Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Chembiochem ; : e202400466, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955950

ABSTRACT

The human fatty acid synthase (hFASN) produces fatty acids for cellar membrane construction, energy storage, biomolecule modifications and signal transduction. Abnormal expression and functions of hFASN highly associate with numerous human diseases such as obesity, diabetes, and cancers, and thereby it has been considered as a valuable potential drug target. So far, the structural and catalytic mechanisms of most of the hFASN enzymatic modules have been extensively studied, except the key dehydratase module (hDH). Here we presented the enzymatic characterization and the high-resolution crystal structure of hDH. We demonstrated that the hDH preferentially catalyzes the acyl substrates with short lengths between 4 to 8-carbons, and exhibits much lower enzymatic activity on longer substrates. Subsequent structural study showed that hDH displays a pseudo-dimeric organization with a single L-shaped composite hydrophobic catalytic tunnel as well as an atypical ACP binding site nearby, indicating that hDH achieves distinct substrate recognition and dehydration mechanisms compared to the conventional bacterial fatty acid dehydratases identified. Our findings laid the foundation for understanding the biological and pathogenic functions of hFASN, and may facilitate therapeutical drug development against diseases with abnormal functionality of hFASN.

2.
Mol Cell Probes ; 73: 101948, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122949

ABSTRACT

INTRODUCTION: Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant gastrointestinal tumors worldwide with a dismal prognosis and high relapse rate. PDAC is considered a "cold cancer" for which immunotherapy is not effective. Therefore, to improve the prognosis for PDAC patients, it is urgent to explore the mechanism driving its insensitivity to immunotherapy. MATERIALS AND METHODS: We conducted pancancer analyses to test IGF2BP family expression and survival in patients with different cancers via TCGA and GETx databases. Then, we determined the immunological role and prognostic value of IGF2BP2 in vitro, in vivo and in clinical specimens. RESULTS: In the present study, we found that the m6A reader IGF2BP2 was the most clinically relevant member of the IGF2BP family for pancreatic cancer. High expression of IGF2BP2 was most associated with poor prognosis and an immunosuppressive microenvironment in PDAC. By IGF2BP2 knockdown, we found that tumor cell proliferation and invasive ability were significantly diminished. Importantly, we found that IGF2BP2 expression was closely associated with high expression of immunosuppressive molecules such as PD-L1. IGF2BP2 modulated downstream PD-L1 expression by regulating its mRNA stability via m6A methylation control, and we obtained the same verification in animal experiments and human tissue specimens. CONCLUSION: Our study contributes to existing knowledge regarding the IGF2BP2-regulated PD-L1 signaling pathway as a potential prognostic and immune biomarker in pancreatic cancer.


Subject(s)
Adenine/analogs & derivatives , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , B7-H1 Antigen/genetics , Prognosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Tumor Microenvironment , RNA-Binding Proteins
3.
Angew Chem Int Ed Engl ; : e202407921, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175097

ABSTRACT

Fatty acids produced by the type-II fatty acid biosynthesis pathway (FAS-II) are essential biomaterials for bacterial membrane construction and numerous metabolic routes. The ß-ketoacyl-ACP synthase FabF catalyzes the key C-C bond formation step for fatty acid extension in FAS-II. Here, we revealed the substrate recognition and catalytic mechanisms of FabF by determining FabF-ACP complexes. FabF displays a distinctive bimodal catalytic pattern specifically on C6 and C10 acyl-ACP substrates. It utilizes positively charged residues located on the η3-helix and loop1 regions near the catalytic tunnel entrance to bind ACP, and two hydrophobic cavities as well as "front", "middle", and "back" door residues to specifically stabilize C6 and C10 acyl substrates for preferential catalysis. Further quantum chemistry calculations suggest that the FabF catalytic residues Lys336 and His304 facilitate proton transfer during condensation catalysis and C-C bond formation. Our results provide key mechanistic insights into the biosynthesis of molecular carbon skeletons based on ketosynthases that are highly conserved through the FAS and polyketide synthase (PKS) analogous biosynthetic routes, broaden the understanding of the tricarboxylic acid cycle that utilizes lipoic acid derived from C8-ACP accumulated due to the FabF distinctive catalytic pattern for oxidative decarboxylations, and may facilitate the development of narrow-spectrum antibacterial drugs.

4.
Chemosphere ; 351: 141205, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219990

ABSTRACT

Powdered activated carbon (PAC) is commonly used by water treatment plants to remove harmful cyanotoxins such as microcystins (MCs) produced during seasonal harmful algal blooms. MC removal by PAC depends upon the properties of the PAC, the properties of the MC variant, and the presence and properties of dissolved organic matter (DOM). To identify which of these factors has the greatest impact on the removal of MC by PAC, we evaluated the removal of four different MC variants (MC-LR, MC-LA, MC-RR and desmethylated MC-RR) by three different PAC types (wood-based, coal-blend and coal-based). The role of DOM properties was evaluated using DOM isolated from two different sources, a terrestrial source (Suwannee River Fulvic Acid, SRFA) and a microbial source (Grand Lake St Marys DOM, GLSM). The results of adsorption experiments conducted over a period of 72 h demonstrated the wood-based PAC, which had the highest surface area and mesopore volume of the PAC tested, had the highest adsorption rate and capacity for all four MC variants. Of the variants studied, neutrally charged MC-RR was adsorbed more rapidly and to a greater extent on all of the PAC types than were the other variants. Although MC-LA and MC-LR had the greatest hydrophobicity, their negative charges resulted in their being adsorbed the least. As expected, DOM inhibited microcystin adsorption to PAC. The degree of inhibition, however, did not significantly vary for the two DOM types evaluated, indicating the properties of the DOM on MC adsorption to PAC was less important than the PAC properties or MC variant properties. Overall, PAC properties were a more important factor in MC removal than were the MC properties or DOM conditions.


Subject(s)
Microcystins , Water Purification , Charcoal , Dissolved Organic Matter , Powders , Water Purification/methods , Adsorption , Coal
5.
Cancer Lett ; 588: 216784, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38458594

ABSTRACT

Glycolytic metabolism is a hallmark of pancreatic ductal adenocarcinoma (PDAC), and tumor-associated stromal cells play important roles in tumor metabolism. We previously reported that tumor-associated macrophages (TAMs) facilitate PDAC progression. However, little is known about whether TAMs are involved in regulating glycolysis in PDAC. Here, we found a positive correlation between CD68+ TAM infiltration and FDG maximal standardized uptake (FDG SUVmax) on PET-CT images of PDAC. We discovered that the glycolytic gene set was prominently enriched in the high TAM infiltration group through Gene Set Enrichment Analysis using The Cancer Genome Atlas database. Mechanistically, TAMs secreted IL-8 to promote GLUT3 expression in PDAC cells, enhancing tumor glycolysis both in vitro and in vivo, whereas this effect could be blocked by the IL-8 receptor inhibitor reparixin. Furthermore, IL-8 promoted the translocation of phosphorylated STAT3 into the nucleus to activate the GLUT3 promoter. Overall, we demonstrated that TAMs boosted PDAC cell glycolysis through the IL-8/STAT3/GLUT3 signaling pathway. Our cumulative findings suggest that the abrogation of TAM-induced tumor glycolysis by reparixin might exhibit an antitumor impact and offer a potential therapeutic target for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Sulfonamides , Humans , Interleukin-8/genetics , Interleukin-8/metabolism , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Tumor-Associated Macrophages/metabolism , Fluorodeoxyglucose F18/therapeutic use , Positron Emission Tomography Computed Tomography , Macrophages/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Signal Transduction , Glycolysis , Cell Line, Tumor , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
6.
Cancer Res ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037758

ABSTRACT

Breast cancer is a global public health concern with high mortality rates, necessitating the development of innovative treatment strategies. PARP inhibitors have shown efficacy in certain patient populations, but their application is largely limited to cancers with homologous recombination deficiency. Here, we identified the suppression of FANCI as a therapeutic strategy to enhance the efficacy of PARP inhibitors in breast cancer. Elevated FANCI expression in breast cancer was associated with poor prognosis and increased cell proliferation and migration. FANCI interacted with PARP1, and suppressing FANCI limited the nuclear localization and functionality of PARP1. Importantly, FANCI inhibition sensitized breast cancer cells to the PARP inhibitor talazoparib in the absence of BRCA mutations. Additionally, the CDK4/6 inhibitor palbociclib enhanced the sensitivity of breast cancer cells to talazoparib through FANCI inhibition. These findings highlight the potential of targeting FANCI to enhance the efficacy of PARP inhibitors in treating breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL