Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Ann Rheum Dis ; 77(3): 378-385, 2018 03.
Article in English | MEDLINE | ID: mdl-29170203

ABSTRACT

OBJECTIVES: To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS: Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS: A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION: We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism.


Subject(s)
Chromosomes, Human, Pair 2/genetics , Osteoporotic Fractures/genetics , Spinal Fractures/genetics , Aged , Aged, 80 and over , Bone Density/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Middle Aged , Polymorphism, Single Nucleotide , Postmenopause , Quantitative Trait Loci
2.
Am J Clin Nutr ; 109(2): 276-287, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30721968

ABSTRACT

Background: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age2, and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LM were termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.


Subject(s)
Adipose Tissue/metabolism , Body Composition/genetics , Body Fluid Compartments/metabolism , Muscle, Skeletal/metabolism , Phenotype , Polymorphism, Single Nucleotide , ADAMTS Proteins/genetics , Absorptiometry, Photon , Adolescent , Adult , Aged , Aged, 80 and over , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Electric Impedance , Extracellular Matrix Proteins/genetics , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , RNA-Binding Proteins/genetics , Receptor, Melanocortin, Type 4/genetics , Versicans/genetics , White People/genetics , Young Adult
3.
J Mol Biol ; 361(1): 115-27, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16831446

ABSTRACT

The third component of complement (C3) is a 190 kDa glycoprotein essential for eliciting the complement response. The protein consists of two polypeptide chains (alpha and beta) held together with a single disulfide bridge. The beta-chain is composed of six MG domains, one of which is shared with the alpha-chain. The disulfide bridge connecting the chains is positioned in the shared MG domain. The alpha-chain consists of the anaphylatoxin domain, three MG domains, a CUB domain, an alpha(6)/alpha(6)-barrel domain and the C-terminal C345c domain. An internal thioester in the alpha-chain of C3 (present in C4 but not in C5) is cleaved during complement activation. This mediates covalent attachment of the activated C3b to immune complexes and invading microorganisms, thereby opsonizing the target. We present the structure of bovine C3 determined at 3 Angstroms resolution. The structure shows that the ester is buried deeply between the thioester domain and the properdin binding domain, in agreement with the human structure. This domain interface is broken upon activation, allowing nucleophile access. The structure of bovine C3 clearly demonstrates that the main chain around the thioester undergoes a helical transition upon activation. This rearrangement is proposed to be the basis for the high level of reactivity of the thioester group. A strictly conserved glutamate residue is suggested to function catalytically in thioester proteins. Structure-based design of inhibitors of C3 activation may target a conserved pocket between the alpha-chain and the beta-chain of C3, which appears essential for conformational changes in C3.


Subject(s)
Complement C3/chemistry , Complement C3/physiology , Animals , Cattle , Complement Activation , Complement C3/metabolism , Crystallography, X-Ray , Esters , Molecular Sequence Data , Protein Structure, Tertiary , Structure-Activity Relationship
4.
Bone ; 59: 20-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24516880

ABSTRACT

Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged > 55 years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey­Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey­Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han­Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p < 5 × 10− 8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p = 4.6 × 10− 8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98­1.14; p = 0.17), displaying high degree of heterogeneity (I2 = 57%; Qhet p = 0.0006). Under Han­Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size > 1.25) may still be consistent with an effect size < 1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.


Subject(s)
Bone Density/genetics , Chromosomes, Human, Pair 16/genetics , Genetic Loci/genetics , Genome-Wide Association Study , Spinal Fractures/diagnostic imaging , Spinal Fractures/genetics , Aged , Female , Humans , Male , Netherlands , Polymorphism, Single Nucleotide/genetics , Radiography , Reproducibility of Results
5.
Eur J Hum Genet ; 20(6): 675-81, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22274585

ABSTRACT

The purinergic P2X7 receptor has a major role in the regulation of osteoblast and osteoclast activity and changes in receptor function may therefore affect bone mass in vivo. The aim of this study was to determine the association of non-synonymous single-nucleotide polymorphisms in the P2RX7 gene to bone mass and fracture incidence in post-menopausal women. A total of 1694 women (aged 45-58) participating in the Danish Osteoporosis Prevention Study were genotyped for 12 functional P2X7 receptor variants. Bone mineral density was determined at baseline and after 10 years. In addition, vertebral fracture incidence was documented at 10 years. We found that the rate of bone loss was clearly associated with the Arg307Gln amino acid substitution such that individuals heterozygous for this polymorphism had a 40% increased rate of bone loss. Furthermore, individuals carrying the Ile568Asn variant allele had increased bone loss. In contrast, the Gln460Arg polymorphism was associated with protection against bone loss. The Ala348Thr polymorphism was associated with a lower vertebral fracture incidence 10 years after menopause. Finally, we developed a risk model, which integrated P2RX7 genotypes. Using this model, we found a clear association between the low-risk (high-P2X7 function) alleles and low rate of bone loss. Conversely, high-risk (reduced P2X7 function) alleles were associated with a high rate of bone loss. In conclusion, an association was demonstrated between variants that reduce P2X7 receptor function and increased rate of bone loss. These data support that the P2X7 receptor is important in regulation of bone mass.


Subject(s)
Osteoporosis, Postmenopausal/genetics , Polymorphism, Single Nucleotide , Postmenopause/genetics , Receptors, Purinergic P2X7/genetics , Spinal Fractures/genetics , Bone Density/genetics , Female , Genetic Predisposition to Disease , Genotype , Humans , Middle Aged , Osteoporosis, Postmenopausal/complications , Spinal Fractures/etiology , Spinal Fractures/metabolism
6.
J Biol Chem ; 277(46): 43698-706, 2002 Nov 15.
Article in English | MEDLINE | ID: mdl-12218066

ABSTRACT

The primary structure determination of the dimeric invertebrate alpha(2)-macroglobulin (alpha(2)M) from Limulus polyphemus has been completed by determining its sites of glycosylation and disulfide bridge pattern. Of seven potential glycosylation sites for N-linked glycosylation, six (Asn(275), Asn(307), Asn(866), Asn(896), Asn(1089), and Asn(1145)) carry common glucosamine-based carbohydrates groups, whereas one (Asn(80)) carries a carbohydrate chain containing both glucosamine and galactosamine. Nine disulfide bridges, which are homologues with bridges in human alpha(2)M, have been identified (Cys(228)-Cys(269), Cys(456)-Cys(580), Cys(612)-Cys(799), Cys(657)-Cys(707), Cys(849)-Cys(876), Cys(874)-Cys(910), Cys(946)-Cys(1328), Cys(1104)-Cys(1155), and Cys(1362)-Cys(1475)). In addition to these bridges, Limulus alpha(2)M contains three unique bridges that connect Cys(361) and Cys(382), Cys(1370) and Cys(1374), respectively, and Cys(719) in one subunit with the same residue in the other subunit of the dimer. The latter bridge forms the only interchain disulfide bridge in Limulus alpha(2)M. The location of this bridge within the bait region is discussed and compared with other alpha-macroglobulins. Several peptides identified in the course of determining the disulfide bridge pattern provided evidence for the existence of two forms of Limulus alpha(2)M. The two forms have a high degree of sequence identity, but they differ extensively in large parts of their bait regions suggesting that they have different inhibitory spectra. The two forms (Limulus alpha(2)M-1 and -2) are most likely present in an approximately 2:1 ratio in the hemolymph of each animal, and they can be partially separated on a Mono Q column at pH 7.4 by applying a shallow gradient of NaCl.


Subject(s)
Carbohydrates/chemistry , Disulfides , Horseshoe Crabs/metabolism , alpha-Macroglobulins/chemistry , alpha-Macroglobulins/metabolism , Amino Acid Sequence , Animals , Asparagine/chemistry , Binding Sites , Chromatography, Gel , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Cloning, Molecular , Cysteine/chemistry , DNA, Complementary/metabolism , Disulfides/metabolism , Electrophoresis, Polyacrylamide Gel , Glycosylation , Hemolymph , Humans , Hydrogen-Ion Concentration , Methylamines/pharmacology , Molecular Sequence Data , Polymerase Chain Reaction , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Sodium Chloride/pharmacology , Trypsin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL