Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(7): e2314085121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38330013

ABSTRACT

Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.


Subject(s)
Epoxide Hydrolases , Neoplasms , Mice , Humans , Animals , Epoxide Hydrolases/metabolism , Fatty Acids/metabolism , Inflammation/metabolism , Neoplasms/therapy , Immunotherapy , Tumor Microenvironment
2.
FASEB J ; 37(8): e23068, 2023 08.
Article in English | MEDLINE | ID: mdl-37436778

ABSTRACT

In sporadic amyotrophic lateral sclerosis (sALS), IL-17A- and granzyme-positive cytotoxic T lymphocytes (CTL), IL-17A-positive mast cells, and inflammatory macrophages invade the brain and spinal cord. In some patients, the disease starts following a trauma or a severe infection. We examined cytokines and cytokine regulators over the disease course and found that, since the early stages, peripheral blood mononuclear cells (PBMC) exhibit increased expression of inflammatory cytokines IL-12A, IFN-γ, and TNF-α, as well as granzymes and the transcription factors STAT3 and STAT4. In later stages, PBMCs upregulated the autoimmunity-associated cytokines IL-23A and IL-17B, and the chemokines CXCL9 and CXCL10, which attract CTL and monocytes into the central nervous system. The inflammation is fueled by the downregulation of IL-10, TGFß, and the inhibitory T-cell co-receptors CTLA4, LAG3, and PD-1, and, in vitro, by stimulation with the ligand PD-L1. We investigated in two sALS patients the regulation of the macrophage transcriptome by dimethyl fumarate (DMF), a drug approved against multiple sclerosis and psoriasis, and the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway inhibitor H-151. Both DMF and H-151 downregulated the expression of granzymes and the pro-inflammatory cytokines IL-1ß, IL-6, IL-15, IL-23A, and IFN-γ, and induced a pro-resolution macrophage phenotype. The eicosanoid epoxyeicosatrienoic acids (EET) from arachidonic acid was anti-inflammatory in synergy with DMF. H-151 and DMF are thus candidate drugs targeting the inflammation and autoimmunity in sALS via modulation of the NFκB and cGAS/STING pathways.


Subject(s)
Amyotrophic Lateral Sclerosis , Cytokines , Humans , Cytokines/metabolism , Interleukin-17 , Dimethyl Fumarate , Leukocytes, Mononuclear/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Granzymes , Inflammation/drug therapy , Nucleotidyltransferases
3.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607951

ABSTRACT

Cancer therapy reduces tumor burden via tumor cell death ("debris"), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.


Subject(s)
Eicosanoids/metabolism , Epoxide Hydrolases/biosynthesis , Macrophages/immunology , Neoplasm Metastasis/pathology , Receptors, Prostaglandin E, EP4 Subtype/biosynthesis , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/pathology , Cell Death/drug effects , Cell Line, Tumor , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Cytokines/metabolism , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/prevention & control , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Phagocytosis/immunology , RAW 264.7 Cells
4.
J Cell Physiol ; 238(10): 2468-2480, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37566647

ABSTRACT

Autophagy plays a dual role in tumorigenesis by functioning as both a tumor suppressor and promoter, depending on the stage of tumorigenesis. However, it is still unclear at what stage the role of autophagy changes during tumorigenesis. Herein, we investigated the differences in the basal levels and roles of autophagy in five cell lines at different stages of cell transformation. We found that cell lines at higher transformation stages were more sensitive to the autophagy inhibitors, suggesting that autophagy plays a more important role as the transformation progresses. Our ptfLC3 imaging analysis to measure Atg5/LC3-dependent autophagy showed increased autophagic flux in transformed cells compared to untransformed cells. However, the Cyto-ID analysis, which measures Atg5-dependent and -independent autophagic flux, showed high levels of autophagosome formation not only in the transformed cells but also in the initiated cell and Atg5 KO cell line. These results indicate that Atg5-independent autophagy may be more critical in initiated and transformed cell lines than in untransformed cells. Specially, we observed that transformed cells maintained relatively high basal autophagy levels under rapidly proliferating conditions but exhibited much lower basal autophagy levels at high confluency; however, autophagic flux was not significantly reduced in untransformed cells, even at high confluency. In addition, when continuously cultured for 3 weeks without passage, senescent cells were significantly less sensitive to autophagy inhibition than their actively proliferating counterparts. These results imply that once a cell has switched from a proliferative state to a senescent state, the inhibition of autophagy has only a minimal effect. Taken together, our results suggest that autophagy can be differentially regulated in cells at different stages of tumorigenesis under stressful conditions.

5.
Biochem Biophys Res Commun ; 667: 64-72, 2023 07 30.
Article in English | MEDLINE | ID: mdl-37209564

ABSTRACT

Chemotherapy-induced cognitive impairment (CICI) is a novel clinical condition characterized by memory, learning, and motor function deficits. Oxidative stress and inflammation are potential factors contributing to chemotherapy's adverse effects on the brain. Inhibition of soluble epoxide hydrolase (sEH) has been proven effective in neuroinflammation and reversal of memory impairment. The research aims to evaluate the memory protective effect of sEH inhibitor and dual inhibitor of sEH and COX and compare its impact with herbal extracts with known nootropic activity in an animal model of CICI. In vitro sEH, the inhibitory activity of hydroalcoholic extracts of Sizygium aromaticum, Nigella sativa, and Mesua ferrea was tested on murine and human sEH enzyme as per the protocol, and IC50 was determined. Cyclophosphamide (50 mg/kg), methotrexate (5 mg/kg), and fluorouracil (5 mg/kg) combination (CMF) were administered intraperitoneally to induce CICI. The known herbal sEH inhibitor, Lepidium meyenii and the dual inhibitor of COX and sEH (PTUPB) were tested for their protective effect in the CICI model. The herbal formulation with known nootropic activity viz Bacopa monnieri and commercial formulation (Mentat) were also used to compare the efficacy in the CICI model. Behavioral parameter such as cognitive function was assessed by Morris Water Maze besides investigating oxidative stress (GSH and LPO) and inflammatory (TNFα, IL-6, BDNF and COX-2) markers in the brain. CMF-induced CICI, which was associated with increased oxidative stress and inflammation in the brain. However, treatment with PTUPB or herbal extracts inhibiting sEH preserved spatial memory via ameliorating oxidative stress and inflammation. S. aromaticum and N. sativa inhibited COX2, but M. Ferrea did not affect COX2 activity. Lepidium meyenii was the least effective, and mentat showed superior activity over Bacopa monnieri in preserving memory. Compared to untreated animals, the mice treated with PTUPB or hydroalcoholic extracts showed a discernible improvement in cognitive function in CICI.


Subject(s)
Chemotherapy-Related Cognitive Impairment , Neuroprotective Agents , Nootropic Agents , Humans , Mice , Animals , Cyclooxygenase 2 , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Epoxide Hydrolases , Inflammation
6.
Proc Natl Acad Sci U S A ; 117(21): 11753-11759, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32398374

ABSTRACT

Epidemiological studies suggest that exposure to herbicides during pregnancy might increase risk for autism spectrum disorder (ASD) in offspring. However, the precise mechanisms underlying the risk of ASD by herbicides such as glyphosate remain unclear. Soluble epoxide hydrolase (sEH) in the metabolism of polyunsaturated fatty acids is shown to play a key role in the development of ASD in offspring after maternal immune activation. Here, we found ASD-like behavioral abnormalities in juvenile offspring after maternal exposure to high levels of formulated glyphosate. Furthermore, we found higher levels of sEH in the prefrontal cortex (PFC), hippocampus, and striatum of juvenile offspring, and oxylipin analysis showed decreased levels of epoxy-fatty acids such as 8 (9)-EpETrE in the blood, PFC, hippocampus, and striatum of juvenile offspring after maternal glyphosate exposure, supporting increased activity of sEH in the offspring. Moreover, we found abnormal composition of gut microbiota and short-chain fatty acids in fecal samples of juvenile offspring after maternal glyphosate exposure. Interestingly, oral administration of TPPU (an sEH inhibitor) to pregnant mothers from E5 to P21 prevented ASD-like behaviors such as social interaction deficits and increased grooming time in the juvenile offspring after maternal glyphosate exposure. These findings suggest that maternal exposure to high levels of glyphosate causes ASD-like behavioral abnormalities and abnormal composition of gut microbiota in juvenile offspring, and that increased activity of sEH might play a role in ASD-like behaviors in offspring after maternal glyphosate exposure. Therefore, sEH may represent a target for ASD in offspring after maternal stress from occupational exposure to contaminants.


Subject(s)
Autistic Disorder/chemically induced , Glycine/analogs & derivatives , Maternal Exposure , Prenatal Exposure Delayed Effects , Animals , Behavior, Animal/drug effects , Brain Chemistry/drug effects , Disease Models, Animal , Epoxide Hydrolases/metabolism , Female , Gastrointestinal Microbiome/drug effects , Glycine/adverse effects , Male , Mice , Pregnancy , Glyphosate
7.
Proc Natl Acad Sci U S A ; 117(15): 8431-8436, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32220957

ABSTRACT

Intestinal barrier dysfunction, which leads to translocation of bacteria or toxic bacterial products from the gut into bloodstream and results in systemic inflammation, is a key pathogenic factor in many human diseases. However, the molecular mechanisms leading to intestinal barrier defects are not well understood, and there are currently no available therapeutic approaches to target intestinal barrier function. Here we show that soluble epoxide hydrolase (sEH) is an endogenous regulator of obesity-induced intestinal barrier dysfunction. We find that sEH is overexpressed in the colons of obese mice. In addition, pharmacologic inhibition or genetic ablation of sEH abolishes obesity-induced gut leakage, translocation of endotoxin lipopolysaccharide or bacteria, and bacterial invasion-induced adipose inflammation. Furthermore, systematic treatment with sEH-produced lipid metabolites, dihydroxyeicosatrienoic acids, induces bacterial translocation and colonic inflammation in mice. The actions of sEH are mediated by gut bacteria-dependent mechanisms, since inhibition or genetic ablation of sEH fails to attenuate obesity-induced gut leakage and adipose inflammation in mice lacking gut bacteria. Overall, these results support that sEH is a potential therapeutic target for obesity-induced intestinal barrier dysfunction, and that sEH inhibitors, which have been evaluated in human clinical trials targeting other human disorders, could be promising agents for prevention and/or treatment.


Subject(s)
Bacterial Translocation , Epoxide Hydrolases/immunology , Intestinal Diseases/enzymology , Intestines/enzymology , Obesity/complications , Adipose Tissue/immunology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Epoxide Hydrolases/genetics , Gastrointestinal Microbiome , Humans , Intestinal Diseases/etiology , Intestinal Diseases/immunology , Intestinal Diseases/microbiology , Intestines/immunology , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/enzymology , Obesity/genetics
8.
Proc Natl Acad Sci U S A ; 117(35): 21576-21587, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32801214

ABSTRACT

Toxic environmental carcinogens promote cancer via genotoxic and nongenotoxic pathways, but nongenetic mechanisms remain poorly characterized. Carcinogen-induced apoptosis may trigger escape from dormancy of microtumors by interfering with inflammation resolution and triggering an endoplasmic reticulum (ER) stress response. While eicosanoid and cytokine storms are well-characterized in infection and inflammation, they are poorly characterized in cancer. Here, we demonstrate that carcinogens, such as aflatoxin B1 (AFB1), induce apoptotic cell death and the resulting cell debris stimulates hepatocellular carcinoma (HCC) tumor growth via an "eicosanoid and cytokine storm." AFB1-generated debris up-regulates cyclooxygenase-2 (COX-2), soluble epoxide hydrolase (sEH), ER stress-response genes including BiP, CHOP, and PDI in macrophages. Thus, selective cytokine or eicosanoid blockade is unlikely to prevent carcinogen-induced cancer progression. Pharmacological abrogation of both the COX-2 and sEH pathways by PTUPB prevented the debris-stimulated eicosanoid and cytokine storm, down-regulated ER stress genes, and promoted macrophage phagocytosis of debris, resulting in suppression of HCC tumor growth. Thus, inflammation resolution via dual COX-2/sEH inhibition is an approach to prevent carcinogen-induced cancer.


Subject(s)
Cytokines/metabolism , Eicosanoids/metabolism , Liver Neoplasms/metabolism , Aflatoxin B1/adverse effects , Animals , Apoptosis , Carcinogenesis/metabolism , Carcinogens/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line , Cyclooxygenase 2/metabolism , Cytokines/immunology , Disease Progression , Eicosanoids/immunology , Epoxide Hydrolases/metabolism , Hep G2 Cells , Humans , Inflammation/metabolism , Liver Neoplasms/physiopathology , Macrophages/metabolism , Mice , Neoplastic Processes
9.
Ecotoxicol Environ Saf ; 249: 114417, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36525946

ABSTRACT

Aflatoxin B1 (AFB1) contamination in food and feed leads to severe global health problems. Acting as the frontier immunological barrier, the intestinal mucosa is constantly challenged by exposure to foodborne toxins such as AFB1 via contaminated diets, but the detailed toxic mechanism and endogenous regulators of AFB1 toxicity are still unclear. Here, we showed that AFB1 disrupted intestinal immune function by suppressing macrophages, especially M2 macrophages, and antimicrobial peptide-secreting Paneth cells. Using an oxylipinomics approach, we identified that AFB1 immunotoxicity is associated with decreased epoxy fatty acids, notably epoxyeicosatrienoic acids, and increased soluble epoxide hydrolase (sEH) levels in the intestine. Furthermore, sEH deficiency or inhibition rescued the AFB1-compromised intestinal immunity by restoring M2 macrophages as well as Paneth cells and their-derived lysozyme and α-defensin-3 in mice. Altogether, our study demonstrates that AFB1 exposure impairs intestinal immunity, at least in part, in a sEH-mediated way. Moreover, the present study supports the potential application of pharmacological intervention by inhibiting the sEH enzyme in alleviating intestinal immunotoxicity and associated complications caused by AFB1 global contamination.


Subject(s)
Aflatoxin B1 , Epoxide Hydrolases , Animals , Mice , Aflatoxin B1/toxicity , Diet , Immunity , Intestines
10.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762395

ABSTRACT

Epidermal growth factor (EGF) receptor activation and related downstream signaling pathways are known to be one of the major mechanisms of the proliferation and migration of keratinocytes. The heparin-binding EGF-like growth factor (HB-EGF) binds to EGF receptors and stimulates keratinocyte proliferation and migration. Gintonin, a novel ginseng compound, is a lysophosphatidic acid (LPA) receptor ligand. Gintonin has skin-wound-healing effects. However, the underlying mechanisms for these gintonin actions remain unclear. In this study, we aimed to elucidate the involvement of EGFRs in gintonin-induced wound repair in HaCaT keratinocytes. In this study, a water-soluble tetrazolium salt-based assay, a modified Boyden chamber migration assay, and immunoblotting were performed. Gintonin increased EGF receptor activation in HaCaT cells. However, the gintonin-induced phosphorylation of the EGF receptor was markedly reduced via treatment with the LPA inhibitor Ki16425 or the EGF receptor inhibitor erlotinib. Gintonin-enhanced proliferation and migration were blocked by the EGF receptor inhibitors (erlotinib and AG1478). Additionally, gintonin stimulated the expression and release of HB-EGF in HaCaT cells. EGF receptor inhibitors blocked gintonin-enhanced HB-EGF expression. These results indicate that the wound-healing effects of gintonin are closely related to the collaboration between EGF receptor activation and HB-EGF release-mediated downstream signaling pathways.


Subject(s)
Epidermal Growth Factor , Keratinocytes , Epidermal Growth Factor/pharmacology , Erlotinib Hydrochloride , Heparin-binding EGF-like Growth Factor , ErbB Receptors
11.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373086

ABSTRACT

Parkinson's disease (PD) is an increasingly common neurodegenerative movement disorder with contributing factors that are still largely unexplored and currently no effective intervention strategy. Epidemiological and pre-clinical studies support the close association between environmental toxicant exposure and PD incidence. Aflatoxin B1 (AFB1), a hazardous mycotoxin commonly present in food and environment, is alarmingly high in many areas of the world. Previous evidence suggests that chronic exposure to AFB1 leads to neurological disorders as well as cancer. However, whether and how aflatoxin B1 contributes to the pathogenesis of PD is poorly understood. Here, oral exposure to AFB1 is shown to induce neuroinflammation, trigger the α-synuclein pathology, and cause dopaminergic neurotoxicity. This was accompanied by the increased expression and enzymatic activity of soluble epoxide hydrolase (sEH) in the mouse brain. Importantly, genetic deletion or pharmacological inhibition of sEH alleviated the AFB1-induced neuroinflammation by reducing microglia activation and suppressing pro-inflammatory factors in the brain. Furthermore, blocking the action of sEH attenuated dopaminergic neuron dysfunction caused by AFB1 in vivo and in vitro. Together, our findings suggest a contributing role of AFB1 to PD etiology and highlight sEH as a potential pharmacological target for alleviating PD-related neuronal disorders caused by AFB1 exposure.


Subject(s)
Neurodegenerative Diseases , Neurotoxicity Syndromes , Parkinson Disease , Mice , Animals , Aflatoxin B1/toxicity , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Neuroinflammatory Diseases , Parkinson Disease/metabolism , Brain/metabolism
12.
BMC Cancer ; 22(1): 969, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36088312

ABSTRACT

BACKGROUND: Lysophosphatidic acid receptor 3 (LPAR3) is coupled to Gαi/o and Gα11/q signaling. Previously, we reported that LPAR3 is highly methylated in carcinogen-induced transformed cells. Here, we demonstrate that LPAR3 exhibits malignant transforming activities, despite being downregulated in transformed cells. METHODS: The LPAR3 knockout (KO) in NIH 3 T3 and Bhas 42 cells was established using the CRISPR/Cas9 system. Both RT-PCR and DNA sequencing were performed to confirm the KO of LPAR3. The cellular effects of LPAR3 KO were further examined by WST-1 assay, immunoblotting analysis, transwell migration assay, colony formation assay, wound scratch assday, in vitro cell transformation assay, and autophagy assay. RESULTS: In v-H-ras-transformed cells (Ras-NIH 3 T3) with LPAR3 downregulation, ectopic expression of LPAR3 significantly enhanced the migration. In particular, LPAR3 knockout (KO) in Bhas 42 (v-Ha-ras transfected Balb/c 3 T3) and NIH 3 T3 cells caused a decrease in cell survival, transformed foci, and colony formation. LPAR3 KO led to the robust accumulation of LC3-II and autophagosomes and inhibition of autophagic flux by disrupting autophagosome fusion with lysosome. Conversely, autolysosome maturation proceeded normally in Ras-NIH 3 T3 cells upon LPAR3 downregulation. Basal phosphorylation of MEK and ERK markedly increased in Ras-NIH 3 T3 cells, whereas being significantly lower in LPAR3 KO cells, suggesting that increased MEK signaling is involved in autophagosome-lysosome fusion in Ras-NIH 3 T3 cells. CONCLUSIONS: Paradoxical downregulation of LPAR3 exerts cooperative tumor-promoting activity with MEK activation through autophagy induction in Ras-transformed cells. Our findings have implications for the development of cancer chemotherapeutic approaches.


Subject(s)
Cell Transformation, Neoplastic , Neoplasms , Receptors, Lysophosphatidic Acid/metabolism , Animals , Autophagy , Cell Line , Cell Line, Transformed , Down-Regulation , Mice , Mitogen-Activated Protein Kinase Kinases/genetics , Neoplasms/metabolism , Neoplasms/pathology
13.
Proc Natl Acad Sci U S A ; 116(14): 7083-7088, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30890645

ABSTRACT

Maternal infection during pregnancy increases risk of neurodevelopmental disorders such as schizophrenia and autism spectrum disorder (ASD) in offspring. In rodents, maternal immune activation (MIA) yields offspring with schizophrenia- and ASD-like behavioral abnormalities. Soluble epoxide hydrolase (sEH) plays a key role in inflammation associated with neurodevelopmental disorders. Here we found higher levels of sEH in the prefrontal cortex (PFC) of juvenile offspring after MIA. Oxylipin analysis showed decreased levels of epoxy fatty acids in the PFC of juvenile offspring after MIA, supporting increased activity of sEH in the PFC of juvenile offspring. Furthermore, expression of sEH (or EPHX2) mRNA in induced pluripotent stem cell-derived neurospheres from schizophrenia patients with the 22q11.2 deletion was higher than that of healthy controls. Moreover, the expression of EPHX2 mRNA in postmortem brain samples (Brodmann area 9 and 40) from ASD patients was higher than that of controls. Treatment with 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), a potent sEH inhibitor, in juvenile offspring from prenatal day (P) 28 to P56 could prevent cognitive deficits and loss of parvalbumin (PV) immunoreactivity in the medial PFC of adult offspring after MIA. In addition, dosing of TPPU to pregnant mothers from E5 to P21 could prevent cognitive deficits, and social interaction deficits and PV immunoreactivity in the medial prefrontal cortex of juvenile offspring after MIA. These findings suggest that increased activity of sEH in the PFC plays a key role in the etiology of neurodevelopmental disorders in offspring after MIA. Therefore, sEH represents a promising prophylactic or therapeutic target for neurodevelopmental disorders in offspring after MIA.


Subject(s)
Epoxide Hydrolases/biosynthesis , Gene Expression Regulation, Enzymologic/drug effects , Maternal Exposure/adverse effects , Neurodevelopmental Disorders , Phenylurea Compounds/pharmacology , Piperidines/pharmacology , Prefrontal Cortex , Prenatal Exposure Delayed Effects , Schizophrenia , Animals , Epoxide Hydrolases/genetics , Female , Mice , Neurodevelopmental Disorders/chemically induced , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/prevention & control , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/prevention & control , Schizophrenia/chemically induced , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/prevention & control
14.
Proc Natl Acad Sci U S A ; 116(5): 1698-1703, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30647111

ABSTRACT

Although chemotherapy is a conventional cancer treatment, it may induce a protumorigenic microenvironment by triggering the release of proinflammatory mediators. In this study, we demonstrate that ovarian tumor cell debris generated by first-line platinum- and taxane-based chemotherapy accelerates tumor progression by stimulating a macrophage-derived "surge" of proinflammatory cytokines and bioactive lipids. Thus, targeting a single inflammatory mediator or pathway is unlikely to prevent therapy-induced tumor progression. Here, we show that combined pharmacological abrogation of the cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) pathways prevented the debris-induced surge of both cytokines and lipid mediators by macrophages. In animal models, the dual COX-2/sEH inhibitor PTUPB delayed the onset of debris-stimulated ovarian tumor growth and ascites leading to sustained survival over 120 days postinjection. Therefore, dual inhibition of COX-2/sEH may be an approach to suppress debris-stimulated ovarian tumor growth by preventing the therapy-induced surge of cytokines and lipid mediators.


Subject(s)
Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Epoxide Hydrolases/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Animals , Bridged-Ring Compounds/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/metabolism , Cell Proliferation/drug effects , Disease Models, Animal , Disease Progression , Female , Inflammation/drug therapy , Inflammation/metabolism , Lipids , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, SCID , Ovarian Neoplasms/metabolism , Platinum/pharmacology , Signal Transduction/drug effects , Taxoids/pharmacology
15.
Proc Natl Acad Sci U S A ; 116(11): 5154-5159, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30804206

ABSTRACT

A high-fat diet (HFD) causes obesity-associated morbidities involved in macroautophagy and chaperone-mediated autophagy (CMA). AMPK, the mediator of macroautophage, has been reported to be inactivated in HFD-caused renal injury. However, PAX2, the mediator for CMA, has not been reported in HFD-caused renal injury. Here we report that HFD-caused renal injury involved the inactivation of Pax2 and Ampk, and the activation of soluble epoxide hydrolase (sEH), in a murine model. Specifically, mice fed on an HFD for 2, 4, and 8 wk showed time-dependent renal injury, the significant decrease in renal Pax2 and Ampk at both mRNA and protein levels, and a significant increase in renal sEH at mRNA, protein, and molecular levels. Also, administration of an sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea, significantly attenuated the HFD-caused renal injury, decreased renal sEH consistently at mRNA and protein levels, modified the renal levels of sEH-mediated epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs) as expected, and increased renal Pax2 and Ampk at mRNA and/or protein levels. Furthermore, palmitic acid (PA) treatment caused significant increase in Mcp-1, and decrease in both Pax2 and Ampk in murine renal mesangial cells (mRMCs) time- and dose-dependently. Also, 14(15)-EET (a major substrate of sEH), but not its sEH-mediated metabolite 14,15-DHET, significantly reversed PA-induced increase in Mcp-1, and PA-induced decrease in Pax2 and Ampk. In addition, plasmid construction revealed that Pax2 may positively regulate Ampk transcriptionally in mRMCs. This study provides insights into and therapeutic target for the HFD-mediated renal injury.


Subject(s)
Adenylate Kinase/metabolism , Diet, High-Fat , Epoxide Hydrolases/antagonists & inhibitors , Kidney/injuries , PAX2 Transcription Factor/metabolism , Animals , Cytochrome P-450 Enzyme System/metabolism , Disease Models, Animal , Eicosanoids/metabolism , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/metabolism , Hypertrophy , Kidney/pathology , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mice , Palmitic Acid , Phenylurea Compounds/pharmacology , Piperidines/pharmacology , Solubility , Time Factors , Weight Gain
16.
Proc Natl Acad Sci U S A ; 115(25): E5815-E5823, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29735655

ABSTRACT

Parkinson's disease (PD) is characterized as a chronic and progressive neurodegenerative disorder, and the deposition of specific protein aggregates of α-synuclein, termed Lewy bodies, is evident in multiple brain regions of PD patients. Although there are several available medications to treat PD symptoms, these medications do not prevent the progression of the disease. Soluble epoxide hydrolase (sEH) plays a key role in inflammation associated with the pathogenesis of PD. Here we found that MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced neurotoxicity in the mouse striatum was attenuated by subsequent repeated administration of TPPU, a potent sEH inhibitor. Furthermore, deletion of the sEH gene protected against MPTP-induced neurotoxicity, while overexpression of sEH in the striatum significantly enhanced MPTP-induced neurotoxicity. Moreover, the expression of the sEH protein in the striatum from MPTP-treated mice or postmortem brain samples from patients with dementia of Lewy bodies (DLB) was significantly higher compared with control groups. Interestingly, there was a positive correlation between sEH expression and phosphorylation of α-synuclein in the striatum. Oxylipin analysis showed decreased levels of 8,9-epoxy-5Z,11Z,14Z-eicosatrienoic acid in the striatum of MPTP-treated mice, suggesting increased activity of sEH in this region. Interestingly, the expression of sEH mRNA in human PARK2 iPSC-derived neurons was higher than that of healthy control. Treatment with TPPU protected against apoptosis in human PARK2 iPSC-derived dopaminergic neurons. These findings suggest that increased activity of sEH in the striatum plays a key role in the pathogenesis of neurodegenerative disorders such as PD and DLB. Therefore, sEH may represent a promising therapeutic target for α-synuclein-related neurodegenerative disorders.


Subject(s)
Epoxide Hydrolases/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Cell Line , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , HEK293 Cells , Humans , Lewy Bodies/drug effects , Lewy Bodies/metabolism , Lewy Bodies/pathology , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Male , Mice , Mice, Inbred C57BL , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , RNA, Messenger/metabolism , alpha-Synuclein/metabolism
17.
Proc Natl Acad Sci U S A ; 115(20): 5283-5288, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29717038

ABSTRACT

Obesity is associated with enhanced colonic inflammation, which is a major risk factor for colorectal cancer. Considering the obesity epidemic in Western countries, it is important to identify novel therapeutic targets for obesity-induced colonic inflammation, to develop targeted strategies for prevention. Eicosanoids are endogenous lipid signaling molecules involved in regulating inflammation and immune responses. Using an LC-MS/MS-based lipidomics approach, we find that obesity-induced colonic inflammation is associated with increased expression of soluble epoxide hydrolase (sEH) and its eicosanoid metabolites, termed fatty acid diols, in colon tissue. Furthermore, we find that pharmacological inhibition or genetic ablation of sEH reduces colonic concentrations of fatty acid diols, attenuates obesity-induced colonic inflammation, and decreases obesity-induced activation of Wnt signaling in mice. Together, these results support that sEH could be a novel therapeutic target for obesity-induced colonic inflammation and associated diseases.


Subject(s)
Colitis/etiology , Diet, High-Fat/adverse effects , Epoxide Hydrolases/physiology , Inflammation/etiology , Lipids/analysis , Metabolomics/methods , Obesity/complications , Animals , Colitis/metabolism , Colitis/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
18.
Int J Mol Sci ; 22(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576317

ABSTRACT

Gintonin, a novel compound of ginseng, is a ligand of the lysophosphatidic acid (LPA) receptor. The in vitro and in vivo skin wound healing effects of gintonin remain unknown. Therefore, the objective of this study was to investigate the effects of gintonin on wound healing-linked responses, especially migration and proliferation, in skin keratinocytes HaCaT. In this study, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, Boyden chamber migration assay, scratch wound healing assay, and Western blot assay were performed. A tail wound mouse model was used for the in vivo test. Gintonin increased proliferation, migration, and scratch closure in HaCaT cells. It also increased the release of vascular endothelial growth factor (VEGF) in HaCaT cells. However, these increases, induced by gintonin, were markedly blocked by treatment with Ki16425, an LPA inhibitor, PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester), a calcium chelator, and U73122, a PLC inhibitor. The VEGF receptor inhibitor axitinib also attenuated gintonin-enhanced HaCaT cell proliferation. Gintonin increased the phosphorylation of AKT and ERK1/2 in HaCaT cells. In addition, gintonin improved tail wound healing in mice. These results indicate that gintonin may promote wound healing through LPA receptor activation and/or VEGF release-mediated downstream signaling pathways. Thus, gintonin could be a beneficial substance to facilitate skin wound healing.


Subject(s)
Keratinocytes/drug effects , Keratinocytes/metabolism , Plant Extracts/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Panax/chemistry , Signal Transduction/drug effects , Wound Healing/drug effects
19.
Molecules ; 26(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34684879

ABSTRACT

Ginseng-derived gintonin reportedly contains functional lysophosphatidic acids (LPAs) as LPA receptor ligands. The effect of the gintonin-enriched fraction (GEF) on in vitro and in vivo glucagon-like protein-1 (GLP-1) secretion, which is known to stimulate insulin secretion, via LPA receptor(s) remains unclear. Accordingly, we examined the effects of GEF on GLP-1 secretion using human enteroendocrine NCI-H716 cells. The expression of several of LPA receptor subtypes in NCI-H716 cells using qPCR and Western blotting was examined. LPA receptor subtype expression was in the following order: LPA6 > LPA2 > LPA4 > LPA5 > LPA1 (qPCR), and LPA6 > LPA4 > LPA2 > LPA1 > LPA3 > LPA5 (Western blotting). GEF-stimulated GLP-1 secretion occurred in a dose- and time-dependent manner, which was suppressed by cAMP-Rp, a cAMP antagonist, but not by U73122, a phospholipase C inhibitor. Furthermore, silencing the human LPA6 receptor attenuated GEF-mediated GLP-1 secretion. In mice, low-dose GEF (50 mg/kg, peroral) increased serum GLP-1 levels; this effect was not blocked by Ki16425 co-treatment. Our findings indicate that GEF-induced GLP-1 secretion could be achieved via LPA6 receptor activation through the cAMP pathway. Hence, GEF-induced GLP secretion via LPA6 receptor regulation might be responsible for its beneficial effects on human endocrine physiology.


Subject(s)
Colorectal Neoplasms/metabolism , Glucagon-Like Peptide 1/metabolism , Panax/chemistry , Plant Extracts/pharmacology , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Glucagon/metabolism , Humans , Insulin Secretion , Lysophospholipids , Male , Mice , Mice, Inbred ICR , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction , Tumor Cells, Cultured
20.
Molecules ; 26(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443621

ABSTRACT

There are few novel therapeutic options available for companion animals, and medications rely heavily on repurposed drugs developed for other species. Considering the diversity of species and breeds in companion animal medicine, comprehensive PK exposures in the companion animal patient is often lacking. The purpose of this paper was to assess the pharmacokinetics after oral and intravenous dosing in domesticated animal species (dogs, cats, and horses) of a novel soluble epoxide hydrolase inhibitor, EC1728, being developed for the treatment of pain in animals. Results: Intravenous and oral administration revealed that bioavailability was similar for dogs, and horses (42 and 50% F) but lower in mice and cats (34 and 8%, respectively). Additionally, clearance was similar between cats and mice, but >2× faster in cats vs. dogs and horses. Efficacy with EC1728 has been demonstrated in mice, dogs, and horses, and despite the rapid clearance of EC1728 in cats, analgesic efficacy was demonstrated in an acute pain model after intravenous but not oral dosing. Conclusion: These results demonstrate that exposures across species can vary, and investigation of therapeutic exposures in target species is needed to provide adequate care that addresses efficacy and avoids toxicity.


Subject(s)
Drug Development , Enzyme Inhibitors/metabolism , Epoxide Hydrolases/antagonists & inhibitors , Animals , Biological Availability , Cats , Dogs , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/chemistry , Horses , Mice , Solubility , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL