Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612757

ABSTRACT

Wildtype Escherichia coli cells cannot grow on L-1,2-propanediol, as the fucAO operon within the fucose (fuc) regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that fucAO operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the fucO promoter within the 3'-end of fucA is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main fucAO operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the fucAO locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the fucAO promoter by efficiently recruiting RNA polymerase.


Subject(s)
Escherichia coli , Fucose , Binding Sites , Escherichia coli/genetics , Operon/genetics , Phosphorylation
2.
J Environ Manage ; 356: 120655, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513589

ABSTRACT

High boron (B) stress degrades the soil environment and reduces plant productivity. Sugar beet has a high B demand and potential for remediation of B-toxic soils. However, the mechanism regarding the response of sugar beet plants and rhizosphere soil microbiome to high B stress is not clear. In the potted soil experiment, we set different soil effective B environments (0.5, 5, 10, 30, 50, and 100 mg kg-1) to study the growth status of sugar beets under different B concentrations, as well as the characteristics of soil enzyme activity and microbial community changes. The results showed that sugar beet growth was optimal at 5 mg kg-1 of B. Exceeding this concentration the tolerance index decreased. The injury threshold EC20 was reached at an available B concentration of 35.8 mg kg-1. Under the treatment of 100 mg kg-1, the B accumulation of sugar beet reached 0.22 mg plant-1, and the tolerance index was still higher than 60%, which had not yet reached the lethal concentration of sugar beet. The abundance of Acidobacteriota, Chloroflexi and Patescibacteria increased, which was beneficial to the resistance of sugar beet to high B stress. In summary, under high B stress sugar beet had strong tolerance, enhanced capacity for B uptake and enrichment, and changes in soil microbial community structure. This study provides a theoretical basis for clarifying the mechanism of sugar beet resistance to high B stress and soil remediation.


Subject(s)
Beta vulgaris , Soil , Soil/chemistry , Beta vulgaris/metabolism , Beta vulgaris/microbiology , Boron , Rhizosphere , Vegetables , Sugars/metabolism
3.
J Environ Manage ; 353: 120159, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38310797

ABSTRACT

Nicosulfuron is a common herbicide used to control weeds in maize fields. In northeast China, sugar beet is often grown as a subsequent crop after maize, and its frequently suffers from soil nicosulfuron residue damage, but the related toxicity evaluation and photosynthetic physiological mechanisms are not clear. Therefore, we experimented to evaluate the impacts of nicosulfuron residues on beet growth, photochemical properties, and antioxidant defense system. The results showed that when the nicosulfuron residue content reached 0.3 µg kg-1, it inhibited the growth of sugar beet. When it reached 36 µg kg-1 (GR50), the growth stagnated. Compared to the control group, a nicosulfuron residue of 36 µg kg-1 significantly decreased beet plant height (70.93 %), leaf area (91.85 %), dry weights of shoot (70.34 %) and root (32.70 %). It also notably reduced the potential photochemical activity (Fv/Fo) by 12.41 %, the light energy absorption performance index (PIabs) by 46.09 %, and light energy absorption (ABS/CSm) by 6.56 %. It decreased the capture (TRo/CSm) by 9.30 % and transferred energy (ETo/CSm) by 16.13 % per unit leaf cross-section while increasing the energy flux of heat dissipation (DIo/CSm) by 22.85 %. This ultimately impaired the photochemical capabilities of PSI and PSII, leading to a reduction in photosynthetic performance. Furthermore, nicosulfuron increased malondialdehyde (MDA) content while decreasing superoxide dismutase (SOD) and catalase (CAT) activities. In conclusion, this research clarified the toxicity risk level, lethal dose, and harm mechanism of the herbicide nicosulfuron residue. It provides a theoretical foundation for the rational use of herbicides in agricultural production and sugar beet planting management.


Subject(s)
Beta vulgaris , Herbicides , Pyridines , Sulfonylurea Compounds , Beta vulgaris/metabolism , Photosynthesis/physiology , Antioxidants/metabolism , Zea mays , Herbicides/toxicity , Sugars
4.
J Environ Manage ; 369: 122336, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39243422

ABSTRACT

Nutrient imbalances, such as high boron (B) stress, occur within, as well as across, agricultural systems worldwide and have become an important abiotic factor that reduces soil fertility and inhibits plant growth. Sugar beet is a B-loving crop and is better suited to be grown in high B environments, but the methods and mechanisms regarding the enhancement of high-B stress tolerance traits are not clear. The main objective of this research was to elucidate the effects of the alone and/or combined foliar spraying of zinc sulfate (ZnSO4) and methyl jasmonate (MeJA) on the growth parameters, tolerance, and photochemical performance of sugar beet under high-B stress. Results demonstrated that the photosynthetic performance was inhibited under high-B stress, with a reduction of 11.33% in the net photosynthetic rate (Pn) and an increase of 25.30% in the tolerance index. The application of ZnSO4, MeJA, and their combination enhanced sugar beet's adaptability to high-B stress, with an increase in Pn of 9.22%, 4.49%, and 2.85%, respectively, whereas the tolerance index was elevated by 15.33%, 8.21%, and 5.19%, respectively. All three ameliorative treatments resulted in increased photochemical efficiency (Fv/Fm) and the photosynthetic performance index (PIABS) of PSII. Additionally, they enhanced the light energy absorption (ABS/RC) and trapping capacity (DIO/RC), reduced the thermal energy dissipation (TRO/RC), and facilitated the QA to QB transfer in the electron transport chain (ETC) of PSII, which collectively improved the photochemical performance. Therefore, spraying both ZnSO4 and MeJA can better alleviate high-B stress and promote the growth of sugar beet, but the combined spraying effect of ZnSO4 and MeJA is lower than that of individual spraying. This study provides a reference basis for enhancing the ability of sugar beet and other plants to tolerate high-B stress and for sugar beet cultivation in high B areas.


Subject(s)
Acetates , Beta vulgaris , Boron , Cyclopentanes , Oxylipins , Photosynthesis , Plant Leaves , Zinc , Beta vulgaris/drug effects , Beta vulgaris/growth & development , Beta vulgaris/radiation effects , Cyclopentanes/pharmacology , Photosynthesis/drug effects , Plant Leaves/drug effects , Acetates/pharmacology , Stress, Physiological
5.
Ecotoxicol Environ Saf ; 248: 114295, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36402074

ABSTRACT

This sugar beet acts as a soil remediator in areas where there are high levels of boron (B) in the soil, since it has a high requirement of boron (B) for growth, and has strong resistance to high B levels. Although B toxicity in different plants has been widely researched, little is known about the response of photosystem II (PSII) activity in sugar beet leaves to B toxicity at present. To clarify the growth and photosynthetic physiological response of sugar beet to B toxicity, the effects of different concentrations of H3BO3 (0.05, 1.5, 2.5,3.5 mM) on the growth, photosynthetic characteristics and antioxidant defense system of sugar beet seedlings were investigated by hydroponic experiments. In the present study, high B stress inhibited the growth of sugar beet and significantly decreased the biomass of the plants. There was a remarkable increase in the accumulation of B in the shoots, which affected photosynthesis and decreased the photosynthetic pigments. As B toxicity increased, leaf PSII activities and maximum photochemical efficiency of PSII (Fv/Fm) showed a tendency to decrease; at the same time, the photosynthetic performance index based on absorbed light energy (PIABS) decreased as well. Meanwhile, the energy allocation parameters of the PSII reaction center were changed, the light energy utilization capacity and the energy used for electron transfer were reduced and the thermal dissipation was increased at the same time. Furthermore, B toxicity decreased catalase (CAT) activity, increased peroxidase (POD) and superoxide dismutase (SOD) activities, and increased malondialdehyde (MDA) accumulation. According to the results obtained in this study, high B concentrations reduced the rate of photosynthesis and fluorescence, thus weakened antioxidant defense systems, and therefore inhibited the growth of sugar beet plants. Thus, in high B areas, sugar beet possesses excellent tolerance to high B levels and has a high B translocation capacity, so it can be used as a phytoremediation tool. This study provides a basis for the feasibility of sugar beet resistant to high B environments.


Subject(s)
Beta vulgaris , Photosystem II Protein Complex , Boron/toxicity , Antioxidants , Vegetables , Soil , Sugars
6.
Plant Physiol Biochem ; 206: 108277, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104397

ABSTRACT

Sugar beet, a zinc-loving crop, is increasingly limited by zinc deficiency worldwide. Foliar zinc application is an effective and convenient way to supplement zinc fertilizer. However, the regulatory mechanism of foliar zinc spraying on sugar beet leaf photosynthetic characteristics remains unclear. Therefore, we investigated the effects of foliar ZnSO4·7H2O application (0, 0.1%, 0.2%, and 0.4%) on the photosynthetic performance of sugar beet leaves under controlled hydroponic conditions. The results indicated that a foliar spray of 0.2% Zn fertilizer was optimal for promoting sugar beet leaf growth. This concentration significantly reduced the leaf shape index of sugar beet, notably increasing leaf area, leaf mass ratio, and specific leaf weight. Foliar spraying of Zn (0.2%) substantially elevated the Zn content in sugar beet leaves, along with calcium (Ca) and magnesium (Mg) contents. Consequently, this led to an increase in the potential photochemical activity of PSII (Fv/Fo) (by 6.74%), net photosynthetic rate (Pn) (11.39%), apparent electron transport rate (ETR) (11.43%), actual photochemical efficiency of PSⅡ (Y (Ⅱ)) (11.46%), photochemical quenching coefficient (qP) (15.49%), and total chlorophyll content (25.17%). Ultimately, this increased sugar beet leaf dry matter weight (11.30%). In the cultivation and management of sugar beet, the application of 0.2% Zn fertilizer (2.88 mg plant-1) exhibited the potential to enhance Zn and Mg contents in sugar beet, improve photochemical properties, stimulate leaf growth, and boost light assimilation capacity. Our result suggested the foliar application of Zn might be a useful strategy for sugar beet crop management.


Subject(s)
Beta vulgaris , Plant Leaves , Zinc , Calcium , Chlorophyll , Fertilizers , Magnesium , Photosynthesis , Plant Leaves/chemistry , Sugars , Zinc/pharmacology
7.
Front Plant Sci ; 13: 1101171, 2022.
Article in English | MEDLINE | ID: mdl-36726677

ABSTRACT

Boron (B) deficiency severely affects the quality of sugar beet production, and the employment of nutrient-efficient varieties for cultivation is a crucial way to solve environmental and resource-based problems. However, the aspect of leaf photosynthetic performance among B-efficient sugar beet cultivars remains uncertain. The B deficient and B-sufficient treatments were conducted in the experiment using KWS1197 (B-efficient) and KWS0143 (B-inefficient) sugar beet cultivars as study materials. The objective of the present study was to determine the impacts of B deficiency on leaf phenotype, photosynthetic capacity, chloroplast structure, and photochemical efficiency of the contrasting B-efficiency sugar beet cultivars. The results indicated that the growth of sugar beet leaves were dramatically restricted, the net photosynthetic rate was significantly decreased, and the energy flux, quantum yield, and flux ratio of PSII reaction centers were adversely affected under B deficiency. Compared to the KWS0143 cultivar, the average leaf area ratio of the KWS1197 cultivar experienced less impact, and its leaf mass ratio (LMR) increased by 26.82% under B deficiency, whereas for the KWS0143 cultivar, the increase was only 2.50%. Meanwhile, the light energy capture and utilization capacity of PSII reaction centers and the proportion of absorbed light energy used for electron transfer were higher by 3.42% under B deficiency; KWS1197 cultivar managed to alleviate the photo-oxidative damage, which results from excessive absorbed energy (ABS/RC), by increasing the dissipated energy (DIo/RC). Therefore, in response to B deprivation, the KWS1197 cultivar demonstrated greater adaptability in terms of morphological indices and photosynthetic functions, which not only explains the improved performance but also renders the measured parameters as the key features for varietal selection, providing a theoretical basis for the utilization of efficient sugar beet cultivars in future.

SELECTION OF CITATIONS
SEARCH DETAIL