Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Cell ; 82(17): 3166-3177.e5, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35905736

ABSTRACT

Rifampicin (RIF), the frontline drug against M. tuberculosis, is completely ineffective against M. abscessus, partially due to the presence of an ADP-ribosyltransferase (Arr) that inactivates RIF. Using RNA-seq, we show that exposure of M. abscessus to sublethal doses of RIF and Rifabutin (RBT), a close analog of RIF, results in an ∼25-fold upregulation of Mab_helR in laboratory and clinical isolates. An isogenic deletion in Mab_helR results in RIF/RBT hypersensitivity, and overexpression of Mab_helR confers RIF tolerance in M. tuberculosis. We demonstrate an increased HelR-RNAP association in RIF-exposed bacteria and a MabHelR-mediated dissociation of RNAP from stalled initiation complexes in vitro. Finally, we show that the tip of the PCh-loop of Mab_helR, present in proximity to RIF, is critical for conferring RIF resistance but dispensable for dissociation of stalled RNAP complexes, suggesting that HelR-mediated RIF resistance requires a step in addition to displacement of RIF-stalled RNAP.


Subject(s)
Mycobacterium abscessus , Mycobacterium tuberculosis , Rifamycins , Tuberculosis , DNA-Directed RNA Polymerases/genetics , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Rifabutin/pharmacology , Rifampin/pharmacology , Rifamycins/pharmacology , Tuberculosis/microbiology
2.
Proc Natl Acad Sci U S A ; 117(1): 629-634, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871194

ABSTRACT

Antibiotic resistance in bacteria is typically conferred by proteins that function as efflux pumps or enzymes that modify either the drug or the antibiotic target. Here we report an unusual mechanism of resistance to macrolide-lincosamide antibiotics mediated by mycobacterial HflX, a conserved ribosome-associated GTPase. We show that deletion of the hflX gene in the pathogenic Mycobacterium abscessus, as well as the nonpathogenic Mycobacterium smegmatis, results in hypersensitivity to the macrolide-lincosamide class of antibiotics. Importantly, the level of resistance provided by Mab_hflX is equivalent to that conferred by erm41, implying that hflX constitutes a significant resistance determinant in M. abscessus We demonstrate that mycobacterial HflX associates with the 50S ribosomal subunits in vivo and can dissociate purified 70S ribosomes in vitro, independent of GTP hydrolysis. The absence of HflX in a ΔMs_hflX strain also results in a significant accumulation of 70S ribosomes upon erythromycin exposure. Finally, a deletion of either the N-terminal or the C-terminal domain of HflX abrogates ribosome splitting and concomitantly abolishes the ability of mutant proteins to mediate antibiotic tolerance. Together, our results suggest a mechanism of macrolide-lincosamide resistance in which the mycobacterial HflX dissociates antibiotic-stalled ribosomes and rescues the bound mRNA. Given the widespread presence of hflX genes, we anticipate this as a generalized mechanism of macrolide resistance used by several bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium abscessus/physiology , Ribosome Subunits, Large, Bacterial/metabolism , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Humans , Lincosamides/pharmacology , Lincosamides/therapeutic use , Macrolides/pharmacology , Macrolides/therapeutic use , Mutation , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/drug effects , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/physiology , Protein Biosynthesis/drug effects , Protein Domains/genetics , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
3.
Antimicrob Agents Chemother ; 65(11): e0118421, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34460298

ABSTRACT

Mycobacterium abscessus has emerged as a successful pathogen owing to its intrinsic drug resistance. Macrolide and lincosamide antibiotics share overlapping binding sites within the ribosome and common resistance pathways. Nevertheless, while M. abscessus is initially susceptible to macrolides, they are completely resistant to the lincosamide antibiotics. Here, we have used RNA sequencing to determine the changes in gene expression in M. abscessus upon exposure to the lincosamide, clindamycin (CLY). We show that Mab_1846, encoding a putative ARE-ABCF protein, was upregulated upon exposure to macrolides and lincosamides but conferred resistance to CLY alone. A Mycobacterium smegmatis homologue of Mab_1846, Ms_5102, was similarly found to be required for CLY resistance in M. smegmatis. We demonstrate that Ms5102 mediates CLY resistance by directly interacting with the ribosomes and protecting it from CLY inhibition. Additional biochemical characterization showed that ribosome binding is not nucleotide dependent, but ATP hydrolysis is required for dissociation of Ms5102 from the ribosome as well as for its ability to confer CLY resistance. Finally, we show that in comparison to the macrolides, CLY is a potent inducer of Mab_1846 and the whiB7 regulon, such that exposure of M. abscessus to very low antibiotic concentrations induces a heightened expression of erm41, hflX, and Mab_1846, which likely function together to result in a particularly antibiotic-resistant state.


Subject(s)
Mycobacterium abscessus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Lincosamides/pharmacology , Macrolides/pharmacology , Mycobacterium abscessus/genetics , Ribosomes/genetics
4.
J Virol ; 90(9): 4357-4368, 2016 May.
Article in English | MEDLINE | ID: mdl-26889024

ABSTRACT

UNLABELLED: The coronavirus membrane (M) protein is the central actor in virion morphogenesis. M organizes the components of the viral membrane, and interactions of M with itself and with the nucleocapsid (N) protein drive virus assembly and budding. In order to further define M-M and M-N interactions, we constructed mutants of the model coronavirus mouse hepatitis virus (MHV) in which all or part of the M protein was replaced by its phylogenetically divergent counterpart from severe acute respiratory syndrome coronavirus (SARS-CoV). We were able to obtain viable chimeras containing the entire SARS-CoV M protein as well as mutants with intramolecular substitutions that partitioned M protein at the boundaries between the ectodomain, transmembrane domains, or endodomain. Our results show that the carboxy-terminal domain of N protein, N3, is necessary and sufficient for interaction with M protein. However, despite some previous genetic and biochemical evidence that mapped interactions with N to the carboxy terminus of M, it was not possible to define a short linear region of M protein sufficient for assembly with N. Thus, interactions with N protein likely involve multiple linearly discontiguous regions of the M endodomain. The SARS-CoV M chimera exhibited a conditional growth defect that was partially suppressed by mutations in the envelope (E) protein. Moreover, virions of the M chimera were markedly deficient in spike (S) protein incorporation. These findings suggest that the interactions of M protein with both E and S protein are more complex than previously thought. IMPORTANCE: The assembly of coronavirus virions entails concerted interactions among the viral structural proteins and the RNA genome. One strategy to study this process is through construction of interspecies chimeras that preserve or disrupt particular inter- or intramolecular associations. In this work, we replaced the membrane (M) protein of the model coronavirus mouse hepatitis virus with its counterpart from a heterologous coronavirus. The results clarify our understanding of the interaction between the coronavirus M protein and the nucleocapsid protein. At the same time, they reveal unanticipated complexities in the interactions of M with the viral spike and envelope proteins.


Subject(s)
Coronavirus Infections/virology , Coronavirus/physiology , Nucleocapsid Proteins/metabolism , Viral Matrix Proteins/metabolism , Virus Assembly , Amino Acid Sequence , Animals , Cell Line , Coronavirus M Proteins , Coronavirus Nucleocapsid Proteins , Genetic Vectors/genetics , Mice , Molecular Sequence Data , Murine hepatitis virus/physiology , Mutation , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Protein Binding , Protein Interaction Domains and Motifs , Sequence Alignment , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Virion , Virus Replication
5.
J Virol ; 89(11): 6033-47, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25810552

ABSTRACT

UNLABELLED: Coronaviruses, the largest RNA viruses, have a complex program of RNA synthesis that entails genome replication and transcription of subgenomic mRNAs. RNA synthesis by the prototype coronavirus mouse hepatitis virus (MHV) is carried out by a replicase-transcriptase composed of 16 nonstructural protein (nsp) subunits. Among these, nsp3 is the largest and the first to be inserted into the endoplasmic reticulum. nsp3 comprises multiple structural domains, including two papain-like proteases (PLPs) and a highly conserved ADP-ribose-1″-phosphatase (ADRP) macrodomain. We have previously shown that the ubiquitin-like domain at the amino terminus of nsp3 is essential and participates in a critical interaction with the viral nucleocapsid protein early in infection. In the current study, we exploited atypical expression schemes to uncouple PLP1 from the processing of nsp1 and nsp2 in order to investigate the requirements of nsp3 domains for viral RNA synthesis. In the first strategy, a mutant was created in which replicase polyprotein translation initiated with nsp3, thereby establishing that complete elimination of nsp1 and nsp2 does not abolish MHV viability. In the second strategy, a picornavirus autoprocessing element was used to separate a truncated nsp1 from nsp3. This provided a platform for further dissection of amino-terminal domains of nsp3. From this, we found that catalytic mutation of PLP1 or complete deletion of PLP1 and the adjacent ADRP domain was tolerated by the virus. These results showed that neither the PLP1 domain nor the ADRP domain of nsp3 provides integral activities essential for coronavirus genomic or subgenomic RNA synthesis. IMPORTANCE: The largest component of the coronavirus replicase-transcriptase complex, nsp3, contains multiple modules, many of which do not have clearly defined functions in genome replication or transcription. These domains may play direct roles in RNA synthesis, or they may have evolved for other purposes, such as to combat host innate immunity. We initiated a dissection of MHV nsp3 aimed at identifying those activities or structures in this huge molecule that are essential to replicase activity. We found that both PLP1 and ADRP could be entirely deleted, provided that the requirement for proteolytic processing by PLP1 was offset by an alternative mechanism. This demonstrated that neither PLP1 nor ADRP plays an essential role in coronavirus RNA synthesis.


Subject(s)
Murine hepatitis virus/physiology , RNA, Viral/biosynthesis , Transcription, Genetic , Viral Nonstructural Proteins/metabolism , Virus Replication , Animals , DNA Mutational Analysis , Mice , Microbial Viability , Murine hepatitis virus/genetics , Protein Structure, Tertiary , Viral Nonstructural Proteins/genetics
6.
Tuberculosis (Edinb) ; 138: 102295, 2023 01.
Article in English | MEDLINE | ID: mdl-36584486

ABSTRACT

Mycobacterium abscessus is highly resistant to spectinomycin (SPC) thereby making it unavailable for therapeutic use. Sublethal exposure to SPC strongly induces whiB7 and its regulon, and a ΔMab_whiB7 strain is SPC sensitive suggesting that the determinants of SPC resistance are included within its regulon. In the present study we have determined the transcriptomic changes that occur in M. abscessus upon SPC exposure and have evaluated the involvement of 11 genes, that are both strongly SPC induced and whiB7 dependent, in SPC resistance. Of these we show that MAB_2780c can complement SPC sensitivity of ΔMab_whiB7 and that a ΔMab_2780c strain is ∼150 fold more SPC sensitive than wildtype bacteria, but not to tetracycline (TET) or other aminoglycosides. This is in contrast to its homologues, TetV from M. smegmatis and Tap from M. tuberculosis, that confer low-level resistance to TET, SPC and other aminoglycosides. We also show that the addition of the efflux pump inhibitor (EPI), verapamil results in >100-fold decrease in MIC of SPC in bacteria expressing Mab2780c to the levels observed for ΔMab_2780c; moreover a deletion of MAB_2780c results in a decreased efflux of the drug into the cell supernatant. Together our data suggest that Mab2780c is an SPC antiporter. Finally, molecular docking of SPC and TET on models of TetVMs and Mab2780c confirmed our antibacterial susceptibility findings that the Mab2780c pump preferentially effluxes SPC over TET. To our knowledge, this is the first report of an efflux pump that confers high-level drug resistance in M. abscessus. The identification of Mab2780c in SPC resistance opens up prospects for repurposing this relatively well-tolerated antibiotic as a combination therapy with verapamil or its analogs against M. abscessus infections.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium tuberculosis , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium abscessus/genetics , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium tuberculosis/genetics , Spectinomycin/pharmacology , Tetracycline/therapeutic use , Verapamil/therapeutic use
7.
Virology ; 567: 1-14, 2022 02.
Article in English | MEDLINE | ID: mdl-34933176

ABSTRACT

The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Intracellular Membranes/metabolism , Viral Replicase Complex Proteins/metabolism , Amino Acid Motifs , Animals , Cell Line , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Mice , Murine hepatitis virus , Mutation , Protein Binding , Protein Domains , RNA, Viral/biosynthesis , Viral Replicase Complex Proteins/chemistry , Viral Replicase Complex Proteins/genetics , Viral Replication Compartments/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL