Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(4): 877-891.e14, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36708705

ABSTRACT

We introduce BacDrop, a highly scalable technology for bacterial single-cell RNA sequencing that has overcome many challenges hindering the development of scRNA-seq in bacteria. BacDrop can be applied to thousands to millions of cells from both gram-negative and gram-positive species. It features universal ribosomal RNA depletion and combinatorial barcodes that enable multiplexing and massively parallel sequencing. We applied BacDrop to study Klebsiella pneumoniae clinical isolates and to elucidate their heterogeneous responses to antibiotic stress. In an unperturbed population presumed to be homogeneous, we found within-population heterogeneity largely driven by the expression of mobile genetic elements that promote the evolution of antibiotic resistance. Under antibiotic perturbation, BacDrop revealed transcriptionally distinct subpopulations associated with different phenotypic outcomes including antibiotic persistence. BacDrop thus can capture cellular states that cannot be detected by bulk RNA-seq, which will unlock new microbiological insights into bacterial responses to perturbations and larger bacterial communities such as the microbiome.


Subject(s)
Gene Expression Profiling , Single-Cell Gene Expression Analysis , Sequence Analysis, RNA , RNA-Seq , Bacteria/genetics , Single-Cell Analysis
2.
Cell ; 162(6): 1309-21, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26343579

ABSTRACT

Encounters between immune cells and invading bacteria ultimately determine the course of infection. These interactions are usually measured in populations of cells, masking cell-to-cell variation that may be important for infection outcome. To characterize the gene expression variation that underlies distinct infection outcomes and monitor infection phenotypes, we developed an experimental system that combines single-cell RNA-seq with fluorescent markers. Probing the responses of individual macrophages to invading Salmonella, we find that variation between individual infected host cells is determined by the heterogeneous activity of bacterial factors in individual infecting bacteria. We illustrate how variable PhoPQ activity in the population of invading bacteria drives variable host type I IFN responses by modifying LPS in a subset of bacteria. This work demonstrates a causative link between host and bacterial variability, with cell-to-cell variation between different bacteria being sufficient to drive radically different host immune responses. This co-variation has implications for host-pathogen dynamics in vivo.


Subject(s)
Host-Pathogen Interactions , Macrophages/immunology , Salmonella typhimurium/physiology , Animals , Interferon Type I/immunology , Lipopolysaccharides/metabolism , Mice , Mice, Inbred C57BL , Salmonella Infections/immunology , Salmonella Infections/microbiology , Specific Pathogen-Free Organisms
3.
Nat Chem Biol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898166

ABSTRACT

Bacterial infection involves a complex interaction between the pathogen and host where the outcome of infection is not solely determined by pathogen eradication. To identify small molecules that promote host survival by altering the host-pathogen dynamic, we conducted an in vivo chemical screen using zebrafish embryos and found that treatment with 3-hydroxykynurenine (3-HK) protects from lethal bacterial infection. 3-HK, a metabolite produced through host tryptophan metabolism, has no direct antibacterial activity but enhances host survival by restricting bacterial expansion in macrophages through a systemic mechanism that targets kainate-sensitive glutamate receptors. These findings reveal a new pathway by which tryptophan metabolism and kainate-sensitive glutamate receptors function and interact to modulate immunity, with important implications for the coordination between the immune and nervous systems in pathological conditions.

4.
Nature ; 582(7811): 277-282, 2020 06.
Article in English | MEDLINE | ID: mdl-32349121

ABSTRACT

The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples1-3 while simultaneously testing for many pathogens4-6. Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents7 self-organize in a microwell array8 to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health9-11.


Subject(s)
CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , Microfluidic Analytical Techniques/methods , Virus Diseases/diagnosis , Virus Diseases/virology , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Drug Resistance, Viral/genetics , Genome, Viral/genetics , HIV/classification , HIV/genetics , HIV/isolation & purification , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Microfluidic Analytical Techniques/instrumentation , RNA, Guide, Kinetoplastida/genetics , SARS-CoV-2 , Sensitivity and Specificity
5.
Nature ; 571(7763): 72-78, 2019 07.
Article in English | MEDLINE | ID: mdl-31217586

ABSTRACT

New antibiotics are needed to combat rising levels of resistance, with new Mycobacterium tuberculosis (Mtb) drugs having the highest priority. However, conventional whole-cell and biochemical antibiotic screens have failed. Here we develop a strategy termed PROSPECT (primary screening of strains to prioritize expanded chemistry and targets), in which we screen compounds against pools of strains depleted of essential bacterial targets. We engineered strains that target 474 essential Mtb genes and screened pools of 100-150 strains against activity-enriched and unbiased compound libraries, probing more than 8.5 million chemical-genetic interactions. Primary screens identified over tenfold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insights. We identified over 40 compounds that target DNA gyrase, the cell wall, tryptophan, folate biosynthesis and RNA polymerase, as well as inhibitors that target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating the ability of PROSPECT to yield inhibitors against targets that would have eluded conventional drug discovery.


Subject(s)
Antitubercular Agents/classification , Antitubercular Agents/isolation & purification , Drug Discovery/methods , Gene Deletion , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Small Molecule Libraries/pharmacology , Antitubercular Agents/pharmacology , DNA Gyrase/metabolism , Drug Resistance, Microbial , Folic Acid/biosynthesis , Molecular Targeted Therapy , Mycobacterium tuberculosis/cytology , Mycobacterium tuberculosis/enzymology , Mycolic Acids/metabolism , Reproducibility of Results , Small Molecule Libraries/classification , Small Molecule Libraries/isolation & purification , Substrate Specificity , Topoisomerase II Inhibitors/isolation & purification , Topoisomerase II Inhibitors/pharmacology , Tryptophan/biosynthesis , Tuberculosis/drug therapy , Tuberculosis/microbiology
6.
Proc Natl Acad Sci U S A ; 119(15): e2201632119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35380903

ABSTRACT

Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug­drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical­genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo­relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical­genetic­environmental interactions that can be used to optimize drug­drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.


Subject(s)
Antitubercular Agents , Carbon , Cell Wall , Drug Interactions , Gene-Environment Interaction , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Carbon/metabolism , Cell Wall/ultrastructure , Humans , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/ultrastructure
7.
J Bacteriol ; 206(3): e0033523, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38319218

ABSTRACT

Mycobacterium abscessus is increasingly recognized for causing infections that are notoriously difficult to treat, owing to its large arsenal of intrinsic antibiotic resistance mechanisms. Tools for the genetic manipulation of the pathogen are critical for enabling a better understanding of M. abscessus biology, pathogenesis, and antibiotic resistance mechanisms. However, existing methods are largely recombination-based, which are relatively inefficient. Meanwhile, CRISPR/Cas9 has revolutionized the field of genome editing including its recent adaptation for use in mycobacteria. In this study, we report a streamlined and efficient method for rapid genetic disruptions in M. abscessus. Harnessing the CRISPR1 loci from Streptococcus thermophilus, we have developed a dual-plasmid workflow that introduces Cas9 and sgRNA cassettes in separate steps but requires no other additional factors to engineer mutations in single genes or multiple genes simultaneously or sequentially using multiple targeting sgRNAs. Importantly, the efficiency of mutant generation is several orders of magnitude higher than reported for homologous recombination-based methods. This work, thus, reports the first application of CRISPR/Cas9 for gene editing in M. abscessus and is an important tool in the arsenal for the genetic manipulation of this human pathogen. IMPORTANCE: Mycobacterium abscessus is an opportunistic pathogen of increasing clinical importance due to its poor clinical outcomes and limited treatment options. Drug discovery and development in this highly antibiotic-resistant species will require further understanding of M. abscessus biology, pathogenesis, and antibiotic resistance mechanisms. However, existing methods for facile genetic engineering are relatively inefficient. This study reports on the first application of CRISPR/Cas9 for gene editing in M. abscessus using a dual-plasmid workflow. We establish that our method is easily programmable, efficient, and versatile for genetic disruptions in M. abscessus. This is a critical advancement to facilitating targeted gene function studies in this emerging pathogen.


Subject(s)
CRISPR-Cas Systems , Mycobacterium abscessus , Humans , RNA, Guide, CRISPR-Cas Systems , Mycobacterium abscessus/genetics , Gene Editing/methods , Plasmids/genetics
8.
J Am Chem Soc ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905328

ABSTRACT

The genus Mycobacterium includes species such as Mycobacterium tuberculosis, which can cause deadly human diseases. These bacteria have a protective cell envelope that can be remodeled to facilitate their survival in challenging conditions. Understanding how such conditions affect membrane remodeling can facilitate antibiotic discovery and treatment. To this end, we describe an optimized fluorogenic probe, N-QTF, that reports on mycolyltransferase activity, which is vital for cell division and remodeling. N-QTF is a glycolipid probe that can reveal dynamic changes in the mycobacterial cell envelope in both fast- and slow-growing mycobacterial species. Using this probe to monitor the consequences of antibiotic treatment uncovered distinct cellular phenotypes. Even antibiotics that do not directly inhibit cell envelope biosynthesis cause conspicuous phenotypes. For instance, mycobacteria exposed to the RNA polymerase inhibitor rifampicin release fluorescent extracellular vesicles (EVs). While all mycobacteria release EVs, fluorescent EVs were detected only in the presence of RIF, indicating that exposure to the drug alters EV content. Macrophages exposed to the EVs derived from RIF-treated cells released lower levels of cytokines, suggesting the EVs moderate immune responses. These data suggest that antibiotics can alter EV content to impact immunity. Our ability to see such changes in EV constituents directly results from exploiting these chemical probes.

9.
PLoS Pathog ; 17(4): e1009534, 2021 04.
Article in English | MEDLINE | ID: mdl-33901267

ABSTRACT

Long-term survival of bacterial pathogens during persistent bacterial infections can be associated with antibiotic treatment failure and poses a serious public health problem. Infections caused by the Gram-negative pathogen Pseudomonas aeruginosa, which can cause both acute and chronic infections, are particularly challenging due to its high intrinsic resistance to antibiotics. The ineffectiveness of antibiotics is exacerbated when bacteria reside intracellularly within host cells where they can adopt a drug tolerant state. While the early steps of adherence and entry of P. aeruginosa into mammalian cells have been described, the subsequent fate of internalized bacteria, as well as host and bacterial molecular pathways facilitating bacterial long-term survival, are not well defined. In particular, long-term survival within bladder epithelial cells has not been demonstrated and this may have important implications for the understanding and treatment of UTIs caused by P. aeruginosa. Here, we demonstrate and characterize the intracellular survival of wild type (WT) P. aeruginosa inside bladder epithelial cells and a mutant with a disruption in the bacterial two-component regulator AlgR that is unable to survive intracellularly. Using simultaneous dual RNA-seq transcriptional profiling, we define the transcriptional response of intracellular bacteria and their corresponding invaded host cells. The bacterial transcriptional response demonstrates that WT bacteria rapidly adapt to the stress encountered in the intracellular environment in contrast to ΔalgR bacteria. Analysis of the host transcriptional response to invasion suggests that the NF-κB signaling pathway, previously shown to be required for extracellular bacterial clearance, is paradoxically also required for intracellular bacterial survival. Lastly, we demonstrate that intracellular survival is important for pathogenesis of P. aeruginosa in vivo using a model of murine urinary tract infection. We propose that the unappreciated ability of P. aeruginosa to survive intracellularly may play an important role in contributing to the chronicity and recurrence of P. aeruginosa in urinary tract infections.


Subject(s)
Adaptation, Physiological/genetics , Host-Pathogen Interactions/genetics , Pseudomonas aeruginosa/physiology , Animals , Cells, Cultured , Female , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genetic Fitness/physiology , Intracellular Space/genetics , Intracellular Space/microbiology , Mice , Mice, Inbred C57BL , Microbial Viability/genetics , Pseudomonas Infections/genetics , Pseudomonas Infections/microbiology , Urinary Tract Infections/genetics , Urinary Tract Infections/microbiology
10.
Am J Hematol ; 97(6): 770-779, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35303377

ABSTRACT

The efficacy of COVID-19 convalescent plasma (CCP) as a treatment for hospitalized patients with COVID-19 remains somewhat controversial; however, many studies have not evaluated CCP documented to have high neutralizing antibody titer by a highly accurate assay. To evaluate the correlation of the administration of CCP with titer determined by a live viral neutralization assay with 7- and 28-day death rates during hospitalization, a total of 23 118 patients receiving a single unit of CCP were stratified into two groups: those receiving high titer CCP (>250 50% inhibitory dilution, ID50; n = 13 636) or low titer CCP (≤250 ID50; n = 9482). Multivariable Cox regression was performed to assess risk factors. Non-intubated patients who were transfused with high titer CCP showed 1.1% and 1.7% absolute reductions in overall 7- and 28-day death rates, respectively, compared to those non-intubated patients receiving low titer CCP. No benefit of CCP was observed in intubated patients. The relative benefit of high titer CCP was confirmed in multivariable Cox regression. Administration of CCP with high titer antibody content determined by live viral neutralization assay to non-intubated patients is associated with modest clinical efficacy. Although shown to be only of modest clinical benefit, CCP may play a role in the future should viral variants develop that are not neutralized by other available therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Treatment Outcome , COVID-19 Serotherapy
11.
Proc Natl Acad Sci U S A ; 116(20): 10072-10080, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31036669

ABSTRACT

Genomics offered the promise of transforming antibiotic discovery by revealing many new essential genes as good targets, but the results fell short of the promise. While numerous factors contributed to the disappointing yield, one factor was that essential genes for a bacterial species were often defined based on a single or limited number of strains grown under a single or limited number of in vitro laboratory conditions. In fact, the essentiality of a gene can depend on both the genetic background and growth condition. We thus developed a strategy for more rigorously defining the core essential genome of a bacterial species by studying many pathogen strains and growth conditions. We assessed how many strains must be examined to converge on a set of core essential genes for a species. We used transposon insertion sequencing (Tn-Seq) to define essential genes in nine strains of Pseudomonas aeruginosa on five different media and developed a statistical model, FiTnEss, to classify genes as essential versus nonessential across all strain-medium combinations. We defined a set of 321 core essential genes, representing 6.6% of the genome. We determined that analysis of four strains was typically sufficient in P. aeruginosa to converge on a set of core essential genes likely to be essential across the species across a wide range of conditions relevant to in vivo infection, and thus to represent attractive targets for novel drug discovery.


Subject(s)
Genome, Bacterial , Pseudomonas aeruginosa/genetics , DNA Transposable Elements , Genes, Essential , Models, Statistical
12.
J Infect Dis ; 224(10): 1658-1663, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34255846

ABSTRACT

Transmission of coronavirus disease 2019 (COVID-19) from people without symptoms confounds societal mitigation strategies. From April to June 2020, we tested nasopharyngeal swabs by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) from 15 514 staff and 16 966 residents of nursing homes and assisted living facilities in Massachusetts. Cycle threshold (Ct) distributions were very similar between populations with (n = 739) and without (n = 2179) symptoms at the time of sampling (mean Ct, 25.7 vs 26.4; ranges 12-38). However, as local cases waned, those without symptoms shifted towards higher Ct. With such similar viral load distributions, existing testing modalities should perform comparably regardless of symptoms, contingent upon time since infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Cross-Sectional Studies , Humans , Reverse Transcriptase Polymerase Chain Reaction , Viral Load
13.
Transfusion ; 61(9): 2677-2687, 2021 09.
Article in English | MEDLINE | ID: mdl-34121205

ABSTRACT

BACKGROUND: Antibody response duration following severe acute respiratory syndrome coronavirus 2 infection tends to be variable and depends on severity of disease and method of detection. STUDY DESIGN AND METHODS: COVID-19 convalescent plasma from 18 donors was collected longitudinally for a maximum of 63-129 days following resolution of symptoms. All the samples were initially screened by the Ortho total Ig test to confirm positivity and subsequently tested with seven additional direct sandwich or indirect binding assays (Ortho, Roche, Abbott, Broad Institute) directed against a variety of antigen targets (S1, receptor binding domain, and nucleocapsid [NC]), along with two neutralization assays (Broad Institute live virus PRNT and Vitalant Research Institute [VRI] Pseudovirus reporter viral particle neutralization [RVPN]). RESULTS: The direct detection assays (Ortho total Ig total and Roche total Ig) showed increasing levels of antibodies over the time period, in contrast to the indirect IgG assays that showed a decline. Neutralization assays also demonstrated declining responses; the VRI RVPN pseudovirus had a greater rate of decline than the Broad PRNT live virus assay. DISCUSSION: These data show that in addition to variable individual responses and associations with disease severity, the detection assay chosen contributes to the heterogeneous results in antibody stability over time. Depending on the scope of the research, one assay may be preferable over another. For serosurveillance studies, direct, double Ag-sandwich assays appear to be the best choice due to their stability; in particular, algorithms that include both S1- and NC-based assays can help reduce the rate of false-positivity and discriminate between natural infection and vaccine-derived seroreactivity.


Subject(s)
Antibodies, Viral/immunology , Blood Donors , COVID-19/epidemiology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Seroepidemiologic Studies , Serologic Tests/methods , Serologic Tests/standards , Severity of Illness Index
14.
Nat Chem Biol ; 14(4): 331-341, 2018 04.
Article in English | MEDLINE | ID: mdl-29556098

ABSTRACT

To date, antibiotics have been identified on the basis of their ability to kill bacteria or inhibit their growth rather than directly for their capacity to improve clinical outcomes of infected patients. Although historically successful, this approach has led to the development of an antibiotic armamentarium that suffers from a number of shortcomings, including the inevitable emergence of resistance and, in certain infections, suboptimal efficacy leading to long treatment durations, infection recurrence, or high mortality and morbidity rates despite apparent bacterial sterilization. Conventional antibiotics fail to address the complexities of in vivo bacterial physiology and virulence, as well as the role of the host underlying the complex, dynamic interactions that cause disease. New interventions are needed, aimed at host outcome rather than microbiological cure. Here we review the role of screening models for cellular and whole-organism infection, including worms, flies, zebrafish, and mice, to identify novel therapeutic strategies and discuss their future implications.


Subject(s)
Anti-Infective Agents/pharmacology , Bacterial Infections/drug therapy , Drug Resistance, Bacterial , Animals , Bacteria/drug effects , Bacterial Infections/pathology , Caenorhabditis elegans , Drosophila melanogaster , Humans , Mice , Phenotype , Virulence , Zebrafish
15.
Proc Natl Acad Sci U S A ; 114(5): 1135-1140, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096418

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to the antibiotic era. Multiple different species can exhibit resistance due to many different mechanisms, and many different mobile elements are capable of transferring resistance between lineages. We prospectively sampled CRE from hospitalized patients from three Boston-area hospitals, together with a collection of CRE from a single California hospital, to define the frequency and characteristics of outbreaks and determine whether there is evidence for transfer of strains within and between hospitals and the frequency with which resistance is transferred between lineages or species. We found eight species exhibiting resistance, with the majority of our sample being the sequence type 258 (ST258) lineage of Klebsiella pneumoniae There was very little evidence of extensive hospital outbreaks, but a great deal of variation in resistance mechanisms and the genomic backgrounds carrying these mechanisms. Local transmission was evident in clear phylogeographic structure between the samples from the two coasts. The most common resistance mechanisms were KPC (K. pneumoniae carbapenemases) beta-lactamases encoded by blaKPC2, blaKPC3, and blaKPC4, which were transferred between strains and species by seven distinct subgroups of the Tn4401 element. We also found evidence for previously unrecognized resistance mechanisms that produced resistance when transformed into a susceptible genomic background. The extensive variation, together with evidence of transmission beyond limited clonal outbreaks, points to multiple unsampled transmission chains throughout the continuum of care, including asymptomatic carriage and transmission of CRE. This finding suggests that to control this threat, we need an aggressive approach to surveillance and isolation.


Subject(s)
Carbapenems/pharmacology , DNA Transposable Elements/genetics , Disease Outbreaks , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae/drug effects , R Factors/genetics , beta-Lactam Resistance/genetics , Bacterial Proteins/genetics , Boston/epidemiology , Clone Cells , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/transmission , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/transmission , Genetic Variation , Genome, Bacterial , Humans , Prospective Studies , Sequence Alignment , Transformation, Bacterial , beta-Lactam Resistance/physiology , beta-Lactamases/genetics
16.
Article in English | MEDLINE | ID: mdl-31235628

ABSTRACT

Pseudomonas aeruginosa is a major bacterial pathogen associated with a rising prevalence of antibiotic resistance. We evaluated the resistance mechanisms of P. aeruginosa against POL7080, a species-specific, first-in-class antibiotic in clinical trials that targets the lipopolysaccharide transport protein LptD. We isolated a series of POL7080-resistant strains with mutations in the two-component sensor gene pmrB Transcriptomic and confocal microscopy studies support a resistance mechanism shared with colistin, involving lipopolysaccharide modifications that mitigate antibiotic cell surface binding.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Peptides, Cyclic/pharmacology , Pseudomonas aeruginosa/drug effects , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Drug Resistance, Bacterial/drug effects , Gene Expression Regulation, Bacterial/drug effects , Microbial Sensitivity Tests , Mutation , Pseudomonas aeruginosa/genetics , Transcription Factors/genetics
17.
PLoS Pathog ; 13(5): e1006363, 2017 May.
Article in English | MEDLINE | ID: mdl-28505176

ABSTRACT

A key to the pathogenic success of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the capacity to survive within host macrophages. Although several factors required for this survival have been identified, a comprehensive knowledge of such factors and how they work together to manipulate the host environment to benefit bacterial survival are not well understood. To systematically identify Mtb factors required for intracellular growth, we screened an arrayed, non-redundant Mtb transposon mutant library by high-content imaging to characterize the mutant-macrophage interaction. Based on a combination of imaging features, we identified mutants impaired for intracellular survival. We then characterized the phenotype of infection with each mutant by profiling the induced macrophage cytokine response. Taking a systems-level approach to understanding the biology of identified mutants, we performed a multiparametric analysis combining pathogen and host phenotypes to predict functional relationships between mutants based on clustering. Strikingly, mutants defective in two well-known virulence factors, the ESX-1 protein secretion system and the virulence lipid phthiocerol dimycocerosate (PDIM), clustered together. Building upon the shared phenotype of loss of the macrophage type I interferon (IFN) response to infection, we found that PDIM production and export are required for coordinated secretion of ESX-1-substrates, for phagosomal permeabilization, and for downstream induction of the type I IFN response. Multiparametric clustering also identified two novel genes that are required for PDIM production and induction of the type I IFN response. Thus, multiparametric analysis combining host and pathogen infection phenotypes can be used to identify novel functional relationships between genes that play a role in infection.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Mycobacterium tuberculosis/pathogenicity , Phagosomes/microbiology , Tuberculosis/microbiology , Animals , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Cell Line , Cytokines/immunology , Cytokines/metabolism , Gene Library , Host-Pathogen Interactions , Macrophages/immunology , Macrophages/microbiology , Mice , Mutation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/immunology , Phagosomes/immunology , Phenotype , Tuberculosis/immunology , Virulence
18.
Nat Chem Biol ; 13(9): 943-950, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28671682

ABSTRACT

New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes-primarily those involved in macromolecular synthesis-are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α-ß-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.


Subject(s)
Antitubercular Agents , Azetidines/chemistry , Mycobacterium tuberculosis/enzymology , Small Molecule Libraries , Tryptophan Synthase/antagonists & inhibitors , Allosteric Regulation , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Azetidines/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Delivery Systems , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
19.
Article in English | MEDLINE | ID: mdl-30126962

ABSTRACT

Carbapenem resistance is mainly mediated by carbapenemases or extended-spectrum ß-lactamases (ESBL) plus a loss of porins. However, we have identified a Klebsiella pneumoniae clinical isolate that contains neither carbapenemases nor ESBLs. Instead, we found that high-level expression of a novel blaOXA-10-derived ß-lactamase gene, blaOXA-663, in conjunction with OmpK36 deficiency results in high-level carbapenem resistance. This finding demonstrates the combinatorial complexity of factors, including ß-lactamase activity, its expression levels, and porin activity, that yield carbapenem resistance.


Subject(s)
Bacterial Proteins/genetics , Carbapenems/pharmacology , Drug Resistance, Bacterial/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Porins/genetics , Anti-Bacterial Agents/pharmacology , Humans , Klebsiella Infections/diet therapy , Klebsiella Infections/microbiology , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL