Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters

Publication year range
1.
Euro Surveill ; 26(15)2021 04.
Article in English | MEDLINE | ID: mdl-33860747

ABSTRACT

BackgroundChildren's role in SARS-CoV-2 epidemiology remains unclear. We investigated an initially unnoticed SARS-CoV-2 outbreak linked to schools in northern France, beginning as early as mid-January 2020.AimsThis retrospective observational study documents the extent of SARS-CoV-2 transmission, linked to an affected high school (n = 664 participants) and primary schools (n = 1,340 study participants), in the context of unsuspected SARS-CoV-2 circulation and limited control measures.MethodsBetween 30 March and 30 April 2020, all school staff, as well as pupils and their parents and relatives were invited for SARS-CoV-2 antibody testing and to complete a questionnaire covering symptom history since 13 January 2020.ResultsIn the high school, infection attack rates were 38.1% (91/239), 43.4% (23/53), and 59.3% (16/27), in pupils, teachers, and non-teaching staff respectively vs 10.1% (23/228) and 12.0% (14/117) in the pupils' parents and relatives (p < 0.001). Among the six primary schools, three children attending separate schools at the outbreak start, while symptomatic, might have introduced SARS-CoV-2 there, but symptomatic secondary cases related to them could not be definitely identified. In the primary schools overall, antibody prevalence in pupils sharing classes with symptomatic cases was higher than in pupils from other classes: 15/65 (23.1%) vs 30/445 (6.7%) (p < 0.001). Among 46 SARS-CoV-2 seropositive pupils < 12 years old, 20 were asymptomatic. Whether past HKU1 and OC43 seasonal coronavirus infection protected against SARS-CoV-2 infection in 6-11 year olds could not be inferred.ConclusionsViral circulation can occur in high and primary schools so keeping them open requires consideration of appropriate control measures and enhanced surveillance.


Subject(s)
COVID-19 , Child , Cohort Studies , France/epidemiology , Humans , Retrospective Studies , SARS-CoV-2 , Schools
2.
Euro Surveill ; 26(13)2021 04.
Article in English | MEDLINE | ID: mdl-33797390

ABSTRACT

BackgroundChildren have a low rate of COVID-19 and secondary severe multisystem inflammatory syndrome (MIS) but present a high prevalence of symptomatic seasonal coronavirus infections.AimWe tested if prior infections by seasonal coronaviruses (HCoV) NL63, HKU1, 229E or OC43 as assessed by serology, provide cross-protective immunity against SARS-CoV-2 infection.MethodsWe set a cross-sectional observational multicentric study in pauci- or asymptomatic children hospitalised in Paris during the first wave for reasons other than COVID (hospitalised children (HOS), n = 739) plus children presenting with MIS (n = 36). SARS-CoV-2 antibodies directed against the nucleoprotein (N) and S1 and S2 domains of the spike (S) proteins were monitored by an in-house luciferase immunoprecipitation system assay. We randomly selected 69 SARS-CoV-2-seropositive patients (including 15 with MIS) and 115 matched SARS-CoV-2-seronegative patients (controls (CTL)). We measured antibodies against SARS-CoV-2 and HCoV as evidence for prior corresponding infections and assessed if SARS-CoV-2 prevalence of infection and levels of antibody responses were shaped by prior seasonal coronavirus infections.ResultsPrevalence of HCoV infections were similar in HOS, MIS and CTL groups. Antibody levels against HCoV were not significantly different in the three groups and were not related to the level of SARS-CoV-2 antibodies in the HOS and MIS groups. SARS-CoV-2 antibody profiles were different between HOS and MIS children.ConclusionPrior infection by seasonal coronaviruses, as assessed by serology, does not interfere with SARS-CoV-2 infection and related MIS in children.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Coronavirus OC43, Human , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome , Adolescent , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , Child , Child, Preschool , Cross-Sectional Studies , Female , France/epidemiology , Humans , Infant , Infant, Newborn , Male , Paris , Seasons , Serologic Tests/methods , Spike Glycoprotein, Coronavirus
3.
Emerg Infect Dis ; 26(12): 3069-3071, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32788033

ABSTRACT

In March 2020, a severe respiratory syndrome developed in a cat, 1 week after its owner received positive test results for severe acute respiratory syndrome coronavirus 2. Viral RNA was detected in the cat's nasopharyngeal swab samples and vomitus or feces; immunoglobulin against the virus was found in convalescent-phase serum. Human-to-cat transmission is suspected.


Subject(s)
COVID-19/veterinary , Cats , Animals , Belgium , COVID-19/diagnosis , COVID-19/transmission , Female , Humans , Viral Zoonoses
4.
Proc Natl Acad Sci U S A ; 112(9): 2865-70, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25730860

ABSTRACT

The glycine receptor (GlyR) is a pentameric ligand-gated ion channel (pLGIC) mediating inhibitory transmission in the nervous system. Its transmembrane domain (TMD) is the target of allosteric modulators such as general anesthetics and ethanol and is a major locus for hyperekplexic congenital mutations altering the allosteric transitions of activation or desensitization. We previously showed that the TMD of the human α1GlyR could be fused to the extracellular domain of GLIC, a bacterial pLGIC, to form a functional chimera called Lily. Here, we overexpress Lily in Schneider 2 insect cells and solve its structure by X-ray crystallography at 3.5 Å resolution. The TMD of the α1GlyR adopts a closed-channel conformation involving a single ring of hydrophobic residues at the center of the pore. Electrophysiological recordings show that the phenotypes of key allosteric mutations of the α1GlyR, scattered all along the pore, are qualitatively preserved in this chimera, including those that confer decreased sensitivity to agonists, constitutive activity, decreased activation kinetics, or increased desensitization kinetics. Combined structural and functional data indicate a pore-opening mechanism for the α1GlyR, suggesting a structural explanation for the effect of some key hyperekplexic allosteric mutations. The first X-ray structure of the TMD of the α1GlyR solved here using GLIC as a scaffold paves the way for mechanistic investigation and design of allosteric modulators of a human receptor.


Subject(s)
Receptors, Glycine/chemistry , Allosteric Regulation/physiology , Animals , Crystallography, X-Ray , Drosophila melanogaster , Humans , Protein Structure, Tertiary , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Structure-Activity Relationship
5.
PLoS Pathog ; 11(10): e1005222, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26484539

ABSTRACT

Activation and/or recruitment of the host plasmin, a fibrinolytic enzyme also active on extracellular matrix components, is a common invasive strategy of bacterial pathogens. Yersinia pestis, the bubonic plague agent, expresses the multifunctional surface protease Pla, which activates plasmin and inactivates fibrinolysis inhibitors. Pla is encoded by the pPla plasmid. Following intradermal inoculation, Y. pestis has the capacity to multiply in and cause destruction of the lymph node (LN) draining the entry site. The closely related, pPla-negative, Y. pseudotuberculosis species lacks this capacity. We hypothesized that tissue damage and bacterial multiplication occurring in the LN during bubonic plague were linked and both driven by pPla. Using a set of pPla-positive and pPla-negative Y. pestis and Y. pseudotuberculosis strains in a mouse model of intradermal injection, we found that pPla is not required for bacterial translocation to the LN. We also observed that a pPla-cured Y. pestis caused the same extensive histological lesions as the wild type strain. Furthermore, the Y. pseudotuberculosis histological pattern, characterized by infectious foci limited by inflammatory cell infiltrates with normal tissue density and follicular organization, was unchanged after introduction of pPla. However, the presence of pPla enabled Y. pseudotuberculosis to increase its bacterial load up to that of Y. pestis. Similarly, lack of pPla strongly reduced Y. pestis titers in LNs of infected mice. This pPla-mediated enhancing effect on bacterial load was directly dependent on the proteolytic activity of Pla. Immunohistochemistry of Pla-negative Y. pestis-infected LNs revealed extensive bacterial lysis, unlike the numerous, apparently intact, microorganisms seen in wild type Y. pestis-infected preparations. Therefore, our study demonstrates that tissue destruction and bacterial survival/multiplication are dissociated in the bubo and that the primary action of Pla is to protect bacteria from destruction rather than to alter the tissue environment to favor Y. pestis propagation in the host.


Subject(s)
Bacterial Proteins/metabolism , Plague/microbiology , Plague/pathology , Plasminogen Activators/metabolism , Yersinia pestis/pathogenicity , Animals , Disease Models, Animal , Immunohistochemistry , Mice , Mutagenesis, Site-Directed , Plague/enzymology , Virulence/physiology , Virulence Factors/metabolism , Yersinia pestis/enzymology , Yersinia pseudotuberculosis/enzymology , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/enzymology , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis Infections/pathology
6.
Proc Natl Acad Sci U S A ; 111(3): 966-71, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24367074

ABSTRACT

Pentameric ligand-gated ion channels mediate fast chemical transmission of nerve signals. The structure of a bacterial proton-gated homolog has been established in its open and locally closed conformations at acidic pH. Here we report its crystal structure at neutral pH, thereby providing the X-ray structures of the two end-points of the gating mechanism in the same pentameric ligand-gated ion channel. The large structural variability in the neutral pH structure observed in the four copies of the pentamer present in the asymmetric unit has been used to analyze the intrinsic fluctuations in this state, which are found to prefigure the transition to the open state. In the extracellular domain (ECD), a marked quaternary change is observed, involving both a twist and a blooming motion, and the pore in the transmembrane domain (TMD) is closed by an upper bend of helix M2 (as in locally closed form) and a kink of helix M1, both helices no longer interacting across adjacent subunits. On the tertiary level, detachment of inner and outer ß sheets in the ECD reshapes two essential cavities at the ECD-ECD and ECD-TMD interfaces. The first one is the ligand-binding cavity; the other is close to a known divalent cation binding site in other pentameric ligand-gated ion channels. In addition, a different crystal form reveals that the locally closed and open conformations coexist as discrete ones at acidic pH. These structural results, together with site-directed mutagenesis, physiological recordings, and coarse-grained modeling, have been integrated to propose a model of the gating transition pathway.


Subject(s)
Crystallography, X-Ray , Cyanobacteria/metabolism , Ligand-Gated Ion Channels/chemistry , Allosteric Site , Animals , Binding Sites , Cations , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Ion Channels/chemistry , Ligands , Models, Molecular , Oocytes/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary , Signal Transduction , Xenopus laevis
7.
PLoS Genet ; 8(3): e1002529, 2012.
Article in English | MEDLINE | ID: mdl-22412380

ABSTRACT

The High Pathogenicity Island of Yersinia pseudotuberculosis IP32637 was previously shown to be horizontally transferable as part of a large chromosomal segment. We demonstrate here that at low temperature other chromosomal loci, as well as a non-mobilizable plasmid (pUC4K), are also transferable. This transfer, designated GDT4 (Generalized DNA Transfer at 4°C), required the presence of an IP32637 endogenous plasmid (pGDT4) that carries several mobile genetic elements and a conjugation machinery. We established that cure of this plasmid or inactivation of its sex pilus fully abrogates this process. Analysis of the mobilized pUC4K recovered from transconjugants revealed the insertion of one of the pGDT4-borne ISs, designated ISYps1, at different sites on the transferred plasmid molecules. This IS belongs to the IS6 family, which moves by replicative transposition, and thus could drive the formation of cointegrates between pGDT4 and the host chromosome and could mediate the transfer of chromosomal regions in an Hfr-like manner. In support of this model, we show that a suicide plasmid carrying ISYps1 is able to integrate itself, flanked by ISYps1 copies, at multiple locations into the Escherichia coli chromosome. Furthermore, we demonstrate the formation of RecA-independent cointegrates between the ISYps1-harboring plasmid and an ISYps1-free replicon, leading to the passive transfer of the non-conjugative plasmid. We thus demonstrate here a natural mechanism of horizontal gene exchange, which is less constrained and more powerful than the classical Hfr mechanism, as it only requires the presence of an IS6-type element on a conjugative replicon to drive the horizontal transfer of any large block of plasmid or chromosomal DNA. This natural mechanism of chromosome transfer, which occurs under conditions mimicking those found in the environment, may thus play a significant role in bacterial evolution, pathogenesis, and adaptation to new ecological niches.


Subject(s)
Chromosomes, Bacterial , DNA Transposable Elements , Gene Transfer, Horizontal , Yersinia pseudotuberculosis/genetics , Adaptation, Physiological , Biological Evolution , DNA Transposable Elements/genetics , Escherichia coli/genetics , Plasmids/genetics , Yersinia pseudotuberculosis/pathogenicity
8.
Proc Natl Acad Sci U S A ; 108(29): 12143-8, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21730130

ABSTRACT

Pentameric ligand-gated ion channels (pLGICs), which mediate chemo-electric signal transduction in animals, have been recently found in bacteria. Despite clear sequence and 3D structure homology, the phylogenetic distance between prokaryotic and eukaryotic homologs suggests significant structural divergences, especially at the interface between the extracellular (ECD) and the transmembrane (TMD) domains. To challenge this possibility, we constructed a chimera in which the ECD of the bacterial protein GLIC is fused to the TMD of the human α1 glycine receptor (α1GlyR). Electrophysiology in Xenopus oocytes shows that it functions as a proton-gated ion channel, thereby locating the proton activation site(s) of GLIC in its ECD. Patch-clamp experiments in BHK cells show that the ion channel displays an anionic selectivity with a unitary conductance identical to that of the α1GlyR. In addition, pharmacological investigations result in transmembrane allosteric modulation similar to the one observed on α1GlyR. Indeed, the clinically active drugs propofol, four volatile general anesthetics, alcohols, and ivermectin all potentiate the chimera while they inhibit GLIC. Collectively, this work shows the compatibility between GLIC and α1GlyR domains and points to conservation of the ion channel and transmembrane allosteric regulatory sites in the chimera. This provides evidence that GLIC and α1GlyR share a highly homologous 3D structure. GLIC is thus a relevant model of eukaryotic pLGICs, at least from the anionic type. In addition, the chimera is a good candidate for mass production in Escherichia coli, opening the way for investigations of "druggable" eukaryotic allosteric sites by X-ray crystallography.


Subject(s)
Bacterial Proteins/metabolism , Ligand-Gated Ion Channels/metabolism , Models, Molecular , Protein Structure, Tertiary/physiology , Receptors, Glycine/metabolism , Recombinant Fusion Proteins/metabolism , Alcohols , Amino Acid Sequence , Anesthetics, General , Animals , Bacterial Proteins/genetics , Base Sequence , Cell Line , Cloning, Molecular , Cricetinae , DNA, Complementary/genetics , Electrophysiology , Ivermectin , Ligand-Gated Ion Channels/genetics , Molecular Sequence Data , Oocytes/metabolism , Patch-Clamp Techniques , Propofol , Protein Structure, Tertiary/genetics , Receptors, Glycine/genetics , Recombinant Fusion Proteins/genetics , Sequence Analysis, DNA , Xenopus
9.
NPJ Vaccines ; 9(1): 10, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184681

ABSTRACT

The receptor-binding domain, region II, of the Plasmodium vivax Duffy binding protein (PvDBPII) binds the Duffy antigen on the reticulocyte surface to mediate invasion. A heterologous vaccine challenge trial recently showed that a delayed dosing regimen with recombinant PvDBPII SalI variant formulated with adjuvant Matrix-MTM reduced the in vivo parasite multiplication rate (PMR) in immunized volunteers challenged with the Thai P. vivax isolate PvW1. Here, we describe extensive analysis of the polyfunctional antibody responses elicited by PvDBPII immunization and identify immune correlates for PMR reduction. A classification algorithm identified antibody features that significantly contribute to PMR reduction. These included antibody titre, receptor-binding inhibitory titre, dissociation constant of the PvDBPII-antibody interaction, complement C1q and Fc gamma receptor binding and specific IgG subclasses. These data suggest that multiple immune mechanisms elicited by PvDBPII immunization are likely to be associated with protection and the immune correlates identified could guide the development of an effective vaccine for P. vivax malaria. Importantly, all the polyfunctional antibody features that correlated with protection cross-reacted with both PvDBPII SalI and PvW1 variants, suggesting that immunization with PvDBPII should protect against diverse P. vivax isolates.

10.
Sci Rep ; 13(1): 13904, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626150

ABSTRACT

The invasion of reticulocytes by Plasmodium vivax merozoites is dependent on the interaction of the Plasmodium vivax Duffy Binding Protein (PvDBP) with the Duffy antigen receptor for chemokines (DARC). The N-terminal cysteine-rich region II of PvDBP (PvDBPII), which binds DARC, is a leading P. vivax malaria vaccine candidate. Here, we have evaluated the immunogenicity of recombinant PvDBPII formulated with the adjuvants Matrix-M and GLA-SE in mice. Analysis of the antibody responses revealed comparable ELISA recognition titres as well as similar recognition of native PvDBP in P. vivax schizonts by immunofluorescence assay. Moreover, antibodies elicited by the two adjuvant formulations had similar functional properties such as avidity, isotype profile and inhibition of PvDBPII-DARC binding. Furthermore, the anti-PvDBPII antibodies were able to block the interaction of DARC with the homologous PvDBPII SalI allele as well as the heterologous PvDBPII PvW1 allele from a Thai clinical isolate that is used for controlled human malaria infections (CHMI). The cross-reactivity of these antibodies with PvW1 suggest that immunization with the PvDBPII SalI strain should neutralize reticulocyte invasion by the challenge P. vivax strain PvW1.


Subject(s)
Malaria, Vivax , Vaccines , Humans , Animals , Mice , Plasmodium vivax , Carrier Proteins , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Antibodies , Malaria, Vivax/prevention & control
11.
Lancet Reg Health West Pac ; 37: 100792, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37693871

ABSTRACT

Background: Assessing the status of malaria transmission in endemic areas becomes increasingly challenging as countries approach elimination. Serology can provide robust estimates of malaria transmission intensities, and multiplex serological assays allow for simultaneous assessment of markers of recent and historical malaria exposure. Methods: Here, we evaluated different statistical and machine learning methods for analyzing multiplex malaria-specific antibody response data to classify recent and historical exposure to Plasmodium falciparum and Plasmodium vivax. To assess these methods, we utilized samples from a health-facility based survey (n = 9132) in the Philippines, where we quantified antibody responses against 8 P. falciparum and 6 P. vivax-specific antigens from 3 sites with varying transmission intensity. Findings: Measurements of antibody responses and seroprevalence were consistent with the 3 sites' known endemicity status. Among the models tested, a machine learning (ML) approach (Random Forest model) using 4 serological markers (PfGLURP R2, Etramp5.Ag1, GEXP18, and PfMSP119) gave better predictions for P. falciparum recent infection in Palawan (AUC: 0.9591, CI 0.9497-0.9684) than individual antigen seropositivity. Although the ML approach did not improve P. vivax infection predictions, ML classifications confirmed the absence of recent exposure to P. falciparum and P. vivax in both Occidental Mindoro and Bataan. For predicting historical P. falciparum and P. vivax transmission, seroprevalence and seroconversion rates based on cumulative exposure markers AMA1 and MSP119 showed reliable trends in the 3 sites. Interpretation: Our study emphasizes the utility of serological markers in predicting recent and historical exposure in a sub-national elimination setting, and also highlights the potential use of machine learning models using multiplex antibody responses to improve assessment of the malaria transmission status of countries aiming for elimination. This work also provides baseline antibody data for monitoring risk in malaria-endemic areas in the Philippines. Funding: Newton Fund, Philippine Council for Health Research and Development, UK Medical Research Council.

12.
Sci Transl Med ; 15(704): eadf1782, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37437014

ABSTRACT

There are no licensed vaccines against Plasmodium vivax. We conducted two phase 1/2a clinical trials to assess two vaccines targeting P. vivax Duffy-binding protein region II (PvDBPII). Recombinant viral vaccines using chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) vectors as well as a protein and adjuvant formulation (PvDBPII/Matrix-M) were tested in both a standard and a delayed dosing regimen. Volunteers underwent controlled human malaria infection (CHMI) after their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparisons of parasite multiplication rates in the blood. PvDBPII/Matrix-M, given in a delayed dosing regimen, elicited the highest antibody responses and reduced the mean parasite multiplication rate after CHMI by 51% (n = 6) compared with unvaccinated controls (n = 13), whereas no other vaccine or regimen affected parasite growth. Both viral-vectored and protein vaccines were well tolerated and elicited expected, short-lived adverse events. Together, these results support further clinical evaluation of the PvDBPII/Matrix-M P. vivax vaccine.


Subject(s)
Malaria , Parasites , Humans , Animals , Plasmodium vivax , Vaccination
13.
Cell Rep ; 39(11): 110923, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35705035

ABSTRACT

The uptake and digestion of host hemoglobin by malaria parasites during blood-stage growth leads to significant oxidative damage of membrane lipids. Repair of lipid peroxidation damage is crucial for parasite survival. Here, we demonstrate that Plasmodium falciparum imports a host antioxidant enzyme, peroxiredoxin 6 (PRDX6), during hemoglobin uptake from the red blood cell cytosol. PRDX6 is a lipid-peroxidation repair enzyme with phospholipase A2 (PLA2) activity. Inhibition of PRDX6 with a PLA2 inhibitor, Darapladib, increases lipid-peroxidation damage in the parasite and disrupts transport of hemoglobin-containing vesicles to the food vacuole, causing parasite death. Furthermore, inhibition of PRDX6 synergistically reduces the survival of artemisinin-resistant parasites following co-treatment of parasite cultures with artemisinin and Darapladib. Thus, PRDX6 is a host-derived drug target for development of antimalarial drugs that could help overcome artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Peroxiredoxin VI , Animals , Antimalarials/pharmacology , Artemisinins/metabolism , Artemisinins/pharmacology , Benzaldehydes/pharmacology , Drug Resistance , Hemoglobins/metabolism , Humans , Lipids , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mice , Oximes/pharmacology , Peroxiredoxin VI/immunology , Peroxiredoxin VI/metabolism , Plasmodium falciparum
14.
medRxiv ; 2022 May 30.
Article in English | MEDLINE | ID: mdl-35664997

ABSTRACT

Background: There are no licensed vaccines against Plasmodium vivax , the most common cause of malaria outside of Africa. Methods: We conducted two Phase I/IIa clinical trials to assess the safety, immunogenicity and efficacy of two vaccines targeting region II of P. vivax Duffy-binding protein (PvDBPII). Recombinant viral vaccines (using ChAd63 and MVA vectors) were administered at 0, 2 months or in a delayed dosing regimen (0, 17, 19 months), whilst a protein/adjuvant formulation (PvDBPII/Matrix-M™) was administered monthly (0, 1, 2 months) or in a delayed dosing regimen (0, 1, 14 months). Delayed regimens were due to trial halts during the COVID-19 pandemic. Volunteers underwent heterologous controlled human malaria infection (CHMI) with blood-stage P. vivax parasites at 2-4 weeks following their last vaccination, alongside unvaccinated controls. Efficacy was assessed by comparison of parasite multiplication rate (PMR) in blood post-CHMI, modelled from parasitemia measured by quantitative polymerase-chain-reaction (qPCR). Results: Thirty-two volunteers were enrolled and vaccinated (n=16 for each vaccine). No safety concerns were identified. PvDBPII/Matrix-M™, given in the delayed dosing regimen, elicited the highest antibody responses and reduced the mean PMR following CHMI by 51% (range 36-66%; n=6) compared to unvaccinated controls (n=13). No other vaccine or regimen impacted parasite growth. In vivo growth inhibition of blood-stage P. vivax correlated with functional antibody readouts of vaccine immunogenicity. Conclusions: Vaccination of malaria-naïve adults with a delayed booster regimen of PvDBPII/ Matrix-M™ significantly reduces the growth of blood-stage P. vivax . Funded by the European Commission and Wellcome Trust; VAC069, VAC071 and VAC079 ClinicalTrials.gov numbers NCT03797989 , NCT04009096 and NCT04201431 .

15.
Infect Immun ; 78(9): 3930-41, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20605981

ABSTRACT

Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore, our results suggest that acquisition of new chromosomal materials has not been of major importance in the dramatic change of life cycle that has accompanied the emergence of Y. pestis.


Subject(s)
Chromosome Mapping , Yersinia pestis/genetics , Animals , Female , Mice , Open Reading Frames , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Virulence , Yersinia pestis/pathogenicity
16.
mBio ; 11(4)2020 08 18.
Article in English | MEDLINE | ID: mdl-32817103

ABSTRACT

Red blood cell (RBC) invasion by Plasmodium merozoites requires multiple steps that are regulated by signaling pathways. Exposure of P. falciparum merozoites to the physiological signal of low K+, as found in blood plasma, leads to a rise in cytosolic Ca2+, which mediates microneme secretion, motility, and invasion. We have used global phosphoproteomic analysis of merozoites to identify signaling pathways that are activated during invasion. Using quantitative phosphoproteomics, we found 394 protein phosphorylation site changes in merozoites subjected to different ionic environments (high K+/low K+), 143 of which were Ca2+ dependent. These included a number of signaling proteins such as catalytic and regulatory subunits of protein kinase A (PfPKAc and PfPKAr) and calcium-dependent protein kinase 1 (PfCDPK1). Proteins of the 14-3-3 family interact with phosphorylated target proteins to assemble signaling complexes. Here, using coimmunoprecipitation and gel filtration chromatography, we demonstrate that Pf14-3-3I binds phosphorylated PfPKAr and PfCDPK1 to mediate the assembly of a multiprotein complex in P. falciparum merozoites. A phospho-peptide, P1, based on the Ca2+-dependent phosphosites of PKAr, binds Pf14-3-3I and disrupts assembly of the Pf14-3-3I-mediated multiprotein complex. Disruption of the multiprotein complex with P1 inhibits microneme secretion and RBC invasion. This study thus identifies a novel signaling complex that plays a key role in merozoite invasion of RBCs. Disruption of this signaling complex could serve as a novel approach to inhibit blood-stage growth of malaria parasites.IMPORTANCE Invasion of red blood cells (RBCs) by Plasmodium falciparum merozoites is a complex process that is regulated by intricate signaling pathways. Here, we used phosphoproteomic profiling to identify the key proteins involved in signaling events during invasion. We found changes in the phosphorylation of various merozoite proteins, including multiple kinases previously implicated in the process of invasion. We also found that a phosphorylation-dependent multiprotein complex including signaling kinases assembles during the process of invasion. Disruption of this multiprotein complex impairs merozoite invasion of RBCs, providing a novel approach for the development of inhibitors to block the growth of blood-stage malaria parasites.


Subject(s)
14-3-3 Proteins/metabolism , Erythrocytes/parasitology , Plasmodium falciparum/physiology , Protozoan Proteins/metabolism , Signal Transduction , 14-3-3 Proteins/genetics , Humans , Merozoites/physiology , Phosphorylation , Plasmodium falciparum/genetics , Proteomics , Protozoan Proteins/genetics
17.
One Health ; 10: 100164, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32904469

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, in 2019, is responsible for the COVID-19 pandemic. It is now accepted that the wild fauna, probably bats, constitute the initial reservoir of the virus, but little is known about the role pets can play in the spread of the disease in human communities, knowing the ability of SARS-CoV-2 to infect some domestic animals. In this cross-sectional study, we tested the antibody response in a cluster of 21 domestic pets (9 cats and 12 dogs) living in close contact with their owners (belonging to a veterinary community of 20 students) in which two students tested positive for COVID-19 and several others (n = 11/18) consecutively showed clinical signs (fever, cough, anosmia, etc.) compatible with COVID-19 infection. Although a few pets presented many clinical signs indicative for a coronavirus infection, no antibodies against SARS-CoV-2 were detectable in their blood one month after the index case was reported, using an immunoprecipitation assay. These original data can serve a better evaluation of the host range of SARS-CoV-2 in natural environment exposure conditions.

18.
Nat Med ; 26(5): 741-749, 2020 05.
Article in English | MEDLINE | ID: mdl-32405064

ABSTRACT

A major gap in the Plasmodium vivax elimination toolkit is the identification of individuals carrying clinically silent and undetectable liver-stage parasites, called hypnozoites. This study developed a panel of serological exposure markers capable of classifying individuals with recent P. vivax infections who have a high likelihood of harboring hypnozoites. We measured IgG antibody responses to 342 P. vivax proteins in longitudinal clinical cohorts conducted in Thailand and Brazil and identified candidate serological markers of exposure. Candidate markers were validated using samples from year-long observational cohorts conducted in Thailand, Brazil and the Solomon Islands and antibody responses to eight P. vivax proteins classified P. vivax infections in the previous 9 months with 80% sensitivity and specificity. Mathematical models demonstrate that a serological testing and treatment strategy could reduce P. vivax prevalence by 59-69%. These eight antibody responses can serve as a biomarker, identifying individuals who should be targeted with anti-hypnozoite therapy.


Subject(s)
Biomarkers/blood , Malaria, Vivax/diagnosis , Serologic Tests/methods , Adult , Brazil/epidemiology , Child , Cohort Studies , Early Diagnosis , Humans , Immunoglobulin G/analysis , Immunoglobulin G/blood , Infection Control/methods , Longitudinal Studies , Malaria, Vivax/blood , Malaria, Vivax/epidemiology , Melanesia/epidemiology , Plasmodium vivax/physiology , Prevalence , Sensitivity and Specificity , Serologic Tests/standards , Thailand/epidemiology , Time Factors
19.
Sci Transl Med ; 12(559)2020 09 02.
Article in English | MEDLINE | ID: mdl-32817357

ABSTRACT

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their differing antibody response profiles. Here, we performed a pilot study of four serological assays to assess the amounts of anti-SARS-CoV-2 antibodies in serum samples obtained from 491 healthy individuals before the SARS-CoV-2 pandemic, 51 individuals hospitalized with COVID-19, 209 suspected cases of COVID-19 with mild symptoms, and 200 healthy blood donors. We used two ELISA assays that recognized the full-length nucleoprotein (N) or trimeric spike (S) protein ectodomain of SARS-CoV-2. In addition, we developed the S-Flow assay that recognized the S protein expressed at the cell surface using flow cytometry, and the luciferase immunoprecipitation system (LIPS) assay that recognized diverse SARS-CoV-2 antigens including the S1 domain and the carboxyl-terminal domain of N by immunoprecipitation. We obtained similar results with the four serological assays. Differences in sensitivity were attributed to the technique and the antigen used. High anti-SARS-CoV-2 antibody titers were associated with neutralization activity, which was assessed using infectious SARS-CoV-2 or lentiviral-S pseudotype virus. In hospitalized patients with COVID-19, seroconversion and virus neutralization occurred between 5 and 14 days after symptom onset, confirming previous studies. Seropositivity was detected in 32% of mildly symptomatic individuals within 15 days of symptom onset and in 3% of healthy blood donors. The four antibody assays that we used enabled a broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different subpopulations within one region.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Cohort Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Enzyme-Linked Immunosorbent Assay/methods , Female , Flow Cytometry/methods , France/epidemiology , Healthy Volunteers , Humans , Immunoprecipitation/methods , Luciferases , Male , Middle Aged , Neutralization Tests , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Translational Research, Biomedical , Young Adult
20.
PLoS Negl Trop Dis ; 13(2): e0006987, 2019 02.
Article in English | MEDLINE | ID: mdl-30768655

ABSTRACT

BACKGROUND: The Plasmodium vivax Duffy Binding Protein (PvDBP) is a key target of naturally acquired immunity. However, region II of PvDBP, which contains the receptor-binding site, is highly polymorphic. The natural acquisition of antibodies to different variants of PvDBP region II (PvDBPII), including the AH, O, P and Sal1 alleles, the central region III-V (PvDBPIII-V), and P. vivax Erythrocyte Binding Protein region II (PvEBPII) and their associations with risk of clinical P. vivax malaria are not well understood. METHODOLOGY: Total IgG and IgG subclasses 1, 2, and 3 that recognize four alleles of PvDBPII (AH, O, P, and Sal1), PvDBPIII-V and PvEBPII were measured in samples collected from a cohort of 1 to 3 year old Papua New Guinean (PNG) children living in a highly endemic area of PNG. The levels of binding inhibitory antibodies (BIAbs) to PvDBPII (AH, O, and Sal1) were also tested in a subset of children. The association of presence of IgG with age, cumulative exposure (measured as the product of age and malaria infections during follow-up) and prospective risk of clinical malaria were evaluated. RESULTS: The increase in antigen-specific total IgG, IgG1, and IgG3 with age and cumulative exposure was only observed for PvDBPII AH and PvEBPII. High levels of total IgG and predominant subclass IgG3 specific for PvDBPII AH were associated with decreased incidence of clinical P. vivax episodes (aIRR = 0.56-0.68, P≤0.001-0.021). High levels of total IgG and IgG1 to PvEBPII correlated strongly with protection against clinical vivax malaria compared with IgGs against all PvDBPII variants (aIRR = 0.38, P<0.001). Antibodies to PvDBPII AH and PvEBPII showed evidence of an additive effect, with a joint protective association of 70%. CONCLUSION: Antibodies to the key parasite invasion ligands PvDBPII and PvEBPII are good correlates of protection against P. vivax malaria in PNG. This further strengthens the rationale for inclusion of PvDBPII in a recombinant subunit vaccine for P. vivax malaria and highlights the need for further functional studies to determine the potential of PvEBPII as a component of a subunit vaccine for P. vivax malaria.


Subject(s)
Antigens, Protozoan/immunology , Immunoglobulin G/blood , Immunoglobulin G/physiology , Malaria, Vivax/immunology , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology , Antibody Specificity , Child, Preschool , Female , Humans , Infant , Malaria, Vivax/epidemiology , Male , Papua New Guinea/epidemiology , Parasitemia
SELECTION OF CITATIONS
SEARCH DETAIL