Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Infect Dis ; 78(5): 1140-1147, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38573057

ABSTRACT

Antimicrobial resistance (AMR) affects 2.8 million Americans annually. AMR is identified through antimicrobial susceptibility testing (AST), but current and proposed regulatory policies from the United States Food and Drug Administration (FDA) jeopardize the future availability of AST for many microorganisms. Devices that perform AST must be cleared by the FDA using their susceptibility test interpretive criteria, also known as breakpoints. The FDA list of breakpoints is relatively short. Today, laboratories supplement FDA breakpoints using breakpoints published by the Clinical and Laboratory Standards Institute, using legacy devices and laboratory-developed tests (LDTs). FDA proposes to regulate LDTs, and with no FDA breakpoints for many drug-bug combinations, the risk is loss of AST for key clinical indications and stifling innovation in technology development. Effective solutions require collaboration between manufacturers, infectious diseases clinicians, pharmacists, laboratories, and the FDA.


Subject(s)
Microbial Sensitivity Tests , United States Food and Drug Administration , Humans , United States , Microbial Sensitivity Tests/standards , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Communicable Diseases/drug therapy , Drug Resistance, Bacterial
2.
Clin Infect Dis ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136555

ABSTRACT

We describe our approach to addressing a nation-wide supply issue for blood culture bottles. Aerobic blood culture bottles received from our distributor July 1-15, 2024 was <1% of typical usage. Through education and ordering restrictions blood culture designed to minimize risk, orders were reduced by 49% over a one-week period.

3.
Clin Infect Dis ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489670

ABSTRACT

BACKGROUND: The role of serologic testing for SARS-CoV-2 has evolved during the pandemic as seroprevalence in global populations has increased. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the coronavirus disease 2019 (COVID-19) serology literature and construct updated best practice guidance related to SARS-CoV-2 serologic testing. This guideline is an update to the fourth in a series of rapid, frequently updated COVID-19 guidelines developed by IDSA. OBJECTIVE: To develop evidence-based recommendations and identify unmet research needs pertaining to the use of anti-SARS-CoV-2 antibody tests for diagnosis, decisions related to vaccination and administration of monoclonal antibodies or convalescent plasma in immunocompromised patients, and identification of a serologic correlate of immunity. METHODS: A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists and experts in systematic literature reviewed, identified, and prioritized clinical questions related to the use of SARS-CoV-2 serologic tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. RESULTS: The panel recommends against serologic testing to diagnose SARS-CoV-2 infection in the first two weeks after symptom onset (strong recommendations, low certainty of evidence). Serologic testing should not be used to provide evidence of COVID-19 in symptomatic patients with a high clinical suspicion and repeatedly negative nucleic acid amplification test results (strong recommendation, very low certainty of evidence). Serologic testing may assist with the diagnosis of multisystem inflammatory syndrome in children (strong recommendation, very low certainty of evidence). To seek evidence for prior SARS-CoV-2 infection, the panel suggests testing for IgG, IgG/IgM, or total antibodies to nucleocapsid protein three to five weeks after symptom onset (conditional recommendation, low certainty of evidence). In individuals with previous SARS-CoV-2 infection or vaccination, we suggest against routine serologic testing given no demonstrated benefit to improving patient outcomes (conditional recommendation, very low certainty of evidence.) The panel acknowledges further that a negative spike antibody test may be a useful metric to identify immunocompromised patients who are candidates for immune therapy. CONCLUSIONS: The high seroprevalence of antibodies against SARS-CoV-2 worldwide limits the utility of detecting anti-SARS CoV-2 antibody. The certainty of available evidence supporting the use of serology for diagnosis was graded as very low to low. Future studies should use serologic assays calibrated to a common reference standard.

4.
Antimicrob Agents Chemother ; 68(4): e0150723, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38376188

ABSTRACT

Carbapenem resistance due to metallo-ß-lactamases (MBLs) such as the Verona integron-encoded metallo-ß-lactamase (VIM) is particularly problematic due to the limited treatment options. We describe a case series of bacterial infections in a tertiary care hospital due to multi-species acquisition of a VIM gene along with our experience using novel ß-lactam antibiotics and antibiotic combinations to treat these infections. Four patients were treated with the combination of ceftazidime-avibactam and aztreonam, with no resistance to the combination detected. However, cefiderocol-resistant Klebsiella pneumoniae isolates were detected in two out of the five patients who received cefiderocol within 3 weeks of having started the antibiotic. Strain pairs of sequential susceptible and resistant isolates from both patients were analyzed using whole-genome sequencing. This analysis revealed that the pairs of isolates independently acquired point mutations in both the cirA and fiu genes, which encode siderophore receptors. These point mutations were remade in a laboratory strain of K. pneumoniae and resulted in a significant increase in the MIC of cefiderocol, even in the absence of a beta-lactamase enzyme or a penicillin-binding protein 3 (PBP3) mutation. While newer ß-lactam antibiotics remain an exciting addition to the antibiotic armamentarium, their use must be accompanied by diligent monitoring for the rapid development of resistance.


Subject(s)
Burn Units , Cefiderocol , Humans , Ceftazidime , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae , Drug Combinations , Azabicyclo Compounds , Carbapenems/pharmacology , Disease Outbreaks , Microbial Sensitivity Tests
5.
Clin Infect Dis ; 77(11): 1585-1590, 2023 11 30.
Article in English | MEDLINE | ID: mdl-36001445

ABSTRACT

Piperacillin-tazobactam (PTZ) is one of the most common antibiotics administered to hospitalized patients. Its broad activity against gram-negative, gram-positive, and anaerobic pathogens; efficacy in clinical trials across diverse infection types and patient populations; and generally favorable toxicity profile make it a particularly appealing antibiotic agent. PTZ susceptibility interpretive criteria (ie, breakpoints) for the Enterobacterales were initially established in 1992, as the drug was undergoing approval by the US Food and Drug Administration. In the ensuing 30 years, changes in the molecular epidemiology of the Enterobacterales and its impact on PTZ susceptibility testing, mounting pharmacokinetic/pharmacodynamic data generated from sophisticated techniques such as population pharmacokinetic modeling and Monte Carlo simulation, and disturbing safety signals in a large clinical trial prompted the Clinical Laboratory and Standards Institute (CLSI) to review available evidence to determine the need for revision of the PTZ breakpoints for Enterobacterales. After an extensive literature review and formal voting process, the susceptibility criteria were revised in the 2022 CLSI M100 document to the following: ≤8/4 µg/mL (susceptible), 16/4 µg/mL (susceptible dose-dependent), and ≥32/4 µg/mL (resistant). Herein, we provide a brief overview of the CLSI process of antibiotic breakpoint revisions and elaborate on the available data that ultimately led to the decision to revise the PTZ breakpoints.


Subject(s)
Anti-Bacterial Agents , Laboratories, Clinical , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacokinetics , Piperacillin, Tazobactam Drug Combination , Microbial Sensitivity Tests
6.
Article in English | MEDLINE | ID: mdl-33558287

ABSTRACT

Stenotrophomonas maltophilia are an emerging cause of serious infections with high associated mortality in immunocompromised patients. Treatment of S. maltophilia infections is complicated by intrinsic resistance to many antimicrobials, including carbapenems, aminoglycosides, and some cephalosporins. Despite this, >90% of isolates are susceptible to trimethoprim-sulfamethoxazole (SXT), which is front-line therapy for this organism. Side-effects of SXT include bone marrow suppression, which precludes its use for many neutropenic patients. In this population, levofloxacin (LEV), minocycline (MIN), ceftazidime (CAZ), ciprofloxacin (CIP) and tigecycline (TIG) are used as alternative therapies - all of which require testing to inform susceptibilities. The reference standard method for testing S. maltophilia is broth microdilution (BMD), but very few clinical laboratories perform reference BMD. Furthermore, interpretive criteria are not available for CIP or TIG for S. maltophilia, although generic pharmacokinetic/pharmacodynamic (PK/PD) MIC breakpoints are available for these drugs. We assessed performance of disk and gradient diffusion tests relative to BMD for 109 contemporary isolates of S. maltophilia Categorical agreement for SXT, LEV and MIN disk diffusion was 93%, 89%, and 95%, respectively. Categorical agreement for SXT, LEV, MIN and CAZ gradient strips was 98%, 85%, 93%, 71%, respectively by Etest (bioMerieux), and 98%, 83%, 99%, and 73%, by MTS (Liofilchem). CIP and TGC, two clinically valuable alternatives to SXT, did not demonstrate promising disk to MIC correlates using CLSI M100 P. aeruginosa or PK/PD breakpoints. Manual commercial tests perform well for S. maltophilia, with the exception of tests for LEV and CAZ, where high error rates were observed.

7.
J Clin Microbiol ; 61(6): e0188622, 2023 06 20.
Article in English | MEDLINE | ID: mdl-36971571

ABSTRACT

Antibacterial susceptibility testing (AST) is performed to guide therapy, perform resistance surveillance studies, and support development of new antibacterial agents. For 5 decades, broth microdilution (BMD) has served as the reference method to assess in vitro activity of antibacterial agents against which both novel agents and diagnostic tests have been measured. BMD relies on in vitro inhibition or killing of bacteria. It is associated with several limitations: it is a poor mimic of the in vivo milieu of bacterial infections, requires multiple days to perform, and is associated with subtle, difficult to control variability. In addition, new reference methods will soon be needed for novel agents whose activity cannot be evaluated by BMD (e.g., those that target virulence). Any new reference methods must be standardized, correlated with clinical efficacy and be recognized internationally by researchers, industry, and regulators. Herein, we describe current reference methods for in vitro assessment of antibacterial activity and highlight key considerations for the generation of novel reference methods.


Subject(s)
Anti-Bacterial Agents , Humans , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
8.
J Clin Microbiol ; 61(3): e0143122, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36840604

ABSTRACT

The declining cost of performing bacterial whole-genome sequencing (WGS) coupled with the availability of large libraries of sequence data for well-characterized isolates have enabled the application of machine-learning (ML) methods to the development of nonlinear sequence-based predictive models. We tested the ML-based model developed by Next Gen Diagnostics for prediction of cefepime phenotypic susceptibility results in Escherichia coli. A cohort of 100 isolates of E. coli recovered from urine (n = 77) and blood (n = 23) cultures were used. The cefepime MIC was determined in triplicate by reference broth microdilution and classified as susceptible (MIC of ≤2 µg/mL) or not susceptible (MIC of ≥4 µg/mL) using the 2022 Clinical and Laboratory Standards Institute breakpoints. Five isolates generated both susceptible and not susceptible MIC results, yielding categorical agreement of 95% for the reference method to itself. Categorical agreement of ML to MIC interpretations was 97%, with 2 very major (false, susceptible) and 1 major (false, not susceptible) errors. One very major error occurred for an isolate with blaCTX-M-27 (MIC mode, ≥32 µg/mL) and one for an isolate with blaTEM-34 for which the MIC cefepime mode was 4 µg/mL. One major error was for an isolate with blaCTX-M-27 but with a MIC mode of 2 µg/mL. These preliminary data demonstrated performance of ML for a clinically important antimicrobial-species pair at a caliber similar to phenotypic methods, encouraging wider development of sequence-based susceptibility prediction and its validation and use in clinical practice.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Humans , Cefepime/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Cephalosporins/pharmacology , Microbial Sensitivity Tests
9.
J Clin Microbiol ; 61(2): e0161722, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36719243

ABSTRACT

In 2022, the Clinical and Laboratory Standards Institute (CLSI) updated piperacillin-tazobactam (TZP) breakpoints for Enterobacterales, based on substantial data suggesting that historical breakpoints did not predict treatment outcomes for TZP. The U.S. Food and Drug Administration (FDA) has not yet adopted these breakpoints, meaning commercial manufacturers of antimicrobial susceptibility testing devices cannot obtain FDA clearance for the revised breakpoints. We evaluated the Phoenix (BD, Sparks, MD), MicroScan (Beckman Coulter, Sacramento, CA), and Vitek2 (bioMérieux, Durham, NC) TZP MICs compared to reference broth microdilution for a collection of 284 Enterobacterales isolates. Phoenix (n = 167 isolates) demonstrated 84.4% categorical agreement (CA), with 4.2% very major errors (VMEs) and 1.8% major errors (MEs) by CLSI breakpoints. In contrast, CA was 85.0% with 4.3% VMEs and 0.8% MEs for the Phoenix with FDA breakpoints. MicroScan (n = 55 isolates) demonstrated 80.0% CA, 36.4% VMEs, and 4.8% MEs by CLSI breakpoints and 81.8% CA, 44.4% VMEs, and 0.0% MEs by FDA breakpoints. Vitek2 (n = 62 isolates) demonstrated 95.2% CA, 6.3% VMEs, and 0.0% MEs by CLSI and 96.8% CA, 0.0% VMEs, and 2.2% MEs by FDA breakpoints. Overall, the performance of the test systems was not substantially different using CLSI breakpoints off-label than using on-label FDA breakpoints. However, limitations were noted with higher-than-desired VME rates (all three systems) and lower-than-desired CA (MicroScan and Phoenix). Laboratories should consider adoption of the revised CLSI breakpoints with automated test systems but be aware that some performance challenges exist for testing TZP on automated systems, regardless of breakpoints applied.


Subject(s)
Anti-Bacterial Agents , Humans , Microbial Sensitivity Tests , Piperacillin, Tazobactam Drug Combination
10.
Clin Infect Dis ; 74(8): 1496-1502, 2022 04 28.
Article in English | MEDLINE | ID: mdl-34731234

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged into a world of maturing pathogen genomics, with >2 million genomes sequenced at this writing. The rise of more transmissible variants of concern that affect vaccine and therapeutic effectiveness has led to widespread interest in SARS-CoV-2 evolution. Clinicians are also eager to take advantage of the information provided by SARS-CoV-2 genotyping beyond surveillance purposes. Here, we review the potential role of SARS-CoV-2 genotyping in clinical care. The review covers clinical use cases for SARS-CoV-2 genotyping, methods of SARS-CoV-2 genotyping, assay validation and regulatory requirements, clinical reporting for laboratories, and emerging issues in clinical SARS-CoV-2 sequencing. While clinical uses of SARS-CoV-2 genotyping are currently limited, rapid technological change along with a growing ability to interpret variants in real time foretell a growing role for SARS-CoV-2 genotyping in clinical care as continuing data emerge on vaccine and therapeutic efficacy.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/prevention & control , Consensus , Genotype , Humans , SARS-CoV-2/genetics
11.
Clin Infect Dis ; 75(2): 269-277, 2022 08 25.
Article in English | MEDLINE | ID: mdl-34718456

ABSTRACT

BACKGROUND: Bloodstream infections (BSIs) are a leading cause of morbidity and mortality. The Improving Outcomes and Antimicrobial Stewardship study seeks to evaluate the impact of the Accelerate PhenoTest BC Kit (AXDX) on antimicrobial use and clinical outcomes in BSIs. METHODS: This multicenter, quasiexperimental study compared clinical and antimicrobial stewardship metrics, prior to and after implementation of AXDX, to evaluate the impact this technology has on patients with BSIs. Laboratory and clinical data from hospitalized patients with BSIs (excluding contaminants) were compared between 2 arms, 1 that underwent testing on AXDX (post-AXDX) and 1 that underwent alternative organism identification and susceptibility testing (pre-AXDX). The primary outcomes were time to optimal therapy (TTOT) and 30-day mortality. RESULTS: A total of 854 patients with BSIs (435 pre-AXDX, 419 post-AXDX) were included. Median TTOT was 17.2 hours shorter in the post-AXDX arm (23.7 hours) compared with the pre-AXDX arm (40.9 hours; P<.0001). Compared with pre-AXDX, median time to first antimicrobial modification (24.2 vs 13.9 hours; P<.0001) and first antimicrobial deescalation (36.0 vs 27.2 hours; P=.0004) were shorter in the post-AXDX arm. Mortality (8.7% pre-AXDX vs 6.0% post-AXDX), length of stay (7.0 pre-AXDX vs 6.5 days post-AXDX), and adverse drug events were not significantly different between arms. Length of stay was shorter in the post-AXDX arm (5.4 vs 6.4 days; P=.03) among patients with gram-negative bacteremia. CONCLUSIONS: For BSIs, use of AXDX was associated with significant decreases in TTOT, first antimicrobial modification, and time to antimicrobial deescalation.


Subject(s)
Anti-Infective Agents , Antimicrobial Stewardship , Bacteremia , Gram-Negative Bacterial Infections , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Bacteremia/diagnosis , Bacteremia/drug therapy , Gram-Negative Bacterial Infections/drug therapy , Humans
12.
N Engl J Med ; 390(5): 482-483, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38294992
13.
N Engl J Med ; 380(24): 2327-2340, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31189036

ABSTRACT

BACKGROUND: Metagenomic next-generation sequencing (NGS) of cerebrospinal fluid (CSF) has the potential to identify a broad range of pathogens in a single test. METHODS: In a 1-year, multicenter, prospective study, we investigated the usefulness of metagenomic NGS of CSF for the diagnosis of infectious meningitis and encephalitis in hospitalized patients. All positive tests for pathogens on metagenomic NGS were confirmed by orthogonal laboratory testing. Physician feedback was elicited by teleconferences with a clinical microbial sequencing board and by surveys. Clinical effect was evaluated by retrospective chart review. RESULTS: We enrolled 204 pediatric and adult patients at eight hospitals. Patients were severely ill: 48.5% had been admitted to the intensive care unit, and the 30-day mortality among all study patients was 11.3%. A total of 58 infections of the nervous system were diagnosed in 57 patients (27.9%). Among these 58 infections, metagenomic NGS identified 13 (22%) that were not identified by clinical testing at the source hospital. Among the remaining 45 infections (78%), metagenomic NGS made concurrent diagnoses in 19. Of the 26 infections not identified by metagenomic NGS, 11 were diagnosed by serologic testing only, 7 were diagnosed from tissue samples other than CSF, and 8 were negative on metagenomic NGS owing to low titers of pathogens in CSF. A total of 8 of 13 diagnoses made solely by metagenomic NGS had a likely clinical effect, with 7 of 13 guiding treatment. CONCLUSIONS: Routine microbiologic testing is often insufficient to detect all neuroinvasive pathogens. In this study, metagenomic NGS of CSF obtained from patients with meningitis or encephalitis improved diagnosis of neurologic infections and provided actionable information in some cases. (Funded by the National Institutes of Health and others; PDAID ClinicalTrials.gov number, NCT02910037.).


Subject(s)
Cerebrospinal Fluid/microbiology , Encephalitis/microbiology , Genome, Microbial , Meningitis/microbiology , Metagenomics , Adolescent , Adult , Cerebrospinal Fluid/virology , Child , Child, Preschool , Encephalitis/diagnosis , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Infections/diagnosis , Length of Stay , Male , Meningitis/diagnosis , Meningoencephalitis/diagnosis , Meningoencephalitis/microbiology , Middle Aged , Myelitis/diagnosis , Myelitis/microbiology , Prospective Studies , Sequence Analysis, DNA , Sequence Analysis, RNA , Young Adult
14.
J Clin Microbiol ; 60(12): e0143022, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36416539

ABSTRACT

Globally, piperacillin-tazobactam resistance among Escherichia coli and Klebsiella pneumoniae is driven by OXA-1 beta-lactamases. Expression of blaOXA-1 yields piperacillin-tazobactam MICs of 8 to 16 µg/mL, which straddle the susceptible/susceptible-dose dependent breakpoint set by the Clinical and Laboratory Standards Institute in 2022. Variability of the reference broth microdilution method (BMD) was evaluated by manufacturing BMD panels using 2 brands of piperacillin, 2 brands of tazobactam and 2 brands of cation-adjusted Mueller-Hinton broth. In addition, ETEST, which harbors an intermediate dilution of 12 µg/mL was evaluated for the ability to differentiate isolates with and without blaOXA-1. A collection of 200 E. coli and K. pneumoniae, of which 82 harbored a blaOXA-1 gene, were tested. BMD variability was on average 1.3-fold, within the accepted 2-fold variability of MICs. However, categorical agreement (CA) between BMD reads was 74.0% for all isolates and 63.4% for those with a blaOXA-1 gene and 81.3% for those without blaOXA-1 detected (P = 0.004, Pearson's Chi Square). ETEST overall CA with the BMD mode was 68.0% and essential agreement (EA) was 80.5%. For isolates with blaOXA-1, CA was 50.0% and EA was 69.5%, versus 80.5% and 88.1%, respectively, for isolates without blaOXA-1 (P < 0.0001 for both comparisons). All ETEST errors were major errors (false resistance) compared to BMD mode. However, the negative predictive value of the ETEST for the presence of blaOXA-1 was 94.1%, compared to only 74.2% negative predictive value for BMD. Clinicians and microbiologists should be aware of the challenges associated with testing piperacillin-tazobactam in regions where blaOXA-1 is prevalent.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Humans , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Klebsiella pneumoniae/genetics , Disk Diffusion Antimicrobial Tests , Piperacillin, Tazobactam Drug Combination/pharmacology , Tazobactam/pharmacology , Piperacillin/pharmacology , Microbial Sensitivity Tests , beta-Lactamases/genetics
15.
J Clin Microbiol ; 60(1): e0165921, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34731022

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged into a world of maturing pathogen genomics, with more than 2 million genomes sequenced at the time of writing. The rise of more transmissible variants of concern that impact vaccine and therapeutic effectiveness has led to widespread interest in SARS-CoV-2 evolution. Clinicians are also eager to take advantage of the information provided by SARS-CoV-2 genotyping beyond surveillance purposes. Here, we review the potential role of SARS-CoV-2 genotyping in clinical care. The review covers clinical use cases for SARS-CoV-2 genotyping, methods of SARS-CoV-2 genotyping, assay validation and regulatory requirements, and clinical reporting for laboratories, as well as emerging issues in clinical SARS-CoV-2 sequencing. While clinical uses of SARS-CoV-2 genotyping are currently limited, rapid technological change along with a growing ability to interpret variants in real time foretells a growing role for SARS-CoV-2 genotyping in clinical care as continuing data emerge on vaccine and therapeutic efficacy.


Subject(s)
COVID-19 , Communicable Diseases , Consensus , Genotype , Humans , SARS-CoV-2 , United States
16.
J Clin Microbiol ; 59(9): e0065421, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34011524

ABSTRACT

Stenotrophomonas maltophilia causes high-mortality infections in immunocompromised hosts with limited therapeutic options. Many U.S. laboratories rely on commercial automated antimicrobial susceptibility tests (cASTs) and use CLSI breakpoints (BPs) for S. maltophilia. However, contemporary data on these systems are lacking. We assessed performance of Vitek 2, MicroScan WalkAway, and Phoenix relative to that of reference broth microdilution for trimethoprim-sulfamethoxazole (SXT), levofloxacin (LEV), minocycline (MIN), and ceftazidime (CAZ) with 109 S. maltophilia bloodstream isolates. Using CLSI breakpoints, categorical agreement (CA) was below 90% on all systems and drugs, with the exception of SXT by MicroScan (98.1%) and Phoenix (98.1%) and MIN by MicroScan (100%) and Phoenix (99.1%). For SXT, Vitek 2 yielded a 77.1% CA. LEV and CAZ CA ranged from 67% to 85%. Very major errors (VME) were >3% for SXT (MicroScan, Phoenix), LEV (MicroScan), and CAZ (all systems). Major errors (ME) were >3% for SXT (Vitek 2), LEV (Phoenix), and CAZ (MicroScan, Phoenix). Minor errors were >10% for CAZ and LEV on all systems. Data were analyzed with EUCAST pharmacokinetic/pharmacodynamic CAZ, LEV, ciprofloxacin (CIP), and tigecycline (TGC) breakpoints when possible. CA was <90% for all. VME were >3% for CAZ (all systems), LEV (MicroScan), and TGC (Vitek 2), and ME were >3% for LEV (MicroScan), CAZ (all systems), ciprofloxacin (Vitek 2 and MicroScan), and TGC (Vitek 2, Phoenix). Minor errors (MI) were >10% for all agents and systems, by EUCAST breakpoints with an intermediate category (LEV, CAZ, CIP). Laboratories should use caution with cASTs for S. maltophilia, as a high rate of errors may be observed.


Subject(s)
Stenotrophomonas maltophilia , Anti-Bacterial Agents/pharmacology , Ceftazidime , Humans , Microbial Sensitivity Tests , Tigecycline
17.
J Clin Microbiol ; 59(10): e0116721, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34260276

ABSTRACT

The U.S. Food & Drug Administration (FDA) regulates the marketing of manufacturers' in vitro diagnostic tests (IVDs), including assays for the detection of SARS-CoV-2. The U.S. government's Clinical Laboratory Improvement Amendments (CLIA) of 1988 regulates the studies that a clinical diagnostic laboratory needs to perform for an IVD before placing it into use. Until recently, the FDA has authorized the marketing of SARS-CoV-2 IVDs exclusively through the Emergency Use Authorization (EUA) pathway. The regulatory landscape continues to evolve, and IVDs will eventually be required to pass through conventional non-EUA FDA review pathways once the emergency declaration is terminated, in order to continue to be marketed as an IVD in the United States. When FDA regulatory status of an IVD changes or is anticipated to change, the laboratory should review manufacturer information and previously performed internal verification studies to determine what, if any, additional studies are needed before implementing the non-EUA version of the IVD in accordance with CLIA regulations. Herein, the College of American Pathologists' Microbiology Committee provides guidance for how to approach regulatory considerations when an IVD is converted from EUA to non-EUA status.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Pathologists , United States , United States Food and Drug Administration
18.
J Antimicrob Chemother ; 76(9): 2453-2463, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34021752

ABSTRACT

BACKGROUND: Data from the Improving Outcomes and Antibiotic Stewardship for Patients with Bloodstream Infections: Accelerate PhenoTest™ BC Kit (AXDX) Registry Study were analysed to determine the impact of rapid organism identification and antimicrobial susceptibility testing (AST) for Gram-positive bacteraemia. PATIENTS AND METHODS: This multicentre, quasi-experimental study evaluated clinical and antimicrobial stewardship metrics following the implementation of AXDX. Data from hospitalized patients with bacteraemia were compared between groups, one that underwent testing on AXDX (post-AXDX) and one that underwent traditional identification and AST (pre-AXDX). An analysis of patients with Gram-positive bacteraemia was performed. The primary outcome was time to optimal therapy (TTOT). Secondary outcomes included time to first antibiotic modification (overall and Gram-positive), duration of unnecessary MRSA coverage, incidence of adverse events, length of stay and mortality. RESULTS: A total of 219 (109 pre-AXDX, 110 post-AXDX) patients with Gram-positive bacteraemia were included. Median TTOT was 36.3 h (IQR, 16.9-56.7) in the pre-AXDX group and 20.4 h (IQR, 7.5-36.7) in the post-AXDX group (P = 0.01). Compared with pre-AXDX, median time to first antibiotic modification (29.1 versus 15.9 h; P = 0.002), time to first Gram-positive antibiotic modification (33.2 versus 17.2 h; P = 0.003) and median duration of unnecessary MRSA coverage (58.4 versus 29.7 h; P = 0.04) were reduced post-AXDX. A trend towards decreased acute kidney injury (24% versus 13%; P = 0.06) was observed in the post-AXDX group. Groups did not differ in other secondary outcomes. CONCLUSIONS: Implementation of AXDX testing for patients with Gram-positive bacteraemia shortened the TTOT and reduced unnecessary antibiotic exposure due to faster antibiotic modifications.


Subject(s)
Antimicrobial Stewardship , Bacteremia , Anti-Bacterial Agents/therapeutic use , Bacteremia/diagnosis , Bacteremia/drug therapy , Humans
19.
Clin Microbiol Rev ; 32(3)2019 06 19.
Article in English | MEDLINE | ID: mdl-31142497

ABSTRACT

The evidence base for the optimal laboratory diagnosis of Clostridioides (Clostridium) difficile in adults is currently unresolved due to the uncertain performance characteristics and various combinations of tests. This systematic review evaluates the diagnostic accuracy of laboratory testing algorithms that include nucleic acid amplification tests (NAATs) to detect the presence of C. difficile The systematic review and meta-analysis included eligible studies (those that had PICO [population, intervention, comparison, outcome] elements) that assessed the diagnostic accuracy of NAAT alone or following glutamate dehydrogenase (GDH) enzyme immunoassays (EIAs) or GDH EIAs plus C. difficile toxin EIAs (toxin). The diagnostic yield of NAAT for repeat testing after an initial negative result was also assessed. Two hundred thirty-eight studies met inclusion criteria. Seventy-two of these studies had sufficient data for meta-analysis. The strength of evidence ranged from high to insufficient. The uses of NAAT only, GDH-positive EIA followed by NAAT, and GDH-positive/toxin-negative EIA followed by NAAT are all recommended as American Society for Microbiology (ASM) best practices for the detection of the C. difficile toxin gene or organism. Meta-analysis of published evidence supports the use of testing algorithms that use NAAT alone or in combination with GDH or GDH plus toxin EIA to detect the presence of C. difficile in adults. There is insufficient evidence to recommend against repeat testing of the sample using NAAT after an initial negative result due to a lack of evidence of harm (i.e., financial, length of stay, or delay of treatment) as specified by the Laboratory Medicine Best Practices (LMBP) systematic review method in making such an assessment. Findings from this systematic review provide clarity to diagnostic testing strategies and highlight gaps, such as low numbers of GDH/toxin/PCR studies, in existing evidence on diagnostic performance, which can be used to guide future clinical research studies.


Subject(s)
Algorithms , Clostridium Infections/diagnosis , Nucleic Acid Amplification Techniques/standards , Benchmarking , Clostridioides difficile/genetics , Clostridium Infections/microbiology , Humans
20.
Clin Infect Dis ; 71(9): e523-e529, 2020 12 03.
Article in English | MEDLINE | ID: mdl-32052041

ABSTRACT

Recent data on polymyxin pharmacokinetics, pharmacodynamics, toxicity, and clinical outcomes suggest these agents have limited clinical utility. Pharmacokinetics-pharmacodynamics data show a steady-state concentration of 2 µg/mL is required for killing bacteria with colistin minimum inhibitory concentrations of 2 µg/mL. Less than 50% of patients with normal renal function achieve this exposure, and it is associated with high risk of nephrotoxicity. This exposure does not achieve bacterial stasis in pneumonia models. Randomized and observational studies consistently demonstrate increased mortality for polymyxins compared with alternative agents. The Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) are 2 global organizations that establish interpretive criteria for in vitro susceptibility data. CLSI has recently taken the step to eliminate the "susceptible" interpretive category for the polymyxins, whereas EUCAST maintains this interpretive category. This viewpoint describes the opinions of these organizations and the data that were used to inform their perspectives.


Subject(s)
Colistin , Polymyxin B , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Humans , Laboratories , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL