Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35169077

ABSTRACT

Functional plasticity of innate lymphoid cells (ILCs) and T cells is regulated by host environmental cues, but the influence of pathogen-derived virulence factors has not been described. We now report the interplay between host interferon (IFN)-γ and viral PB1-F2 virulence protein in regulating the functions of ILC2s and T cells that lead to recovery from influenza virus infection of mice. In the absence of IFN-γ, lung ILC2s from mice challenged with the A/California/04/2009 (CA04) H1N1 virus, containing nonfunctional viral PB1-F2, initiated a robust IL-5 response, which also led to improved tissue integrity and increased survival. Conversely, challenge with Puerto Rico/8/1934 (PR8) H1N1 virus expressing fully functional PB1-F2, suppressed IL-5+ ILC2 responses, and induced a dominant IL-13+ CD8 T cell response, regardless of host IFN-γ expression. IFN-γ-deficient mice had increased survival and improved tissue integrity following challenge with lethal doses of CA04, but not PR8 virus, and increased resistance was dependent on the presence of IFN-γR+ ILC2s. Reverse-engineered influenza viruses differing in functional PB1-F2 activity induced ILC2 and T cell phenotypes similar to the PB1-F2 donor strains, demonstrating the potent role of viral PB1-F2 in host resistance. These results show the ability of a pathogen virulence factor together with host IFN-γ to regulate protective pulmonary immunity during influenza infection.


Subject(s)
Lymphocytes/immunology , Orthomyxoviridae/metabolism , Viral Proteins/metabolism , Animals , Female , Immunity, Innate/immunology , Interferon-gamma/metabolism , Interferons/metabolism , Interleukin-5/immunology , Interleukin-5/metabolism , Lung/metabolism , Lymphocytes/metabolism , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae/pathogenicity , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Viral Proteins/physiology , Virulence/genetics , Virulence Factors/genetics , Virus Replication/genetics
2.
J Med Virol ; 95(7): e28901, 2023 07.
Article in English | MEDLINE | ID: mdl-37394780

ABSTRACT

The DiversitabTM system produces target specific high titer fully human polyclonal IgG immunoglobulins from transchromosomic (Tc) bovines shown to be safe and effective against multiple virulent pathogens in animal studies and Phase 1, 2 and 3 human clinical trials. We describe the functional properties of a human monoclonal antibody (mAb), 38C2, identified from this platform, which recognizes recombinant H1 hemagglutinins (HAs) and induces appreciable antibody-dependent cellular cytotoxicity (ADCC) activity in vitro. Interestingly, 38C2 monoclonal antibody demonstrated no detectable neutralizing activity against H1N1 virus in both hemagglutination inhibition and virus neutralization assays. Nevertheless, this human monoclonal antibody induced appreciable ADCC against cells infected with multiple H1N1 strains. The HA-binding activity of 38C2 was also demonstrated in flow cytometry using Madin-Darby canine kidney cells infected with multiple influenza A H1N1 viruses. Through further investigation with the enzyme-linked immunosorbent assay involving the HA peptide array and 3-dimensional structural modeling, we demonstrated that 38C2 appears to target a conserved epitope located at the HA1 protomer interface of H1N1 influenza viruses. A novel mode of HA-binding and in vitro ADCC activity pave the way for further evaluation of 38C2 as a potential therapeutic agent to treat influenza virus infections in humans.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Animals , Dogs , Cattle , Epitopes , Antibodies, Monoclonal , Protein Subunits , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Immunoglobulin G , Antibody-Dependent Cell Cytotoxicity
3.
Geoforum ; 144: 103816, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37396346

ABSTRACT

The SARS-CoV-2 pandemic highlighted the need for novel tools to promote health equity. There has been a historical legacy around the location and allocation of public facilities (such as health care) focused on efficiency, which is not attainable in rural, low-density, United States areas. Differences in the spread of the disease and outcomes of infections have been observed between urban and rural populations throughout the COVID-19 pandemic. The purpose of this article was to review rural health disparities related to the SARS-CoV-2 pandemic while using evidence to support wastewater surveillance as a potentially innovative tool to address these disparities more widely. The successful implementation of wastewater surveillance in resource-limited settings in South Africa demonstrates the ability to monitor disease in underserved areas. A better surveillance model of disease detection among rural residents will overcome issues around the interactions of a disease and social determinants of health. Wastewater surveillance can be used to promote health equity, particularly in rural and resource-limited areas, and has the potential to identify future global outbreaks of endemic and pandemic viruses.

4.
J Virol ; 94(22)2020 10 27.
Article in English | MEDLINE | ID: mdl-32847862

ABSTRACT

Influenza remains a global health risk and challenge. Currently, neuraminidase (NA) inhibitors are extensively used to treat influenza, but their efficacy is compromised by the emergence of drug-resistant variants. Neutralizing antibodies targeting influenza A virus surface glycoproteins are critical components of influenza therapeutic agents and may provide alternative strategies to the existing countermeasures. However, the major hurdle for the extensive application of antibody therapies lies in the difficulty of generating nonimmunogenic antibodies in large quantities rapidly. Here, we report that one human monoclonal antibody (MAb), 53C10, isolated from transchromosomic (Tc) cattle exhibits potent neutralization and hemagglutination inhibition titers against different clades of H1N1 subtype influenza A viruses. In vitro selection of antibody escape mutants revealed that 53C10 recognizes a novel noncontinuous epitope in the hemagglutinin (HA) head domain involving three amino acid residues, glycine (G), serine (S), and glutamic acid (E) at positions 172, 207, and 212, respectively. The results of our experiments supported a critical role for substitution of arginine at position 207 (S207R) in mediating resistance to 53C10, while substitutions at either G172E or E212A did not alter antibody recognition and neutralization. The E212A mutation may provide structural stability for the epitope, while the substitution G172E probably compensates for loss of fitness introduced by S207R. Our results offer novel insights into the mechanism of action of MAb 53C10 and indicate its potential role in therapeutic treatment of H1 influenza virus infection in humans.IMPORTANCE Respiratory diseases caused by influenza viruses still pose a serious concern to global health, and neutralizing antibodies constitute a promising area of antiviral therapeutics. However, the potential application of antibodies is often hampered by the challenge in generating nonimmunogenic antibodies in large scale. In the present study, transchromosomic (Tc) cattle were used for the generation of nonimmunogenic monoclonal antibodies (MAbs), and characterization of such MAbs revealed one monoclonal antibody, 53C10, exhibiting a potent neutralization activity against H1N1 influenza viruses. Further characterization of the neutralization escape mutant generated using this MAb showed that three amino acid substitutions in the HA head domain contributed to the resistance. These findings emphasize the importance of Tc cattle in the production of nonimmunogenic MAbs and highlight the potential of MAb 53C10 in the therapeutic application against H1 influenza virus infection in humans.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Neutralizing/immunology , Cattle , Cell Line , Humans , Immune Evasion , Influenza A Virus, H1N1 Subtype , Influenza A virus/genetics , Models, Molecular , Mutation , Neutralization Tests , Sequence Analysis, Protein
5.
Microbiology (Reading) ; 163(10): 1445-1456, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28942759

ABSTRACT

The mortality associated with influenza A virus (IAV) is often due to the development of secondary bacterial infections known as superinfections. The group A streptococcus (GAS) is a relatively uncommon cause of IAV superinfections, but the mortality of these infections is high. We used a murine model to determine whether the surface-localized GAS M protein contributes to the outcome of IAV-GAS superinfections. A comparison between wild-type GAS and an M protein mutant strain (emm3) showed that the M3 protein was essential to virulence. To determine whether the binding, or recruitment, of host proteins to the bacterial surface contributed to virulence, GAS was suspended with BALF collected from mice that had recovered from a sub-lethal infection with IAV. Following intranasal inoculation of naïve mice, the mortality associated with the wild-type strain, but not the emm3 mutant strain, was greater compared to mice inoculated with GAS suspended with either BALF from uninfected mice or PBS. Further analyses showed that both albumin and fibrinogen (Fg) were more abundant in the respiratory tract 8 days after IAV infection, that M3 bound both proteins to the bacterial surface, and that suspension of GAS with either protein increased GAS virulence in the absence of antecedent IAV infection. Overall, the results showed that M3 is essential to the virulence of GAS in an IAV superinfection and suggested that increased abundance of albumin and Fg in the respiratory tract following IAV infection enhanced host susceptibility to secondary GAS infection.

6.
S D Med ; 70(3): 127-133, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28813775

ABSTRACT

Peer review is a process for evaluating the quality of "work" of a scientist or professional as judged by others in the same or related field. In the context of the biomedical and health sciences, it primarily pertains to review of manuscripts submitted to journals for consideration of publication, abstracts for proposed presentations at professional meetings, and competitive research grant applications. Serving as a reviewer is a scholarly pursuit and a worthwhile endeavor, assuming it is approached in a conscientious, responsible manner. The purpose of this article is to define peer review and its various forms, suggest reasons for serving as a manuscript reviewer, discuss considerations prior to accepting a review assignment, and provide guidelines for the process.


Subject(s)
Peer Review, Research , Guidelines as Topic , Humans , Publishing
7.
J Gen Virol ; 97(12): 3205-3214, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27902386

ABSTRACT

FluMist has been used in children and adults for more than 10 years. As pre-existing CD8+ T cell memory pools can provide heterologous immunity against distinct influenza viruses, it is important to understand influenza-specific CD8+ T cell responses elicited by different live attenuated influenza virus (LAIV) regimens. In this study, we immunized mice intranasally with two different doses of live-attenuated PR8 virus (PR8 ts, H1N1), low and high, and then assessed protective efficacy by challenging animals with heterosubtypic X31-H3N2 virus at 6 weeks post-vaccination. Different LAIV doses elicited influenza-specific CD8+ T cell responses in lungs and spleen, but unexpectedly not in bronchoalveolar lavage. Interestingly, the immunodominance hierarchy at the acute phase after immunization varied depending on the LAIV dose; however, these differences disappeared at 6 weeks post-vaccination, resulting in generation of comparable CD8+ T cell memory pools. After vaccination with either dose, sufficient numbers of specific CD8+ T cells were generated for recall and protection of mice against heterosubtypic H1N1→H3N2 challenge. As a result, immunized mice displayed reduced weight loss, diminished inflammatory responses and lower viral titres in lungs, when compared to unvaccinated animals. Interestingly, the higher dose led to enhanced viral clearance on day 5 post-challenge, though this was not associated with increased CD8+ T cell responses, but with higher levels of non-neutralizing antibodies against the priming virus. Our study suggests that, while different LAIV doses result in distinct immune profiles, even a low dose produces sufficient protective CD8+ T cell memory against challenge infection, though the high dose results in more rapid viral clearance and reduced inflammation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Vaccines, Attenuated/administration & dosage , Animals , Antibodies, Viral/immunology , Humans , Immunologic Memory , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Lung/virology , Mice , Mice, Inbred C57BL , Vaccines, Attenuated/immunology
8.
S D Med ; 69(4): 172-5, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27263166

ABSTRACT

Writing a manuscript on a topic in the medical sciences that gets accepted for publication is not always a guaranteed process. The goal of this article is to provide a description of some key points associated with preparing a manuscript. It has been written primarily for less experienced or aspiring authors, but it addresses points that are important for even well-established authors to consider. Although there may not be a direct path from scientific observation to published work, possessing the desire to publish and persevering throughout the process can ultimately lead to one's findings being both preserved in and contributing to the scientific literature. Although challenging, and at times frustrating, it is a rewarding endeavor.


Subject(s)
Authorship , Biomedical Research , Manuscripts as Topic , Medical Writing , Publishing , Humans
9.
S D Med ; 69(5): 221-223, 2016 May.
Article in English | MEDLINE | ID: mdl-28863421

ABSTRACT

Completing a draft of a manuscript that demonstrates the impact of your research within the current literature is the first step toward publication. The next step involves a review process that will allow your peers to provide feedback on the written document, with the goal of improving the presentation of your work. To complete this process, an author will have to be willing to accept constructive criticism of his or her work, as presented, and to modify the manuscript based on the feedback received. This peer-review process will ultimately shape the final draft of your manuscript, and here we provide some points to consider as you navigate the submission and review process.


Subject(s)
Publishing , Research , Writing , Humans
10.
Viruses ; 16(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38932288

ABSTRACT

The Viruses Editorial Office retracts the article, "Contribution of Host Immune Responses Against Influenza D Virus Infection Toward Secondary Bacterial Infection in a Mouse Model" [...].

11.
Curr Med Res Opin ; 40(2): 335-343, 2024 02.
Article in English | MEDLINE | ID: mdl-38054898

ABSTRACT

BACKGROUND: Influenza is associated with significant disease burden in the US and is currently best controlled by vaccination programs. Influenza vaccine effectiveness (VE) is low and may be reduced by several factors, including egg adaptations. Although non-egg-based influenza vaccines reportedly have greater VE in egg-adapted seasons, evidence for egg adaptations' reduction of VE is indirect and dissociated, apart from two previous European consensuses. METHODS: This study replicated the methodology used in a 2020 literature review and European consensus, providing an updated review and consensus opinion of 10 US experts on the evidence for a mechanistic basis for reduction of VE due to egg-based manufacturing methods. A mechanistic basis was assumed if sufficient evidence was found for underlying principles proposed to give rise to such an effect. Evidence for each principle was brought forward from the 2020 review and identified here by structured literature review and expert panel. Experts rated the strength of support for each principle and a mechanistic basis for reduction of VE due to egg-based influenza vaccine manufacture in a consensus method (consensus for strong/very strong evidence = ≥ 3.5 on 5-point Likert scale). RESULTS: Experts assessed 251 references (from previous study: 185; this study: 66). The majority of references for all underlying principles were rated as strong or very strong supporting evidence (52-86%). Global surveillance, WHO candidate vaccine virus selection, and manufacturing stages involving eggs were identified as most likely to impact influenza VE. CONCLUSION: After review of extensive evidence for reduction of VE due to egg-based influenza vaccine manufacture, influenza experts in the US joined those in Europe in unanimous agreement for a mechanistic basis for the effect. Vaccine providers and administrators should consider use of non-egg-based influenza vaccine manufacture to reduce the risk of egg adaptations and likely impact on VE.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Consensus , Vaccine Efficacy , Europe , Seasons , Vaccination/methods
12.
J Virol ; 86(17): 9035-43, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22674997

ABSTRACT

A combination of viral, bacterial, and host factors contributes to the severity and overall mortality associated with influenza virus-bacterium superinfections. To date, the virulence associated with the recently identified influenza virus protein PB1-F2 has been largely defined using models of primary influenza virus infection, with only limited assessment in models of Streptococcus pneumoniae superinfection. Specifically, these studies have incorporated isogenic viruses that differ in the PB1-F2 expressed, but there is still knowledge to be gained from evaluation of natural variants derived from a nonhuman host species (swine). Using this rationale, we developed the hypothesis that naturally occurring viruses expressing variants of genes, like the PB1-F2 gene, can be associated with the severity of secondary bacterial infections. To test this hypothesis, we selected viruses expressing variants in PB1-F2 and evaluated outcomes from superinfection with three distinct Gram-positive respiratory pathogens: Streptococcus pneumoniae, Staphylococcus aureus, and Streptococcus pyogenes. Our results demonstrate that the amino acid residues 62L, 66S, 75R, 79R, and 82L, previously proposed as molecular signatures of PB1-F2 virulence for influenza viruses in the setting of bacterial superinfection, are broadly associated with enhanced pathogenicity in swine in a bacterium-specific manner. Furthermore, truncated PB1-F2 proteins can preferentially increase mortality when associated with Streptococcus pyogenes superinfection. These findings support efforts to increase influenza virus surveillance to consider viral genotypes that could be used to predict increased severity of superinfections with specific Gram-positive respiratory pathogens.


Subject(s)
Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/microbiology , Influenza, Human/virology , Staphylococcus aureus/physiology , Streptococcus/physiology , Superinfection/microbiology , Superinfection/virology , Viral Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Line , Female , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Orthomyxoviridae Infections/virology , Swine , Swine Diseases/virology , Viral Proteins/chemistry , Viral Proteins/genetics
13.
Article in English | MEDLINE | ID: mdl-37754608

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which is the source of the coronavirus disease 2019 (COVID-19), was declared a pandemic in the March of 2020. Travel and tourism were severely impacted as restrictions were imposed to help slow the disease spread, but some states took alternative approaches to travel restrictions. This study investigated the spread of COVID-19 in South Dakota during the early pandemic period to better understand how tourism affected the movement of the virus within the region. Sequences from the fall of 2020 were retrieved from public sources. CDC and other sources were used to determine infections, deaths, and tourism metrics during this time. The data were analyzed using correlation and logistic regression. This study found that the number of unique variants per month was positively correlated with hotel occupancy, but not with the number of cases or deaths. Interestingly, the emergence of the B.1.2 variant in South Dakota was positively correlated with increased case numbers and deaths. Data show that states with a shelter-in-place order were associated with a slower emergence of the B.1.2 variant compared to states without such an order, including South Dakota. Findings suggest complex relationships between tourism, SARS-CoV-2 infections, and mitigation strategies. The unique approach that South Dakota adopted provided insights into the spread of the disease in areas without state-wide restrictions. Our results suggest both positive and negative aspects of this approach. Finally, our data highlight the need for future surveillance efforts, including efforts focused on identifying variants with known increased transmission potential to produce effective population health management.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Tourism , Pandemics , South Dakota/epidemiology
14.
Virulence ; 14(1): 2265063, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37772916

ABSTRACT

Streptococcus pyogenes (group A streptococcus; GAS) causes a variety of invasive diseases (iGAS) such as bacteremia, toxic shock syndrome, and pneumonia, which are associated with high mortality despite the susceptibility of the bacteria to penicillin ex vivo. Epidemiologic studies indicate that respiratory influenza virus infection is associated with an increase in the frequency of iGAS diseases, including those not directly involving the lung. We modified a murine model of influenza A (IAV)-GAS superinfection to determine if viral pneumonia increased the susceptibility of mice subsequently infected with GAS in the peritoneum. The results showed that respiratory IAV infection increased the morbidity (weight loss) of mice infected intraperitoneally (i.p.) with GAS 3, 5, and 10 d after the initial viral infection. Mortality was also significantly increased when mice were infected with GAS 3 and 5 d after pulmonary IAV infection. Increased mortality among mice infected with virus 5 d prior to bacterial infection correlated with increased dissemination of GAS from the peritoneum to the blood, spleen, and lungs. The interval was also associated with a significant increase in the pro-inflammatory cytokines IFN-γ, IL-12, TNF-α, MCP-1 and IL-27 in sera. We conclude, using a murine model, that respiratory influenza virus infection increases the likelihood and severity of systemic iGAS disease, even when GAS infection does not originate in the respiratory tract.


Subject(s)
Coinfection , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Streptococcal Infections , Animals , Mice , Humans , Streptococcus pyogenes , Disease Models, Animal , Lung/microbiology , Streptococcal Infections/microbiology , Coinfection/microbiology
15.
Vaccines (Basel) ; 11(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36992230

ABSTRACT

While it is well appreciated that maternal immunity can provide neonatal protection, the contribution of maternal vaccination toward generating such immunity is not well characterized. In our previous work, we created a candidate influenza vaccine using our chimeric hemagglutinin (HA) construct, HA-129. The HA-129 was expressed as part of a whole-virus vaccine that was built on the A/swine/Texas/4199-2/98-H3N2 backbone to generate the recombinant virus TX98-129. The TX98-129 candidate vaccine has the ability to induce broadly protective immune responses against genetically diversified influenza viruses in both mice and nursery pigs. In the current study, we established a pregnant sow-neonate model to evaluate the maternal immunity induced by this candidate vaccine to protect pregnant sows and their neonatal piglets against influenza virus infection. In pregnant sows, the results consistently show that TX98-129 induced a robust immune response against the TX98-129 virus and the parental viruses that were used to construct HA-129. After challenge with a field strain of influenza A virus, a significant increase in antibody titers was observed in vaccinated sows at both 5 and 22 days post challenge (dpc). The challenge virus was detected at a low level in the nasal swab of only one vaccinated sow at 5 dpc. Evaluation of cytokine responses in blood and lung tissue showed that levels of IFN-α and IL-1ß were increased in the lung of vaccinated sows at 5 dpc, when compared to unvaccinated pigs. Further analysis of the T-cell subpopulation in PBMCs showed a higher ratio of IFN-γ-secreting CD4+CD8+ and CD8+ cytotoxic T cells in vaccinated sows at 22 dpc after stimulation with either challenge virus or vaccine virus. Finally, we used a neonatal challenge model to demonstrate that vaccine-induced maternal immunity can be passively transferred to newborn piglets. This was observed in the form of both increased antibody titers and deceased viral loads in neonates born from immunized sows. In summary, this study provides a swine model system to evaluate the impact of vaccination on maternal immunity and fetal/neonatal development.

16.
J Gen Virol ; 93(Pt 9): 2008-2016, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22739061

ABSTRACT

We have developed a porcine intestine epithelial cell line, designated SD-PJEC for the propagation of influenza viruses. The SD-PJEC cell line is a subclone of the IPEC-J2 cell line, which was originally derived from newborn piglet jejunum. Our results demonstrate that SD-PJEC is a cell line of epithelial origin that preferentially expresses receptors of oligosaccharides with Sia2-6Gal modification. This cell line is permissive to infection with human and swine influenza A viruses and some avian influenza viruses, but poorly support the growth of human-origin influenza B viruses. Propagation of swine-origin influenza viruses in these cells results in a rapid growth rate within the first 24 h post-infection and the titres ranged from 4 to 8 log(10) TCID(50) ml(-1). The SD-PJEC cell line was further tested as a potential alternative cell line to Madin-Darby canine kidney (MDCK) cells in conjunction with 293T cells for rescue of swine-origin influenza viruses using the reverse genetics system. The recombinant viruses A/swine/North Carolina/18161/02 (H1N1) and A/swine/Texas/4199-2/98 (H3N2) were rescued with virus titres of 7 and 8.25 log(10) TCID(50) ml(-1), respectively. The availability of this swine-specific cell line represents a more relevant substrate for studies and growth of swine-origin influenza viruses.


Subject(s)
Cell Line/virology , Epithelial Cells/virology , Influenza A virus/growth & development , Influenza B virus/growth & development , Jejunum/virology , Virus Cultivation/instrumentation , Animals , Animals, Newborn , Birds , Dogs , Humans , Influenza A virus/physiology , Influenza B virus/physiology , Influenza in Birds/virology , Influenza, Human/virology , Jejunum/cytology , Swine , Swine Diseases/virology , Virus Cultivation/methods , Virus Replication
17.
Viruses ; 14(5)2022 05 13.
Article in English | MEDLINE | ID: mdl-35632777

ABSTRACT

The newest type of influenza virus, influenza D virus (IDV), was isolated in 2011. IDV circulates in several animal species worldwide, causing mild respiratory illness in its natural hosts. Importantly, IDV does not cause clinical disease in humans and does not spread easily from person to person. Here, we review what is known about the host-pathogen interactions that may limit IDV illness. We focus on early immune interactions between the virus and infected host cells in our summary of what is known about IDV pathogenesis. This work establishes a foundation for future research into IDV infection and immunity in mammalian hosts.


Subject(s)
Orthomyxoviridae Infections , Orthomyxoviridae , Thogotovirus , Animals , Biology , Humans , Mammals , Respiratory System
18.
JMIR Form Res ; 6(10): e40215, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36219745

ABSTRACT

BACKGROUND: COVID-19 has caused nearly 1 million deaths in the United States, not to mention job losses, business and school closures, stay-at-home orders, and mask mandates. Many people have suffered increased anxiety and depression since the pandemic began. Not only have mental health symptoms become more prevalent, but alcohol consumption has also increased during this time. Helplines offer important insight into both physical and mental wellness of a population by offering immediate, anonymous, cheap, and accessible resources for health and substance use disorders (SUD) that was unobstructed by many of the mandates of the pandemic. Further, the pandemic also launched the use of wastewater surveillance, which has the potential for tracking not only population infections but also consumption of substances such as alcohol. OBJECTIVE: This study assessed the feasibility of using multiple public surveillance metrics, such as helpline calls, COVID-19 cases, and alcohol metabolites in wastewater, to better understand the need for interventions or public health programs in the time of a public health emergency. METHODS: Ethanol metabolites were analyzed from wastewater collected twice weekly from September 29 to December 4, 2020, in a Midwestern state. Calls made to the helpline regarding housing, health care, and mental health/SUD were correlated with ethanol metabolites analyzed from wastewater samples, as well as the number of COVID-19 cases during the sampling period. RESULTS: Correlations were observed between COVID-19 cases and helpline calls regarding housing and health care needs. No correlation was observed between the number of COVID-19 cases and mental health/SUD calls. COVID-19 cases on Tuesdays were correlated with the alcohol metabolite ethyl glucuronide (EtG). Finally, EtG levels were negatively associated with mental health/SUD helpline calls. CONCLUSIONS: Although helpline calls provided critical services for health care and housing-related concerns early in the pandemic, evidence suggests helpline calls for mental health/SUD-related concerns were unrelated to COVID-19 metrics. Instead, COVID metrics were associated with alcohol metabolites in wastewater. Although this research was formative, with continued and expanded monitoring of population metrics, such as helpline usage, COVID-19 metrics, and wastewater, strategies can be implemented to create precision programs to address the needs of the population.

19.
J Virol ; 84(8): 4105-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20130054

ABSTRACT

Secondary bacterial infections contribute to morbidity and mortality from influenza. Vaccine effectiveness is typically assessed using prevention of influenza, not secondary infections, as an endpoint. We vaccinated mice with formalin-inactivated influenza virus vaccine preparations containing disparate HA and NA proteins and demonstrated an ability to induce the appropriate anti-HA and anti-NA immune profiles. Protection from both primary viral and secondary bacterial infection was demonstrated with vaccine-induced immunity directed toward either the HA or the NA. This finding suggests that immunity toward the NA component of the virion is desirable and should be considered in generation of influenza vaccines.


Subject(s)
Hemagglutinins, Viral/immunology , Influenza Vaccines/immunology , Neuraminidase/immunology , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/immunology , Pneumonia, Bacterial/prevention & control , Viral Proteins/immunology , Animals , Antibodies, Viral/blood , Female , Humans , Mice , Mice, Inbred BALB C
20.
Clin Transl Immunology ; 10(9): e1337, 2021.
Article in English | MEDLINE | ID: mdl-34527244

ABSTRACT

OBJECTIVES: The upper respiratory tract is the major entry site for Streptococcus pyogenes and influenza virus. Vaccine strategies that activate mucosal immunity could significantly reduce morbidity and mortality because of these pathogens. The severity of influenza is significantly greater if a streptococcal infection occurs during the viraemic period and generally viral infections complicated by a subsequent bacterial infection are known as super-infections. We describe an innovative vaccine strategy against influenza virus:S. pyogenes super-infection. Moreover, we provide the first description of a liposomal multi-pathogen-based platform that enables the incorporation of both viral and bacterial antigens into a vaccine and constitutes a transformative development. METHODS: Specifically, we have explored a vaccination strategy with biocompatible liposomes that express conserved streptococcal and influenza A virus B-cell epitopes on their surface and contain encapsulated diphtheria toxoid as a source of T-cell help. The vaccine is adjuvanted by inclusion of the synthetic analogue of monophosphoryl lipid A, 3D-PHAD. RESULTS: We observe that this vaccine construct induces an Immunoglobulin A (IgA) response in both mice and ferrets. Vaccination reduces viral load in ferrets from influenza challenge and protects mice from both pathogens. Notably, vaccination significantly reduces both mortality and morbidity associated with a super-infection. CONCLUSION: The vaccine design is modular and could be adapted to include B-cell epitopes from other mucosal pathogens where an IgA response is required for protection.

SELECTION OF CITATIONS
SEARCH DETAIL