Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Immunol ; : e2350788, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708681

ABSTRACT

The high-affinity IgE receptor FcεRI is the mast cell (MC) receptor responsible for the involvement of MCs in IgE-associated allergic disorders. Activation of the FcεRI is achieved via crosslinking by multivalent antigen (Ag) recognized by IgE resulting in degranulation and proinflammatory cytokine production. In comparison to the T- and B-cell receptor complexes, for which several co-receptors orchestrating the initial signaling events have been described, information is scarce about FcεRI-associated proteins. Additionally, it is unclear how FcεRI signaling synergizes with input from other receptors and how regulators affect this synergistic response. We found that the HDL receptor SR-BI (gene name: Scarb1/SCARB1) is expressed in MCs, functionally associates with FcεRI, and regulates the plasma membrane cholesterol content in cholesterol-rich plasma membrane nanodomains. This impacted the activation of MCs upon co-stimulation of the FcεRI with receptors known to synergize with FcεRI signaling. Amongst them, we investigated the co-activation of the FcεRI with the receptor tyrosine kinase KIT, the IL-33 receptor, and GPCRs activated by adenosine or PGE2. Scarb1-deficient bone marrow-derived MCs showed reduced cytokine secretion upon co-stimulation conditions suggesting a role for plasma membrane-associated cholesterol regulating respective MC activation. Mimicking Scarb1 deficiency by cholesterol depletion employing MßCD, we identified PKB and PLCγ1 as cholesterol-sensitive proteins downstream of FcεRI activation in bone marrow-derived MCs. When MCs were co-stimulated with stem cell factor (SCF) and Ag, PLCγ1 activation was boosted, which could be mitigated by cholesterol depletion and SR-BI inhibition. Similarly, SR-BI inhibition attenuated the synergistic response to PGE2 and anti-IgE in the human ROSAKIT WT MC line, suggesting that SR-BI is a crucial regulator of synergistic MC activation.

2.
J Infect Dis ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507572

ABSTRACT

HIV-1 RNA genetic diversity predicts time since infection which is important for clinical care and research. It's unclear, however, whether proviral DNA genetic diversity sampled under suppressive antiretroviral therapy can be used for this purpose. We tested whether proviral genetic diversity from NGS sequences predicts time since infection and recency in 221 people with HIV-1 with known infection time. Proviral diversity was significantly associated with time since infection (p<5*10-07, R2 up to 25%) and predictive of treatment initiation during recent infection (AUC-ROC up to 0.85). This shows the utility of proviral genetic diversity as a proxy for time since infection.

3.
J Infect Dis ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227786

ABSTRACT

BACKGROUND: Factors influencing susceptibility to SARS-CoV-2 remain to be resolved. Using data of the Swiss HIV Cohort Study (SHCS) on 6,270 people with HIV (PWH) and serologic assessment for SARS-CoV-2 and circulating-human-coronavirus (HCoV) antibodies, we investigated the association of HIV-related and general parameters with SARS-CoV-2 infection. METHODS: We analyzed SARS-CoV-2 PCR-tests, COVID-19 related hospitalizations, and deaths reported to the SHCS between January 1, 2020 and December 31, 2021. Antibodies to SARS-CoV-2 and HCoVs were determined in pre-pandemic (2019) and pandemic (2020) bio-banked plasma and compared to HIV-negative individuals. We applied logistic regression, conditional logistic regression, and Bayesian multivariate regression to identify determinants of SARS-CoV-2 infection and Ab responses to SARS-CoV-2 in PWH. RESULTS: No HIV-1-related factors were associated with SARS-CoV-2 acquisition. High pre-pandemic HCoV antibodies were associated with a lower risk of subsequent SARS-CoV-2 infection and with higher SARS-CoV-2 antibody responses upon infection. We observed a robust protective effect of smoking on SARS-CoV-2-infection risk (aOR= 0.46 [0.38,0.56], p=2.6*10-14), which occurred even in previous smokers, and was highest for heavy smokers. CONCLUSIONS: Our findings of two independent protective factors, smoking and HCoV antibodies, both affecting the respiratory environment, underscore the importance of the local immune milieu in regulating susceptibility to SARS-CoV-2.

4.
Eur J Immunol ; 53(7): e2249984, 2023 07.
Article in English | MEDLINE | ID: mdl-37016198

ABSTRACT

Maintaining homeostasis is central to organismal health. Deviation is detected by a variety of sensors that react to alarm signals arising from injury, infection, and other inflammatory triggers. One important element of this alarm system is the innate immune system, which recognizes pathogen-/microbe- or damage-associated molecular patterns via pattern recognition receptors localized in the cytosol or in membranes of innate immune cells such as macrophages, dendritic cells, and mast cells but also of T cells, B cells, and epithelial cells. Activation of the innate immune system results in inflammation and is a pre-requisite for activation of the adaptive immune system. Another important element is represented by the unfolded protein response (UPR), a stress response of the endoplasmic reticulum. The UPR regulates proteostasis and also contributes to the course of inflammatory diseases such as cancer, diabetes, obesity, and neurodegenerative diseases. In addition, the UPR is instrumental in allergic contact dermatitis. This inflammatory skin disease, affecting 5-10% of the population, is caused by T cells recognizing low-molecular weight organic chemicals and metal ions. In this mini-review, we discuss the orchestration of inflammatory responses by the interplay of the innate immune system with cellular stress responses in allergic contact dermatitis, with a focus on the UPR.


Subject(s)
Dermatitis, Allergic Contact , Immunity, Innate , Humans , Endoplasmic Reticulum Stress , Unfolded Protein Response , Inflammation/metabolism
5.
J Virol ; 97(7): e0196422, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37358450

ABSTRACT

Porcine epidemic diarrhea virus is a swine pathogen that has been responsible for significant animal and economic losses worldwide in recent years. In this manuscript, we report the generation of a reverse genetics system C(RGS) for the highly virulent US PEDV strain Minnesota (PEDV-MN; GenBank accession number KF468752), which was based on the assembly and cloning of synthetic DNA, using vaccinia virus as a cloning vector. Viral rescue was only possible following the substitution of 2 nucleotides within the 5'UTR and 2 additional nucleotides within the spike gene, based on the sequence of the cell culture-adapted strains. Besides displaying a highly pathogenic phenotype in newborn piglets, in comparison with the parental virus, the rescued recombinant PEDV-MN was used to confirm that the PEDV spike gene has an important role in PEDV virulence and that the impact of an intact PEDV ORF3 on viral pathogenicity is modest. Moreover, a chimeric virus with a TGEV spike gene in the PEDV backbone generated with RGS was able to replicate efficiently in vivo and could be readily transmitted between piglets. Although this chimeric virus did not cause severe disease upon the initial infection of piglets, there was evidence of increasing pathogenicity upon transmission to contact piglets. The RGS described in this study constitutes a powerful tool with which to study PEDV pathogenesis and can be used to generate vaccines against porcine enteric coronaviruses. IMPORTANCE PEDV is a swine pathogen that is responsible for significant animal and economic losses worldwide. Highly pathogenic variants can lead to a mortality rate of up to 100% in newborn piglets. The generation of a reverse genetics system for a highly virulent PEDV strain originating from the United States is an important step in phenotypically characterizing PEDV. The synthetic PEDV mirrored the authentic isolate and displayed a highly pathogenic phenotype in newborn piglets. With this system, it was possible to characterize potential viral virulence factors. Our data revealed that an accessory gene (ORF3) has a limited impact on pathogenicity. However, as it is also now known for many coronaviruses, the PEDV spike gene is one of the main determinants of pathogenicity. Finally, we show that the spike gene of another porcine coronavirus, namely, TGEV, can be accommodated in the PEDV genome background, suggesting that similar viruses can emerge in the field via recombination.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , United States , Swine , Virulence/genetics , Porcine epidemic diarrhea virus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Reverse Genetics , Coronavirus Infections/prevention & control , Nucleotides , Diarrhea
6.
PLoS Biol ; 19(3): e3001006, 2021 03.
Article in English | MEDLINE | ID: mdl-33760807

ABSTRACT

Since entering the human population, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2; the causative agent of Coronavirus Disease 2019 [COVID-19]) has spread worldwide, causing >100 million infections and >2 million deaths. While large-scale sequencing efforts have identified numerous genetic variants in SARS-CoV-2 during its circulation, it remains largely unclear whether many of these changes impact adaptation, replication, or transmission of the virus. Here, we characterized 14 different low-passage replication-competent human SARS-CoV-2 isolates representing all major European clades observed during the first pandemic wave in early 2020. By integrating viral sequencing data from patient material, virus stocks, and passaging experiments, together with kinetic virus replication data from nonhuman Vero-CCL81 cells and primary differentiated human bronchial epithelial cells (BEpCs), we observed several SARS-CoV-2 features that associate with distinct phenotypes. Notably, naturally occurring variants in Orf3a (Q57H) and nsp2 (T85I) were associated with poor replication in Vero-CCL81 cells but not in BEpCs, while SARS-CoV-2 isolates expressing the Spike D614G variant generally exhibited enhanced replication abilities in BEpCs. Strikingly, low-passage Vero-derived stock preparation of 3 SARS-CoV-2 isolates selected for substitutions at positions 5/6 of E and were highly attenuated in BEpCs, revealing a key cell-specific function to this region. Rare isolate-specific deletions were also observed in the Spike furin cleavage site during Vero-CCL81 passage, but these were rapidly selected against in BEpCs, underscoring the importance of this site for SARS-CoV-2 replication in primary human cells. Overall, our study uncovers sequence features in SARS-CoV-2 variants that determine cell-specific replication and highlights the need to monitor SARS-CoV-2 stocks carefully when phenotyping newly emerging variants or potential variants of concern.


Subject(s)
SARS-CoV-2/physiology , Virus Replication/physiology , Amino Acid Substitution , Animals , Base Sequence , Bronchi/pathology , COVID-19/diagnosis , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Epithelial Cells/pathology , Epithelial Cells/virology , Furin/metabolism , Host-Pathogen Interactions , Humans , SARS-CoV-2/isolation & purification , Vero Cells
7.
Nature ; 561(7723): 406-410, 2018 09.
Article in English | MEDLINE | ID: mdl-30202088

ABSTRACT

Understanding the determinants of broadly neutralizing antibody (bNAb) evolution is crucial for the development of bNAb-based HIV vaccines1. Despite emerging information on cofactors that promote bNAb evolution in natural HIV-1 infections, in which the induction of bNAbs is genuinely rare2, information on the impact of the infecting virus strain on determining the breadth and specificity of the antibody responses to HIV-1 is lacking. Here we analyse the influence of viral antigens in shaping antibody responses in humans. We call the ability of a virus strain to induce similar antibody responses across different hosts its antibody-imprinting capacity, which from an evolutionary biology perspective corresponds to the viral heritability of the antibody responses. Analysis of 53 measured parameters of HIV-1-binding and neutralizing antibody responses in a cohort of 303 HIV-1 transmission pairs (individuals who harboured highly related HIV-1 strains and were putative direct transmission partners or members of an HIV-1 transmission chain) revealed that the effect of the infecting virus on the outcome of the bNAb response is moderate in magnitude but highly significant. We introduce the concept of bNAb-imprinting viruses and provide evidence for the existence of such viruses in a systematic screening of our cohort. The bNAb-imprinting capacity can be substantial, as indicated by a transmission pair with highly similar HIV-1 antibody responses and strong bNAb activity. Identification of viruses that have bNAb-imprinting capacities and their characterization may thus provide the potential to develop lead immunogens.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/classification , HIV-1/immunology , AIDS Vaccines/immunology , Antibodies, Neutralizing/analysis , Female , HIV Antibodies/analysis , HIV Infections/transmission , HIV-1/isolation & purification , Humans , Male
8.
J Infect Dis ; 227(4): 554-564, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36433831

ABSTRACT

BACKGROUND: Despite effective prevention approaches, ongoing human immunodeficiency virus 1 (HIV-1) transmission remains a public health concern indicating a need for identifying its drivers. METHODS: We combined a network-based clustering method using evolutionary distances between viral sequences with statistical learning approaches to investigate the dynamics of HIV transmission in the Swiss HIV Cohort Study and to predict the drivers of ongoing transmission. RESULTS: We found that only a minority of clusters and patients acquired links to new infections between 2007 and 2020. While the growth of clusters and the probability of individual patients acquiring new links in the transmission network was associated with epidemiological, behavioral, and virological predictors, the strength of these associations decreased substantially when adjusting for network characteristics. Thus, these network characteristics can capture major heterogeneities beyond classical epidemiological parameters. When modeling the probability of a newly diagnosed patient being linked with future infections, we found that the best predictive performance (median area under the curve receiver operating characteristic AUCROC = 0.77) was achieved by models including characteristics of the network as predictors and that models excluding them performed substantially worse (median AUCROC = 0.54). CONCLUSIONS: These results highlight the utility of molecular epidemiology-based network approaches for analyzing and predicting ongoing HIV transmission dynamics. This approach may serve for real-time prospective assessment of HIV transmission.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Switzerland/epidemiology , Cohort Studies , Prospective Studies , Phylogeny , Cluster Analysis
9.
J Cell Mol Med ; 27(21): 3363-3377, 2023 11.
Article in English | MEDLINE | ID: mdl-37753803

ABSTRACT

Activating point mutations of the RAS gene act as driver mutations for a subset of precursor-B cell acute lymphoblastic leukaemias (pre-B ALL) and represent an ambitious target for therapeutic approaches. The X box-binding protein 1 (XBP1), a key regulator of the unfolded protein response (UPR), is critical for pre-B ALL cell survival, and high expression of XBP1 confers poor prognosis in ALL patients. However, the mechanism of XBP1 activation has not yet been elucidated in RAS mutated pre-B ALL. Here, we demonstrate that XBP1 acts as a downstream linchpin of the IL-7 receptor signalling pathway and that pharmacological inhibition or genetic ablation of XBP1 selectively abrogates IL-7 receptor signalling via inhibition of its downstream effectors, JAK1 and STAT5. We show that XBP1 supports malignant cell growth of pre-B NRASG12D ALL cells and that genetic loss of XBP1 consequently leads to cell cycle arrest and apoptosis. Our findings reveal that active XBP1 prevents the cytotoxic effects of a dual PI3K/mTOR pathway inhibitor (BEZ235) in pre-B NRASG12D ALL cells. This implies targeting XBP1 in combination with BEZ235 as a promising new targeted strategy against the oncogenic RAS in NRASG12D -mutated pre-B ALL.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Genes, ras , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Signal Transduction , Unfolded Protein Response/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Membrane Proteins/genetics , GTP Phosphohydrolases/genetics , X-Box Binding Protein 1/genetics
10.
J Antimicrob Chemother ; 78(9): 2323-2334, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37545164

ABSTRACT

BACKGROUND: Genotypic resistance testing (GRT) is routinely performed upon diagnosis of HIV-1 infection or during virological failure using plasma viral RNA. An alternative source for GRT could be cellular HIV-1 DNA. OBJECTIVES: A substantial number of participants in the Swiss HIV Cohort Study (SHCS) never received GRT. We applied a method that enables access to the near full-length proviral HIV-1 genome without requiring detectable viraemia. METHODS: Nine hundred and sixty-two PBMC specimens were received. Our two-step nested PCR protocol was applied to generate two overlapping long-range amplicons of the HIV-1 genome, sequenced by next-generation sequencing (NGS) and analysed by MinVar, a pipeline to detect drug resistance mutations (DRMs). RESULTS: Six hundred and eighty-one (70.8%) of the samples were successfully amplified, sequenced and analysed by MinVar. Only partial information of the pol gene was contained in 82/681 (12%), probably due to naturally occurring deletions in the proviral sequence. All common HIV-1 subtypes were successfully sequenced. We detected at least one major DRM at high frequency (≥15%) in 331/599 (55.3%) individuals. Excluding APOBEC-signature (G-to-A mutation) DRMs, 145/599 (24.2%) individuals carried at least one major DRM. RT-inhibitor DRMs were most prevalent. The experienced time on ART was significantly longer in DRM carriers (P = 0.001) independent of inclusion or exclusion of APOBEC-signature DRMs. CONCLUSIONS: We successfully applied a reliable and efficient method to analyse near full-length HIV-1 proviral DNA and investigated DRMs in individuals with undetectable or low viraemia. Additionally, our data underscore the need for new computational tools to exclude APOBEC-related hypermutated NGS sequence reads for reporting DRMs.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , HIV-1/drug effects , DNA/genetics , Mutation , Switzerland/epidemiology , HIV Infections/drug therapy , HIV Infections/epidemiology , Retrospective Studies , Humans , Male , Female , Adult , Middle Aged , DNA-Directed DNA Polymerase/metabolism , Prevalence
11.
J Antimicrob Chemother ; 78(3): 656-664, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36738248

ABSTRACT

BACKGROUND: Next-generation sequencing (NGS) is gradually replacing Sanger sequencing (SS) as the primary method for HIV genotypic resistance testing. However, there are limited systematic data on comparability of these methods in a clinical setting for the presence of low-abundance drug resistance mutations (DRMs) and their dependency on the variant-calling thresholds. METHODS: To compare the HIV-DRMs detected by SS and NGS, we included participants enrolled in the Swiss HIV Cohort Study (SHCS) with SS and NGS sequences available with sample collection dates ≤7 days apart. We tested for the presence of HIV-DRMs and compared the agreement between SS and NGS at different variant-calling thresholds. RESULTS: We included 594 pairs of SS and NGS from 527 SHCS participants. Males accounted for 80.5% of the participants, 76.3% were ART naive at sample collection and 78.1% of the sequences were subtype B. Overall, we observed a good agreement (Cohen's kappa >0.80) for HIV-DRMs for variant-calling thresholds ≥5%. We observed an increase in low-abundance HIV-DRMs detected at lower thresholds [28/417 (6.7%) at 10%-25% to 293/812 (36.1%) at 1%-2% threshold]. However, such low-abundance HIV-DRMs were overrepresented in ART-naive participants and were in most cases not detected in previously sampled sequences suggesting high sequencing error for thresholds <3%. CONCLUSIONS: We found high concordance between SS and NGS but also a substantial number of low-abundance HIV-DRMs detected only by NGS at lower variant-calling thresholds. Our findings suggest that a substantial fraction of the low-abundance HIV-DRMs detected at thresholds <3% may represent sequencing errors and hence should not be overinterpreted in clinical practice.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Male , Humans , HIV Infections/drug therapy , Cohort Studies , Drug Resistance, Viral/genetics , Viral Load , HIV Seropositivity/drug therapy , Mutation , High-Throughput Nucleotide Sequencing/methods , Genotype , Anti-HIV Agents/therapeutic use
12.
Hematol Oncol ; 41(3): 520-534, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36383121

ABSTRACT

Prevention of fatal side effects during cancer therapy of cancer patients with high-dosed pharmacological inhibitors is to date a major challenge. Moreover, the development of drug resistance poses severe problems for the treatment of patients with leukemia or solid tumors. Particularly drug-mediated dimerization of RAF kinases can be the cause of acquired resistance, also called "paradoxical activation." In the present work we re-analyzed the effects of different tyrosine kinase inhibitors (TKIs) on the proliferation, metabolic activity, and survival of the Imatinib-resistant, KIT V560G, D816V-expressing human mast cell (MC) leukemia (MCL) cell line HMC-1.2. We observed that low concentrations of the TKIs Nilotinib and Ponatinib resulted in enhanced proliferation, suggesting paradoxical activation of the MAPK pathway. Indeed, these TKIs caused BRAF-CRAF dimerization, resulting in ERK1/2 activation. The combination of Ponatinib with the MEK inhibitor Trametinib, at nanomolar concentrations, effectively suppressed HMC-1.2 proliferation, metabolic activity, and induced apoptotic cell death. Effectiveness of this drug combination was recapitulated in the human KIT D816V MC line ROSAKIT D816V and in KIT D816V hematopoietic progenitors obtained from patient-derived induced pluripotent stem cells (iPS cells) and systemic mastocytosis patient samples. In conclusion, mutated KIT-driven Imatinib resistance and possible TKI-induced paradoxical activation can be efficiently overcome by a low concentration Ponatinib and Trametinib co-treatment, potentially reducing the negative side effects associated with MCL therapy.


Subject(s)
Leukemia, Mast-Cell , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Mast-Cell/metabolism , Leukemia, Mast-Cell/pathology , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/pharmacology , Mast Cells/metabolism , Mast Cells/pathology , Proto-Oncogene Proteins c-kit/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation
13.
J Infect Dis ; 226(7): 1256-1266, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35485458

ABSTRACT

BACKGROUND: Studying human immunodeficiency virus type 1 (HIV-1) superinfection is important to understand virus transmission, disease progression, and vaccine design. But detection remains challenging, with low sampling frequencies and insufficient longitudinal samples. METHODS: Using the Swiss HIV Cohort Study (SHCS), we developed a molecular epidemiology screening for superinfections. A phylogeny built from 22 243 HIV-1 partial polymerase sequences was used to identify potential superinfections among 4575 SHCS participants with longitudinal sequences. A subset of potential superinfections was tested by near-full-length viral genome sequencing (NFVGS) of biobanked plasma samples. RESULTS: Based on phylogenetic and distance criteria, 325 potential HIV-1 superinfections were identified and categorized by their likelihood of being detected as superinfections due to sample misidentification. NFVGS was performed for 128 potential superinfections; of these, 52 were confirmed by NFVGS, 15 were not confirmed, and for 61 sampling did not allow confirming or rejecting superinfection because the sequenced samples did not include the relevant time points causing the superinfection signal in the original screen. Thus, NFVGS could support 52 of 67 adequately sampled potential superinfections. CONCLUSIONS: This cohort-based molecular approach identified, to our knowledge, the largest population of confirmed superinfections, showing that, while rare with a prevalence of 1%-7%, superinfections are not negligible events.


Subject(s)
HIV Infections , HIV-1 , Superinfection , Vaccines , Cohort Studies , Humans , Molecular Epidemiology , Phylogeny , Superinfection/epidemiology , Switzerland/epidemiology
14.
J Infect Dis ; 225(2): 306-316, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34260728

ABSTRACT

BACKGROUND: In Switzerland, HIV-1 transmission among men who have sex with men (MSM) has been dominated by subtype B, whilst non-B subtypes are commonly attributed to infections acquired abroad among heterosexuals. Here, we evaluated the temporal trends of non-B subtypes and the characteristics of molecular transmission clusters (MTCs) among MSM. METHODS: Sociodemographic and clinical data and partial pol sequences were obtained from participants enrolled in the Swiss HIV Cohort Study. For non-B subtypes, maximum likelihood trees were constructed, from which Swiss MTCs were identified and analyzed by transmission group. RESULTS: Non-B subtypes were identified in 8.1% (416/5116) of MSM participants. CRF01_AE was the most prevalent strain (3.5%), followed by subtype A (1.2%), F (1.1%), CRF02_AG (1.1%), C (0.9%), and G (0.3%). Between 1990 and 2019, an increase in the proportion of newly diagnosed individuals (0/123 [0%] to 11/32 [34%]) with non-B subtypes in MSM was found. Across all non-B subtypes, the majority of MSM MTCs were European. Larger MTCs were observed for MSM than heterosexuals. CONCLUSIONS: We found a substantial increase in HIV-1 non-B subtypes among MSM in Switzerland and the occurrence of large MTCs, highlighting the importance of molecular surveillance in guiding public health strategies targeting the HIV-1 epidemic.


Subject(s)
HIV Infections/epidemiology , HIV Infections/transmission , HIV Infections/virology , HIV-1/classification , Homosexuality, Male/statistics & numerical data , Adult , Cohort Studies , Disease Transmission, Infectious , HIV Seropositivity/epidemiology , HIV-1/genetics , HIV-1/isolation & purification , Humans , Male , Molecular Epidemiology , Phylogeny , Prospective Studies , Switzerland/epidemiology
15.
Clin Infect Dis ; 74(8): 1468-1475, 2022 04 28.
Article in English | MEDLINE | ID: mdl-34282827

ABSTRACT

BACKGROUND: As trans women are disproportionately affected by the HIV epidemic, and are still understudied, we aimed to identify and characterize the trans women in the Swiss HIV Cohort Study (SHCS). METHODS: A combination of criteria from pre-existing cohort data was used to identify trans women. Information on socioeconomic factors, clinical data, risk behaviors, and mental health was collected. We also described their phylogenetic patterns within HIV transmission networks in relation to other risk groups. RESULTS: We identified 89 trans women of a total 20 925 cohort participants. Trans women were much more likely to be Asian (30.3%) and Hispanic (15.7%) than men who have sex with men (MSM) (2.5% and 4.1%; P < .001) and cis heterosexual (HET) women (7.0% and 3.3%; P < .001). Trans women were more similar to cis HET women in some measures like educational level (postsecondary education attainment: 22.6% and 20.7% [P = .574] vs 46.5% for MSM [P < .001]), while being more similar to MSM for measures like prior syphilis diagnosis (36.0% and 44.0% [P = .170] vs 6.7% for cis HET women [P < .001]). 11.2% of trans women have been previously hospitalized for psychological reasons compared with 4.2% of MSM (P = .004) and 5.1% of cis HET women (P = .025). Analysis of transmission clusters containing trans women suggested greater affinity within the transmission networks to MSM compared with cis HET women. CONCLUSIONS: Trans women are epidemiologically distinct in the setting of the Swiss HIV epidemic, warranting better identification and study to better serve this underserved risk group.


Subject(s)
HIV Infections , Sexual and Gender Minorities , Cohort Studies , Female , Homosexuality, Male/psychology , Humans , Male , Phylogeny , Sexual Behavior , Switzerland/epidemiology
16.
Emerg Infect Dis ; 28(10): 2087-2090, 2022 10.
Article in English | MEDLINE | ID: mdl-36048771

ABSTRACT

Of 1,118 patients with COVID-19 at a university hospital in Switzerland during October 2020-June 2021, we found 83 (7.4%) had probable or definite healthcare-associated COVID-19. After in-hospital exposure, we estimated secondary attack rate at 23.3%. Transmission was associated with longer contact times and with lower cycle threshold values among index patients.


Subject(s)
COVID-19 , Cross Infection , COVID-19/epidemiology , Cross Infection/epidemiology , Humans , Incidence , SARS-CoV-2 , Switzerland/epidemiology , Tertiary Care Centers
17.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34757834

ABSTRACT

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Laboratories, Clinical , Pilot Projects
18.
Appl Microbiol Biotechnol ; 106(5-6): 2207-2218, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35218386

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) continues to threaten public health. For developing countries where vaccines are still in shortage, cheaper alternative molecular methods for SARS-CoV-2 identification can be crucial to prevent the next wave. Therefore, 14 primer sets recommended by the World Health Organization (WHO) was evaluated on testing both clinical patient and environmental samples with the gold standard diagnosis method, TaqMan-based RT-qPCR, and a cheaper alternative method, SYBR Green-based RT-qPCR. Using suitable primer sets, such as ORF1ab, 2019_nCoV_N1 and 2019_nCoV_N3, the performance of the SYBR Green approach was comparable or better than the TaqMan approach, even when considering the newly dominating or emerging variants, including Delta, Eta, Kappa, Lambda, Mu, and Omicron. ORF1ab and 2019_nCoV_N3 were the best combination for sensitive and reliable SARS-CoV-2 molecular diagnostics due to their high sensitivity, specificity, and broad accessibility. KEY POINTS: • With suitable primer sets, the SYBR Green method performs better than the TaqMan one. • With suitable primer sets, both methods should still detect the new variants well. • ORF1ab and 2019_nCoV_N3 were the best combination for SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Benzothiazoles , COVID-19/diagnosis , Diamines , Humans , Quinolines , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
19.
Proc Natl Acad Sci U S A ; 116(41): 20328-20332, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31548384

ABSTRACT

Spin-orbit coupling of light has come to the fore in nanooptics and plasmonics, and is a key ingredient of topological photonics and chiral quantum optics. We demonstrate a basic tool for incorporating analogous effects into neutron optics: the generation and detection of neutron beams with coupled spin and orbital angular momentum. The 3He neutron spin filters are used in conjunction with specifically oriented triangular coils to prepare neutron beams with lattices of spin-orbit correlations, as demonstrated by their spin-dependent intensity profiles. These correlations can be tailored to particular applications, such as neutron studies of topological materials.

20.
J Allergy Clin Immunol ; 148(2): 381-393, 2021 08.
Article in English | MEDLINE | ID: mdl-33872655

ABSTRACT

BACKGROUND: Recognition of viral nucleic acids is one of the primary triggers for a type I interferon-mediated antiviral immune response. Inborn errors of type I interferon immunity can be associated with increased inflammation and/or increased susceptibility to viral infections as a result of dysbalanced interferon production. NFX1-type zinc finger-containing 1 (ZNFX1) is an interferon-stimulated double-stranded RNA sensor that restricts the replication of RNA viruses in mice. The role of ZNFX1 in the human immune response is not known. OBJECTIVE: We studied 15 patients from 8 families with an autosomal recessive immunodeficiency characterized by severe infections by both RNA and DNA viruses and virally triggered inflammatory episodes with hemophagocytic lymphohistiocytosis-like disease, early-onset seizures, and renal and lung disease. METHODS: Whole exome sequencing was performed on 13 patients from 8 families. We investigated the transcriptome, posttranscriptional regulation of interferon-stimulated genes (ISGs) and predisposition to viral infections in primary cells from patients and controls stimulated with synthetic double-stranded nucleic acids. RESULTS: Deleterious homozygous and compound heterozygous ZNFX1 variants were identified in all 13 patients. Stimulation of patient-derived primary cells with synthetic double-stranded nucleic acids was associated with a deregulated pattern of expression of ISGs and alterations in the half-life of the mRNA of ISGs and also associated with poorer clearance of viral infections by monocytes. CONCLUSION: ZNFX1 is an important regulator of the response to double-stranded nucleic acids stimuli following viral infections. ZNFX1 deficiency predisposes to severe viral infections and a multisystem inflammatory disease.


Subject(s)
Antigens, Neoplasm/genetics , Exome Sequencing , Genetic Predisposition to Disease , Primary Immunodeficiency Diseases/immunology , Virus Diseases/genetics , Antigens, Neoplasm/immunology , Child , Child, Preschool , Female , Humans , Infant , Inflammation/diagnostic imaging , Inflammation/genetics , Inflammation/immunology , Male , Primary Immunodeficiency Diseases/diagnostic imaging , Primary Immunodeficiency Diseases/genetics , Virus Diseases/diagnostic imaging , Virus Diseases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL