Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38359819

ABSTRACT

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Subject(s)
Neoplasms , Proteogenomics , Humans , Combined Modality Therapy , Genomics , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Proteomics , Tumor Escape
2.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37582357

ABSTRACT

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Subject(s)
Neoplasms , Proteogenomics , Humans , Neoplasms/genetics , Oncogenes , Cell Transformation, Neoplastic/genetics , DNA Copy Number Variations
3.
Cell ; 185(16): 2899-2917.e31, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35914528

ABSTRACT

Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Astrocytes/pathology , Brain/pathology , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Neoplasm Invasiveness , Neurons/physiology
4.
Cell ; 185(12): 2184-2199.e16, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35649412

ABSTRACT

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.


Subject(s)
Brain Neoplasms , Glioma , Tumor Microenvironment , Adult , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Evolution, Molecular , Genes, p16 , Glioma/genetics , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Neoplasm Recurrence, Local
5.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625050

ABSTRACT

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Subject(s)
Databases, Genetic , Neoplasms/pathology , Signal Transduction/genetics , Genes, Neoplasm , Humans , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism
6.
Cell ; 164(3): 550-63, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26824661

ABSTRACT

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/genetics , Glioma/pathology , Transcriptome , Adult , Brain Neoplasms/metabolism , Cell Proliferation , Cluster Analysis , DNA Helicases/genetics , DNA Methylation , Epigenesis, Genetic , Glioma/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Middle Aged , Mutation , Nuclear Proteins/genetics , Promoter Regions, Genetic , Signal Transduction , Telomerase/genetics , Telomere , X-linked Nuclear Protein
7.
Mol Cell ; 79(3): 376-389.e8, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32640193

ABSTRACT

Activation of dual-specificity tyrosine-phosphorylation-regulated kinases 1A and 1B (DYRK1A and DYRK1B) requires prolyl hydroxylation by PHD1 prolyl hydroxylase. Prolyl hydroxylation of DYRK1 initiates a cascade of events leading to the release of molecular constraints on von Hippel-Lindau (VHL) ubiquitin ligase tumor suppressor function. However, the proline residue of DYRK1 targeted by hydroxylation and the role of prolyl hydroxylation in tyrosine autophosphorylation of DYRK1 are unknown. We found that a highly conserved proline in the CMGC insert of the DYRK1 kinase domain is hydroxylated by PHD1, and this event precedes tyrosine autophosphorylation. Mutation of the hydroxylation acceptor proline precludes tyrosine autophosphorylation and folding of DYRK1, resulting in a kinase unable to preserve VHL function and lacking glioma suppression activity. The consensus proline sequence is shared by most CMGC kinases, and prolyl hydroxylation is essential for catalytic activation. Thus, formation of prolyl-hydroxylated intermediates is a novel mechanism of kinase maturation and likely a general mechanism of regulation of CMGC kinases in eukaryotes.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Isoenzymes/genetics , Proline/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Amino Acid Sequence , Animals , Binding Sites , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Crystallography, X-Ray , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Glioma/pathology , HEK293 Cells , Heterografts , Humans , Hydroxylation , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Isoenzymes/chemistry , Isoenzymes/metabolism , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 14/chemistry , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , Models, Molecular , Mutation , Neuroglia/metabolism , Neuroglia/pathology , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Secondary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Dyrk Kinases
8.
Nature ; 576(7785): 112-120, 2019 12.
Article in English | MEDLINE | ID: mdl-31748746

ABSTRACT

The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear1,2. Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of diffuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specific gene alterations. Treatment with alkylating agents resulted in a hypermutator phenotype at different rates across the glioma subtypes, and hypermutation was not associated with differences in overall survival. Acquired aneuploidy was frequently detected in recurrent gliomas and was characterized by IDH mutation but without co-deletion of chromosome arms 1p/19q, and further converged with acquired alterations in the cell cycle and poor outcomes. The clonal architecture of each tumour remained similar over time, but the presence of subclonal selection was associated with decreased survival. Finally, there were no differences in the levels of immunoediting between initial and recurrent gliomas. Collectively, our results suggest that the strongest selective pressures occur during early glioma development and that current therapies shape this evolution in a largely stochastic manner.


Subject(s)
Glioma/genetics , Adult , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19 , Disease Progression , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Polymorphism, Single Nucleotide , Recurrence
9.
Nature ; 553(7687): 222-227, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323298

ABSTRACT

Chromosomal translocations that generate in-frame oncogenic gene fusions are notable examples of the success of targeted cancer therapies. We have previously described gene fusions of FGFR3-TACC3 (F3-T3) in 3% of human glioblastoma cases. Subsequent studies have reported similar frequencies of F3-T3 in many other cancers, indicating that F3-T3 is a commonly occuring fusion across all tumour types. F3-T3 fusions are potent oncogenes that confer sensitivity to FGFR inhibitors, but the downstream oncogenic signalling pathways remain unknown. Here we show that human tumours with F3-T3 fusions cluster within transcriptional subgroups that are characterized by the activation of mitochondrial functions. F3-T3 activates oxidative phosphorylation and mitochondrial biogenesis and induces sensitivity to inhibitors of oxidative metabolism. Phosphorylation of the phosphopeptide PIN4 is an intermediate step in the signalling pathway of the activation of mitochondrial metabolism. The F3-T3-PIN4 axis triggers the biogenesis of peroxisomes and the synthesis of new proteins. The anabolic response converges on the PGC1α coactivator through the production of intracellular reactive oxygen species, which enables mitochondrial respiration and tumour growth. These data illustrate the oncogenic circuit engaged by F3-T3 and show that F3-T3-positive tumours rely on mitochondrial respiration, highlighting this pathway as a therapeutic opportunity for the treatment of tumours with F3-T3 fusions. We also provide insights into the genetic alterations that initiate the chain of metabolic responses that drive mitochondrial metabolism in cancer.


Subject(s)
Cell Respiration , Microtubule-Associated Proteins/genetics , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Oncogene Proteins, Fusion/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Cell Respiration/drug effects , Cell Transformation, Neoplastic/drug effects , Female , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Male , Mice , Mitochondria/drug effects , Mitochondria/genetics , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Organelle Biogenesis , Oxidative Phosphorylation/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisomes/drug effects , Peroxisomes/metabolism , Phosphorylation , Protein Biosynthesis , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism , Transcription, Genetic , Xenograft Model Antitumor Assays
10.
Brain ; 144(2): 636-654, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33479772

ABSTRACT

As the clinical failure of glioblastoma treatment is attributed by multiple components, including myelin-associated infiltration, assessment of the molecular mechanisms underlying such process and identification of the infiltrating cells have been the primary objectives in glioblastoma research. Here, we adopted radiogenomic analysis to screen for functionally relevant genes that orchestrate the process of glioma cell infiltration through myelin and promote glioblastoma aggressiveness. The receptor of the Nogo ligand (NgR1) was selected as the top candidate through Differentially Expressed Genes (DEG) and Gene Ontology (GO) enrichment analysis. Gain and loss of function studies on NgR1 elucidated its underlying molecular importance in suppressing myelin-associated infiltration in vitro and in vivo. The migratory ability of glioblastoma cells on myelin is reversibly modulated by NgR1 during differentiation and dedifferentiation process through deubiquitinating activity of USP1, which inhibits the degradation of ID1 to downregulate NgR1 expression. Furthermore, pimozide, a well-known antipsychotic drug, upregulates NgR1 by post-translational targeting of USP1, which sensitizes glioma stem cells to myelin inhibition and suppresses myelin-associated infiltration in vivo. In primary human glioblastoma, downregulation of NgR1 expression is associated with highly infiltrative characteristics and poor survival. Together, our findings reveal that loss of NgR1 drives myelin-associated infiltration of glioblastoma and suggest that novel therapeutic strategies aimed at reactivating expression of NgR1 will improve the clinical outcome of glioblastoma patients.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioblastoma/metabolism , Glioblastoma/pathology , Myelin Sheath/metabolism , Nogo Receptor 1/metabolism , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Inhibitor of Differentiation Protein 1/metabolism , Inhibitor of Differentiation Proteins/metabolism , Mice, Inbred BALB C , Myelin Sheath/pathology , Ubiquitin-Specific Proteases/metabolism
11.
Nature ; 529(7585): 172-7, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26735018

ABSTRACT

Mechanisms that maintain cancer stem cells are crucial to tumour progression. The ID2 protein supports cancer hallmarks including the cancer stem cell state. HIFα transcription factors, most notably HIF2α (also known as EPAS1), are expressed in and required for maintenance of cancer stem cells (CSCs). However, the pathways that are engaged by ID2 or drive HIF2α accumulation in CSCs have remained unclear. Here we report that DYRK1A and DYRK1B kinases phosphorylate ID2 on threonine 27 (Thr27). Hypoxia downregulates this phosphorylation via inactivation of DYRK1A and DYRK1B. The activity of these kinases is stimulated in normoxia by the oxygen-sensing prolyl hydroxylase PHD1 (also known as EGLN2). ID2 binds to the VHL ubiquitin ligase complex, displaces VHL-associated Cullin 2, and impairs HIF2α ubiquitylation and degradation. Phosphorylation of Thr27 of ID2 by DYRK1 blocks ID2-VHL interaction and preserves HIF2α ubiquitylation. In glioblastoma, ID2 positively modulates HIF2α activity. Conversely, elevated expression of DYRK1 phosphorylates Thr27 of ID2, leading to HIF2α destabilization, loss of glioma stemness, inhibition of tumour growth, and a more favourable outcome for patients with glioblastoma.


Subject(s)
Glioblastoma/metabolism , Glioblastoma/pathology , Inhibitor of Differentiation Protein 2/metabolism , Neoplastic Stem Cells/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/antagonists & inhibitors , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Hypoxia , Cell Line, Tumor , Cullin Proteins/metabolism , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Male , Mice , Neoplastic Stem Cells/pathology , Oxygen/metabolism , Phosphorylation , Phosphothreonine/metabolism , Protein Binding , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Ubiquitination , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Xenograft Model Antitumor Assays , Dyrk Kinases
12.
Genes Dev ; 28(7): 765-82, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24636986

ABSTRACT

The mammary gland is a very dynamic organ that undergoes continuous remodeling. The critical regulators of this process are not fully understood. Here we identify the microRNA cluster miR-424(322)/503 as an important regulator of epithelial involution after pregnancy. Through the generation of a knockout mouse model, we found that regression of the secretory acini of the mammary gland was compromised in the absence of miR-424(322)/503. Mechanistically, we show that miR-424(322)/503 orchestrates cell life and death decisions by targeting BCL-2 and IGF1R (insulin growth factor-1 receptor). Furthermore, we demonstrate that the expression of this microRNA cluster is regulated by TGF-ß, a well-characterized regulator of mammary involution. Overall, our data suggest a model in which activation of the TGF-ß pathway after weaning induces the transcription of miR-424(322)/503, which in turn down-regulates the expression of key genes. Here, we unveil a previously unknown, multilayered regulation of epithelial tissue remodeling coordinated by the microRNA cluster miR-424(322)/503.


Subject(s)
Epithelium/metabolism , Gene Expression Regulation, Developmental , Mammary Glands, Animal/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Cell Death/genetics , Cell Line , Female , Gene Knockout Techniques , Humans , Mammary Glands, Animal/cytology , Mice, Knockout , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Weaning
13.
Br J Cancer ; 125(1): 4-6, 2021 07.
Article in English | MEDLINE | ID: mdl-33767415

ABSTRACT

Classification of cancer should lead to informative patients' stratification and selective therapeutic vulnerabilities. A pathway-based classification of glioblastoma uncovered a mitochondrial subtype with a unique sensitivity to inhibitors of oxidative phosphorylation. Precision targeting of cancer metabolism could provide therapeutic opportunities to a lethal neoplasm and be translated to other tumour types.


Subject(s)
Brain Neoplasms/classification , Glioblastoma/classification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Signal Transduction/drug effects
14.
Cancer Immunol Immunother ; 70(3): 831-842, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33140187

ABSTRACT

BACKGROUND: Glioblastomas (GBMs) in patients harboring somatic or germinal mutations of mismatch-repair (MMR) genes exhibit a hypermutable phenotype. Here, we describe a GBM patient with increased tumor mutational burden and germline MMR mutations, treated using anti-PD1 therapy. METHODS: A woman with newly diagnosed GBM (nGBM) was treated by surgery, radiotherapy, and temozolomide. The tumor recurred after 13 months leading to a second surgery and treatment with nivolumab. Whole-exome sequencing was performed on the nGBM, recurrent GBM (rGBM), and blood. Immune infiltration was investigated by immunohistochemistry and the immune response in the blood during treatment was analyzed by flow cytometry. RESULTS: High density of infiltrating CD163 + cells was found in both GBM specimens. Large numbers of CD3 + and CD8 + T cells were homogeneously distributed in the nGBM. The infiltration of CD4 + T cells and a different CD8 + T cell density were observed in the rGBM. Both GBM shared 12,431 somatic mutations, with 113 substitutions specific to the nGBM and 1,683 specific to the rGBM. Germline variants included pathogenic mutation in the MSH2 (R359S) gene, suggesting the diagnosis of Lynch syndrome. Systemic immunophenotyping revealed the generation of CD8 + T memory cells and persistent activation of CD4 + T cells. The patient is still receiving nivolumab 68 months after the second surgery. CONCLUSIONS: Our observations indicate that the hypermutator phenotype associated with germinal mutations of MMR genes and abundant T-cell infiltration contributes to a durable clinical benefit sustained by a persistent and robust immune response during anti-PD1 therapy.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Glioblastoma/pathology , Mutation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adult , Biopsy , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Combined Modality Therapy , Female , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunohistochemistry , Magnetic Resonance Imaging , Molecular Targeted Therapy , Neoplasm Recurrence, Local , Neuroimaging , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Retreatment , T-Lymphocytes/drug effects , Treatment Outcome , Exome Sequencing
15.
Immunity ; 36(3): 348-61, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22425249

ABSTRACT

The double-positive (DP) to single-positive (SP) transition during T cell development is initiated by downregulation of the E protein transcription factors HEB and E2A. Here, we have demonstrated that in addition to regulating the onset of this transition, HEB and E2A also play a separate role in CD4(+) lineage choice. Deletion of HEB and E2A in DP thymocytes specifically blocked the development of CD4(+) lineage T cells. Furthermore, deletion of the E protein inhibitors Id2 and Id3 allowed CD4(+) T cell development but blocked CD8(+) lineage development. Analysis of the CD4(+) lineage transcriptional regulators ThPOK and Gata3 placed HEB and E2A upstream of CD4(+) lineage specification. These studies identify an important role for E proteins in the activation of CD4(+) lineage differentiation as thymocytes undergo the DP to SP transition.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/immunology , CD4-Positive T-Lymphocytes/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , CD4 Antigens/genetics , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Inhibitor of Differentiation Protein 2/deficiency , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/immunology , Inhibitor of Differentiation Proteins/deficiency , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/immunology , Interleukin-7 Receptor alpha Subunit/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, CCR7/metabolism , Up-Regulation
16.
J Chem Inf Model ; 61(4): 1875-1888, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33792302

ABSTRACT

Leucine-zipper transcription regulator 1 (LZTR1) is a highly mutated tumor suppressor gene, involved in the pathogenesis of several cancer types and developmental disorders. In proteasomal degradation, it acts as an adaptor protein responsible for the recognition and recruitment of substrates to be ubiquitinated in Cullin3-RING ligase E3 (CRL3) machinery. LZTR1 belongs to the BTB-Kelch family, a multi-domain protein where the Kelch propeller plays as the substrate recognition region and for which no experimental structure has been solved. Recently, large effort mutational analyses pointed to the role of disease-associated LZTR1 mutations in the RAS/MAPK signaling pathway and RIT1, a small Ras-related GTPase protein, has been identified by mass spectroscopy to interact with LZTR1. Hence, a better understanding of native structure, molecular mechanism, and substrate specificity would help clarifying the role of LZTR1 in pathological diseases, thus promoting advancement in the development of novel therapeutic strategies. Here, we address the interaction model between adaptor LZTR1 and substrate RIT1 by applying an integrated computational approach, including molecular modeling and docking techniques. We observe that the interaction model LZTR1-RIT1 is stabilized by an electrostatic bond network established between the two protein surfaces, which is reminiscent of homologous ubiquitin ligases complexes. Then, running MD simulations, we characterize differential conformational dynamics of the multi-domain LZTR1, offering interesting implications on the mechanistic role of specific point mutations. We identify G248R and R283Q as damaging mutations involved in the recognition process of the substrate RIT1 and R412C as a possible allosteric mutation from the Kelch to the C-term BTB-domain. Our findings provide important structural insights on targeting CRL3s for drug discovery.


Subject(s)
Transcription Factors , Ubiquitin-Protein Ligases , Models, Structural , Signal Transduction , Ubiquitin , Ubiquitin-Protein Ligases/genetics
17.
Glia ; 68(12): 2486-2502, 2020 12.
Article in English | MEDLINE | ID: mdl-32621641

ABSTRACT

Radiation therapy is part of the standard of care for gliomas and kills a subset of tumor cells, while also altering the tumor microenvironment. Tumor cells with stem-like properties preferentially survive radiation and give rise to glioma recurrence. Various techniques for enriching and quantifying cells with stem-like properties have been used, including the fluorescence activated cell sorting (FACS)-based side population (SP) assay, which is a functional assay that enriches for stem-like tumor cells. In these analyses, mouse models of glioma have been used to understand the biology of this disease and therapeutic responses, including the radiation response. We present combined SP analysis and single-cell RNA sequencing of genetically-engineered mouse models of glioma to show a time course of cellular response to radiation. We identify and characterize two distinct tumor cell populations that are inherently radioresistant and also distinct effects of radiation on immune cell populations within the tumor microenvironment.


Subject(s)
Brain Neoplasms , Glioma , Stem Cells , Animals , Brain Neoplasms/radiotherapy , Mice , Neoplastic Stem Cells , Single-Cell Analysis , Tumor Microenvironment
18.
Mol Syst Biol ; 15(2): e8557, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30796088

ABSTRACT

Common approaches to gene signature discovery in single-cell RNA-sequencing (scRNA-seq) depend upon predefined structures like clusters or pseudo-temporal order, require prior normalization, or do not account for the sparsity of single-cell data. We present single-cell hierarchical Poisson factorization (scHPF), a Bayesian factorization method that adapts hierarchical Poisson factorization (Gopalan et al, 2015, Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, 326) for de novo discovery of both continuous and discrete expression patterns from scRNA-seq. scHPF does not require prior normalization and captures statistical properties of single-cell data better than other methods in benchmark datasets. Applied to scRNA-seq of the core and margin of a high-grade glioma, scHPF uncovers marked differences in the abundance of glioma subpopulations across tumor regions and regionally associated expression biases within glioma subpopulations. scHFP revealed an expression signature that was spatially biased toward the glioma-infiltrated margins and associated with inferior survival in glioblastoma.


Subject(s)
Glioma/genetics , High-Throughput Nucleotide Sequencing/methods , Single-Cell Analysis , Transcriptome/genetics , Bayes Theorem , Gene Expression Regulation, Neoplastic/genetics , Glioma/pathology , Humans , Poisson Distribution
19.
Nucleic Acids Res ; 46(7): e39, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29361062

ABSTRACT

We propose a generic framework for gene regulatory network (GRN) inference approached as a feature selection problem. GRNs obtained using Machine Learning techniques are often dense, whereas real GRNs are rather sparse. We use a Tikonov regularization inspired optimal L-curve criterion that utilizes the edge weight distribution for a given target gene to determine the optimal set of TFs associated with it. Our proposed framework allows to incorporate a mechanistic active biding network based on cis-regulatory motif analysis. We evaluate our regularization framework in conjunction with two non-linear ML techniques, namely gradient boosting machines (GBM) and random-forests (GENIE), resulting in a regularized feature selection based method specifically called RGBM and RGENIE respectively. RGBM has been used to identify the main transcription factors that are causally involved as master regulators of the gene expression signature activated in the FGFR3-TACC3-positive glioblastoma. Here, we illustrate that RGBM identifies the main regulators of the molecular subtypes of brain tumors. Our analysis reveals the identity and corresponding biological activities of the master regulators characterizing the difference between G-CIMP-high and G-CIMP-low subtypes and between PA-like and LGm6-GBM, thus providing a clue to the yet undetermined nature of the transcriptional events among these subtypes.


Subject(s)
Gene Regulatory Networks/genetics , Glioma/genetics , Nucleotide Motifs/genetics , Transcription Factors/genetics , Algorithms , Gene Expression Regulation, Neoplastic/genetics , Glioma/classification , Glioma/pathology , Humans , Machine Learning , Microtubule-Associated Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics
20.
Int J Cancer ; 144(12): 3023-3030, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30536544

ABSTRACT

Hypermutagenesis refers to marked increase in the number of mutations due to continuous mutagenic process. Hypermutated tumors, have being found in several tumor types, are associated with inherited or acquired alterations in the DNA repair pathways. Hypermutation has been observed in a subset of adult glioma patients as a direct result of temozolomide(TMZ)-induced mutagenesis. In our study, we have identified a rare subset of treatment-naïve adult gliomas with de novo hypermutator phenotype and explored the evolution of spontaneous and treatment-induced hypermutagenesis. We conducted Whole-Exome Sequencing (WES), Whole-Transcriptome Sequencing (WTS), and Single-Cell Sequencing (SCS) of TMZ-naïve and post-TMZ-treated hypermutated tumors to identify distinct clinical or genomic manifestations that contribute to the development of hypermutation in untreated adult gliomas. TMZ-naïve hypermutated tumors were marked by absence of IDH1 somatic mutation and MGMT promoter (pMGMT) methylation, two genomic traits that were significantly associated with the TMZ-induced hypermutagenic event in glioblastoma, and harbored inherited alterations in the mismatch repair (MMR) machinery. The immediate family members of the TMZ-naive hypermutated glioma patients were also previous diagnosed with cancer development history, suggesting that germline dysfunction of the MMR pathway could potentially pose hereditary risk to genetic predisposition of carcinogenesis in gliomas. Lastly, both TMZ-naïve and post-TMZ-treated hypermutated tumors exhibited a significant accumulation of neoantigen loads, suggesting immunotherapeutic alternatives. Our results present new and unique understanding of hypermutagenic process in adult gliomas and an important step towards clinical implication of immunotherapy in glioma treatment.


Subject(s)
Central Nervous System Neoplasms/genetics , DNA Mismatch Repair , Germ-Line Mutation , Glioblastoma/genetics , Adult , Aged , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Transformation, Neoplastic/genetics , Central Nervous System Neoplasms/metabolism , DNA Methylation , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Female , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Male , Middle Aged , Promoter Regions, Genetic , Temozolomide/therapeutic use , Transcriptome , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Exome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL