Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Pediatr Exerc Sci ; 30(3): 411-417, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29485929

ABSTRACT

PURPOSE: Prader-Willi syndrome (PWS) is a genetic neurobehavioral disorder presenting hypothalamic dysfunction and adiposity. At rest, PWS exhibits hypoventilation with hypercapnia. We characterized ventilatory responses in children with PWS during exercise. METHODS: Participants were children aged 7-12 years with PWS (n = 8) and without PWS with normal weight (NW; n = 9, body mass index ≤ 85th percentile) or obesity (n = 9, body mass index ≥ 95th percentile). Participants completed three 5-minute ambulatory bouts at 3.2, 4.0, and 4.8 km/h. Oxygen uptake, carbon dioxide output, ventilation, breathing frequency, and tidal volume were recorded. RESULTS: PWS had slightly higher oxygen uptake (L/min) at 3.2 km/h [0.65 (0.46-1.01) vs 0.49 (0.34-0.83)] and at 4.8 km/h [0.89 (0.62-1.20) vs 0.63 (0.45-0.97)] than NW. PWS had higher ventilation (L/min) at 3.2 km/h [16.2 (13.0-26.5) vs 11.5 (8.4-17.5)], at 4.0 km/h [16.4 (13.9-27.9) vs 12.7 (10.3-19.5)], and at 4.8 km/h [19.7 (17.4-31.8) vs 15.2 (9.5-21.6)] than NW. PWS had greater breathing frequency (breaths/min) at 3.2 km/h [38 (29-53) vs 29 (22-35)], at 4.0 km/h [39 (29-58) vs 29 (23-39)], and at 4.8 km/h [39 (33-58) vs 32 (23-42)], but similar tidal volume and ventilation/carbon dioxide output to NW. CONCLUSION: PWS did not show impaired ventilatory responses to exercise. Hyperventilation in PWS may relate to excessive neural stimulation and metabolic cost.


Subject(s)
Exercise , Lung/physiopathology , Oxygen Consumption , Prader-Willi Syndrome/physiopathology , Basal Metabolism , Body Mass Index , Carbon Dioxide/analysis , Child , Female , Humans , Male , Tidal Volume
SELECTION OF CITATIONS
SEARCH DETAIL