consumption rate of KOH in the gel electrolyte by 23.8% compared to PVA-KOH gel alone. To assess gel performance, a microbattery was formed from a zinc (Zn) anode layer, a gel electrolyte layer, and a carbon-platinum (C-Pt) air cathode layer. Volumetric energy densities of approximately 1400 Wh L-1 and areal peak power densities of 139 mW cm-2 were achieved with a PVA-KOH-K2CO3 electrolyte. Further structural optimization, including using multilayer gel electrolytes and thinning the air cathode, resulted in volumetric and gravimetric energy densities of 1576 Wh L-1 and 420 Wh kg-1, respectively. The batteries described in this work are manufactured in an open environment and fabricated using a straightforward layer-by-layer method, enabling the potential for high fabrication throughput in a MEMS-compatible fashion.

4.
ACS Appl Mater Interfaces ; 11(31): 27906-27912, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31298521

ABSTRACT

Solid polymer electrolytes (SPEs) have the potential to enhance the safety and energy density of lithium batteries. However, poor interfacial contact between the lithium metal anode and SPE leads to high interfacial resistance and low specific capacity of the battery. In this work, we present a novel strategy to improve this solid-solid interface problem and maintain good interfacial contact during battery cycling by introducing an adaptive buffer layer (ABL) between the Li metal anode and SPE. The ABL consists of low molecular-weight polypropylene carbonate , poly(ethylene oxide) (PEO), and lithium salt. Rheological experiments indicate that ABL is viscoelastic and that it flows with a higher viscosity compared to PEO-only SPE. ABL also has higher ionic conductivity than PEO-only SPE. In the presence of ABL, the interface resistance of the Li/ABL/SPE/LiFePO4 battery only increased 20% after 150 cycles, whereas that of the battery without ABL increased by 117%. In addition, because ABL makes a good solid-solid interface contact between the Li metal anode and SPE, the battery with ABL delivered an initial discharge specific capacity of >110 mA·h/g, which is nearly twice that of the battery without ABL, which is 60 mA·h/g. Moreover, ABL is able to maintain electrode-electrolyte interfacial contact during battery cycling, which stabilizes the battery Coulombic efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL