Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Bioorg Chem ; 151: 107666, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39067420

ABSTRACT

Design and virtual screening of a set of non-acidic 4-methyl-4-phenyl-benzenesulfonate-based aldose reductase 2 inhibitors had been developed followed by chemical synthesis. Based on the results, the synthesized compounds 2, 4a,b, 7a-c, 9a-c, 10a-c, 11b,c and 14a-c inhibited the ALR2 enzymatic activity in a submicromolar range (99.29-417 nM) and among them, the derivatives 2, 9b, 10a and 14b were able to inhibit ALR2 by IC50 of 160.40, 165.20, 99.29 and 120.6 nM, respectively. Moreover, kinetic analyses using Lineweaver-Burk plot revealed that the most active candidate 10a inhibited ALR2 potently via a non-competitive mechanism. In vivo studies showed that 10 mg/kg of compound 10a significantly lowered blood glucose levels in alloxan-induced diabetic mice by 46.10 %. Moreover, compound 10a showed no toxicity up to a concentration of 50 mg/kg and had no adverse effects on liver and kidney functions. It significantly increased levels of GSH and SOD while decreasing MDA levels, thereby mitigating oxidative stress associated with diabetes and potentially attenuating diabetic complications. Furthermore, the binding mode of compound 10a was confirmed through MD simulation. Noteworthy, compounds 2 and 14b showed moderate antimicrobial activity against the two fungi Aspergillus fumigatus and Aspergillus niger. Finally, we report the thiazole derivative 10a as a new promising non-acidic aldose reductase inhibitor that may be beneficial in treating diabetic complications.


Subject(s)
Aldehyde Reductase , Drug Design , Enzyme Inhibitors , Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/metabolism , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Structure-Activity Relationship , Molecular Structure , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Dose-Response Relationship, Drug , Molecular Docking Simulation , Male , Humans , Benzenesulfonates/pharmacology , Benzenesulfonates/chemistry , Benzenesulfonates/chemical synthesis , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry
2.
Arch Pharm (Weinheim) ; 357(2): e2300536, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37932028

ABSTRACT

Although histone deacetylase (HDAC) inhibitors show promise in treating various types of hematologic malignancies, they have some limitations, including poor pharmacokinetics and off-target side effects. Prodrug design has shown promise as an approach to improve pharmacokinetic properties and to improve target tissue specificity. In this work, several bioreductive prodrugs for class I HDACs were designed based on known selective HDAC inhibitors. The zinc-binding group of the HDAC inhibitors was masked with various nitroarylmethyl residues to make them substrates of nitroreductase (NTR). The developed prodrugs showed weak HDAC inhibitory activity compared to their parent inhibitors. The prodrugs were tested against wild-type and NTR-transfected THP1 cells. Cellular assays showed that both 2-nitroimidazole-based prodrugs 5 and 6 were best activated by the NTR and exhibited potent activity against NTR-THP1 cells. Compound 6 showed the highest cellular activity (GI50 = 77 nM) and exhibited moderate selectivity. Moreover, activation of prodrug 6 by NTR was confirmed by liquid chromatography-mass spectrometry analysis, which showed the release of the parent inhibitor after incubation with Escherichia coli NTR. Thus, compound 6 can be considered a novel prodrug selective for class I HDACs, which could be used as a good starting point for increasing selectivity and for further optimization.


Subject(s)
Leukemia, Myeloid, Acute , Prodrugs , Humans , Histone Deacetylase Inhibitors/pharmacology , Prodrugs/pharmacology , Prodrugs/chemistry , Genetic Therapy , Structure-Activity Relationship , Escherichia coli , Leukemia, Myeloid, Acute/drug therapy
3.
Arch Pharm (Weinheim) ; : e2400437, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291901

ABSTRACT

Class I histone deacetylases (HDACs) are considered promising targets in current cancer research. To obtain subtype-selective and potent HDAC inhibitors, we used the aminobenzamide scaffold as the zinc-binding group and prepared new derivatives with a pyrazole ring as the linking group. The synthesized compounds were analyzed in vitro using an enzymatic assay against HDAC1, -2, and -3. Compounds 12b, 15b, and 15i were found to be potent HDAC1 inhibitors, also in comparison to the reference compounds entinostat and tacedinaline, with IC50 values of 0.93, 0.22, and 0.68 µM, respectively. The best compounds were measured for their cellular effect and target engagement in acute myeloid leukemia (AML) cells. In addition, we studied the interaction of the compounds with HDAC subtypes using docking and molecular dynamic simulations. In summary, we have developed a new chemotype of HDAC1 inhibitors that can be used for further structure-based optimization.

4.
Drug Dev Res ; 85(3): e22193, 2024 May.
Article in English | MEDLINE | ID: mdl-38685605

ABSTRACT

The scaffolds of two known CDK inhibitors (CAN508 and dinaciclib) were the starting point for synthesizing two series of pyarazolo[1,5-a]pyrimidines to obtain potent inhibitors with proper selectivity. The study presented four promising compounds; 10d, 10e, 16a, and 16c based on cytotoxic studies. Compound 16a revealed superior activity in the preliminary anticancer screening with GI % = 79.02-99.13 against 15 cancer cell lines at 10 µM from NCI full panel 60 cancer cell lines and was then selected for further investigation. Furthermore, the four compounds revealed good safety profile toward the normal cell lines WI-38. These four compounds were subjected to CDK inhibitory activity against four different isoforms. All of them showed potent inhibition against CDK5/P25 and CDK9/CYCLINT. Compound 10d revealed the best activity against CDK5/P25 (IC50 = 0.063 µM) with proper selectivity index against CDK1 and CDK2. Compound 16c exhibited the highest inhibitory activity against CDK9/CYCLINT (IC50 = 0.074 µM) with good selectivity index against other isoforms. Finally, docking simulations were performed for compounds 10e and 16c accompanied by molecular dynamic simulations to understand their behavior in the active site of the two CDKs with respect to both CAN508 and dinaciclib.


Subject(s)
Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Cyclic N-Oxides , Drug Design , Indolizines , Molecular Docking Simulation , Protein Kinase Inhibitors , Pyridinium Compounds , Humans , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemistry , Indolizines/pharmacology , Indolizines/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cyclic N-Oxides/pharmacology , Cyclic N-Oxides/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cyclin-Dependent Kinases/antagonists & inhibitors , Structure-Activity Relationship , Pyrimidines/pharmacology , Pyrimidines/chemistry , Drug Screening Assays, Antitumor , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism
5.
Bioorg Chem ; 135: 106492, 2023 06.
Article in English | MEDLINE | ID: mdl-37001471

ABSTRACT

Several pyrazole-benzene sulfonamides were reported as human carbonic anhydrase inhibitors. In this research work, a design of Arylidine-extented 5-oxo-pyrazole benzenesulfonamides (4a-i), (8a-d) and (10a-e) were reported based on tail-approach design. Beside the reported synthetic procedures and confirmation by different analytical procedures, a DFT study was employed to confirm the Z- conformer of the synthesized compounds. In vitro biological assay against four different human carbonic anhydrases took place and based on the results, SAR study was illustrated and selectivity indexes were discussed. Compounds 4g and 8a exhibited the best inhibitory activity among the target compounds with values (hCAIX: KI = 71.2 nM, hCAXII: KI = 22.5 nM), (hCAIX: KI = 34.3 nM, hCAXII: KI = 74.3 nM); respectively. Both of them were subjected to cellular assay against two different cancer cell lines with expressing nature to hCA isoforms under both normoxic and hypoxic conditions. Compound 4g showed the highest cytotoxic activity against MCF-7 cancer cell line (IC50 = 4.15 µM under hypoxic conditions and IC50 = 8.59 µM under normoxic conditions) compared to the reference drug doxorubicin under normoxic, (IC50 = 4.34 µM), and hypoxic, (IC50 = 2.23 µM), conditions. Further cellular investigations were employed to study the effect of this compound on the cell cycle of the affected cell line. Finally, molecular docking supported by molecular dynamic simulation was utilized to understand the mechanism of the inhibitory activity of two of these compounds - as representative examples- based on the designed rational.


Subject(s)
Carbonic Anhydrase Inhibitors , Sulfonamides , Humans , Molecular Structure , Structure-Activity Relationship , Carbonic Anhydrase Inhibitors/pharmacology , Molecular Docking Simulation , Sulfonamides/pharmacology , Pyrazoles/pharmacology , Benzenesulfonamides
6.
J Enzyme Inhib Med Chem ; 38(1): 2201403, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37078174

ABSTRACT

Design and synthesis of three novel series of aryl enaminones (3a-f and 5a-c) and pyrazole (4a-c) linked compounds with sulphonamides, sulfaguanidine, or carboxylic acid functionalities were reported as carbonic anhydrase inhibitors (CAIs) using the "tail approach" strategy in their design to achieve the most variable amino acids in the middle/outer rims of the hCAs active site. The synthesised compounds were assessed in vitro for their inhibitory activity against the following human (h) isoforms, hCA I, II, IX, and XII using stopped-flow CO2 hydrase assay. Enaminone sulphonamide derivatives (3a-c) potently inhibited the target tumour-associated isoforms hCA IX and hCA XII (KIs 26.2-63.7 nM) and hence compounds 3a and 3c were further screened for their in vitro cytotoxic activity against MCF-7 and MDA-MB-231 cancer cell lines under normoxic and hypoxic conditions. Derivative 3c showed comparable potency against both MCF-7 and MDA-MB-231 cancer cell lines under both normoxic ((IC50 = 4.918 and 12.27 µM, respectively) and hypoxic (IC50 = 1.689 and 5.898 µM, respectively) conditions compared to the reference drug doxorubicin under normoxic (IC50 = 3.386 and 4.269 µM, respectively) and hypoxic conditions (IC50 = 1.368 and 2.62 µM, respectively). Cell cycle analysis and Annexin V-FITC and propidium iodide double staining methods were performed to reinforce the assumption that 3c may act as a cytotoxic agent through the induction of apoptosis in MCF-7 cancer cells.


Subject(s)
Antineoplastic Agents , Carbonic Anhydrases , Humans , Carbonic Anhydrases/metabolism , Carbonic Anhydrase IX , Sulfaguanidine , Structure-Activity Relationship , Carboxylic Acids/pharmacology , Sulfonamides/chemistry , Antineoplastic Agents/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemistry , Molecular Structure
7.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069308

ABSTRACT

Epigenetic processes modulate gene transcription and genomic stability, ensuring proper cell development and differentiation [...].


Subject(s)
Histone Acetyltransferases , Histone Deacetylase Inhibitors , Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Epigenesis, Genetic , Cell Differentiation
8.
Bioorg Chem ; 126: 105888, 2022 09.
Article in English | MEDLINE | ID: mdl-35661530

ABSTRACT

Recently, different mechanisms for inhibition of carbonic anhydrases (CAs) have been reported, such as the classical zinc-binding (exerted by sulfonamides and carboxylic acids) as well as occluding the entrance of the CA active site (exerted by coumarins). In this manuscript, we studied the effect of combining the pharmacopheric parts responsible for these two mechanisms on CA inhibitory potency and selectivity through the design and synthesis of novel coumarins tethered with the zinc-binding sulfonamide (5a-f, 11a-b and 13a-b) or carboxylic acid (7a-f) groups. In addition, another set of coumarin derivatives (9a-b) with no zinc-binding group (ZBG) was designed to act as non-classical CA inhibitors. The synthesized coumarins were examined for their inhibitory activities towards four hCA isoforms I, II, IX and XII. Coumarin sulfonamides (5a-f, 11a-b and 13a-b) effectively inhibited both tumor-associated hCA IX (KIs: 8.9-133.5 nM) and hCA XII (KIs: 3.4-42.9 nM) isoforms, whereas coumarin carboxylic acids (7a-f) weakly affected hCA IX (KIs: 0.49-11.2 µM) and hCA XII (KIs: 0.51-10.1 µM) isoforms. The coumarin based inhibitors featuring zinc-binding sulfonamide or carboxylic acid group achieved low to moderate hCA IX/XII selectivity. Interestingly, the ZBG-free coumarin derivatives (9a-b) emerged not only as effective hCA IX (KIs = 93.3 and 63.8 nM, respectively) and hCA XII (KIs = 85.7 and 72.1 nM, respectively) inhibitors, but also as a highly hCA IX/XII selective inhibitors over the off-target hCA I/II isoforms (SIs > 1000). Coumarin 9a was further evaluated for its anti-proliferative effect on MCF-7 and PANC-1 cancer cell lines, as well as its effect on the cell cycle and apoptosis towards MCF-7 cell line.


Subject(s)
Carbonic Anhydrases , Neoplasms , Antigens, Neoplasm/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrases/metabolism , Carboxylic Acids/pharmacology , Coumarins/chemistry , Humans , Molecular Structure , Protein Isoforms/metabolism , Structure-Activity Relationship , Sulfanilamide , Sulfonamides/chemistry , Zinc
9.
Molecules ; 27(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35458724

ABSTRACT

Class I histone deacetylases, HDAC1, HDAC2, and HDAC3, represent potential targets for cancer treatment. However, the development of isoform-selective drugs for these enzymes remains challenging due to their high sequence and structural similarity. In the current study, we applied a computational approach to predict the selectivity profile of developed inhibitors. Molecular docking followed by MD simulation and calculation of binding free energy was performed for a dataset of 2-aminobenzamides comprising 30 previously developed inhibitors. For each HDAC isoform, a significant correlation was found between the binding free energy values and in vitro inhibitory activities. The predictive accuracy and reliability of the best preforming models were assessed on an external test set of newly designed and synthesized inhibitors. The developed binding free-energy models are cost-effective methods and help to reduce the time required to prioritize compounds for further studies.


Subject(s)
Histone Deacetylase Inhibitors , Pyrazines , Histone Deacetylase 1 , Histone Deacetylase 2 , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Molecular Docking Simulation , Protein Isoforms , Pyrazines/chemistry , Reproducibility of Results
10.
Bioorg Chem ; 116: 105318, 2021 11.
Article in English | MEDLINE | ID: mdl-34488123

ABSTRACT

The present study describes the synthesis of three series of 4-substituted pyridopyrimidin derivatives 4a-h, 5a-d. 6a-d, starting from 2-amino-6-(4-methoxyphenyl)-4-(4-(substituted) phenyl)nicotinonitrile 2a-d via the reaction with N,N-dimethyl-N-' substituted phenyl formimidamide to obtain 4a-h or with either phenyl isothiocyanate 1:1 and 1:2 to obtain 5a-d, 6a-d respectively. The synthesized compounds were evaluated for their effectiveness as EGFR inhibitors against Gefitinib. Six compounds; 4b,g,h, 5c and 6a,d prompted significantly higher EGFR inhibitory activity relative to that of Gefitinib. While two compounds 4d and 4f showed IC50 values non-significantly different from that of the reference drug. Furthermore, compounds 4a, 4 h, 6a and 6d were chosen to be assessed in vitro for their cytotoxicity against two EGFR-overexpressing cell lines; two human cancer cell lines namely: MCF7 and MDA-MB-361. Moreover, cell cycle analysis and apoptotic assay was applied for compound 4b that showed most potent inhibitory activity on EGFR, and the highest cytotoxicity against MCF7 and MDA-MB-361, where cell cycle arrest was achieved at pre G and S phases with increased apoptosis. Additionally, a molecular docking study was achieved to inspect the interaction of this compound with the active site of EGFR-TK.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
11.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008795

ABSTRACT

Class I histone deacetylases (HDACs) are key regulators of cell proliferation and they are frequently dysregulated in cancer cells. We report here the synthesis of a novel series of class-I selective HDAC inhibitors (HDACi) containing a 2-aminobenzamide moiety as a zinc-binding group connected with a central (piperazin-1-yl)pyrazine or (piperazin-1-yl)pyrimidine moiety. Some of the compounds were additionally substituted with an aromatic capping group. Compounds were tested in vitro against human HDAC1, 2, 3, and 8 enzymes and compared to reference class I HDACi (Entinostat (MS-275), Mocetinostat, CI994 and RGFP-966). The most promising compounds were found to be highly selective against HDAC1, 2 and 3 over the remaining HDAC subtypes from other classes. Molecular docking studies and MD simulations were performed to rationalize the in vitro data and to deduce a complete structure activity relationship (SAR) analysis of this novel series of class-I HDACi. The most potent compounds, including 19f, which blocks HDAC1, HDAC2, and HDAC3, as well as the selective HDAC1/HDAC2 inhibitors 21a and 29b, were selected for further cellular testing against human acute myeloid leukemia (AML) and erythroleukemic cancer (HEL) cells, taking into consideration their low toxicity against human embryonic HEK293 cells. We found that 19f is superior to the clinically tested class-I HDACi Entinostat (MS-275). Thus, 19f is a new and specific HDACi with the potential to eliminate blood cancer cells of various origins.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Molecular Docking Simulation , Pyrazines/chemistry , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Benzamides/chemical synthesis , Benzamides/chemistry , Benzamides/pharmacology , Cell Line, Tumor , HEK293 Cells , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacokinetics , Humans , Proton Magnetic Resonance Spectroscopy , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology
12.
J Enzyme Inhib Med Chem ; 35(1): 298-305, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31809607

ABSTRACT

Pursuing on our efforts toward searching for efficient hCA IX and hCA XII inhibitors, herein we report the design and synthesis of new sets of benzofuran-based sulphonamides (4a,b, 5a,b, 9a-c, and 10a-d), featuring the zinc anchoring benzenesulfonamide moiety linked to a benzofuran tail via a hydrazine or hydrazide linker. All the target benzofurans were examined for their inhibitory activities toward isoforms hCA I, II, IX, and XII. The target tumour-associated hCA IX and XII isoforms were efficiently inhibited with KIs spanning in ranges 10.0-97.5 and 10.1-71.8 nM, respectively. Interestingly, arylsulfonehydrazones 9 displayed the best selectivity toward hCA IX and XII over hCA I (SIs: 39.4-250.3 and 26.0-149.9, respectively), and over hCA II (SIs: 19.6-57.1 and 13.0-34.2, respectively). Furthermore, the target benzofurans were assessed for their anti-proliferative activity, according to US-NCI protocol, toward a panel of sixty cancer cell lines. Only benzofurans 5b and 10b possessed selective and moderate growth inhibitory activity toward certain cancer cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Sulfonamides/pharmacology , Antigens, Neoplasm/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzofurans/chemistry , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
13.
Bioorg Chem ; 85: 337-348, 2019 04.
Article in English | MEDLINE | ID: mdl-30658233

ABSTRACT

Benzimidazole is an interesting scaffold constituting a main core in many anticancer agents against variable cell lines as Carbendazim (I) and Nocodazole (II). Accordingly, eighteen compounds of 2-((1H-benzoimidazol-2-yl)thio)-1-(aryl/heteroaryl)ethan-1-ones, in their sulfate salt and free forms, were designed and investigated as anticancer agents. In vitro preliminary screening of selected compounds by the National Cancer Institute (NCI) on a panel of 60 cell lines revealed renal cancer cell line (A498) as the most vulnerable cell line; accordingly, IC50 values against A498 cell line were determined for compounds with the best results. The best inhibitory activity was for compound 4a with (IC50 = 6.97 µM) compared to sunitinib as a reference drug (IC50 = 6.99 µM). Compound 4a was further subjected to cell cycle analysis that indicated the decrease in cell population in the G2/M phase when compared to the untreated control cells. In addition, it showed significant increase in the late apoptosis in Annexin-V FTIC study compared to the control cells. An enzymatic inhibitory study on compound 4a against c-Met and MAP kinases revealed its better activity against c-Met kinase with (IC50 = 0.27 µM) compared to sunitinib (IC50 = 0.18 µM). Molecular docking study was conducted to reveal the interactions of compound 4a in the active site of c-Met kinase. Computational ADME study was performed to insure that compound 4a has proper pharmacokinetic and drug-likeness properties.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Sulfides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Catalytic Domain , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Kidney Neoplasms/drug therapy , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-met/chemistry , Structure-Activity Relationship , Sulfides/chemical synthesis , Sulfides/pharmacokinetics
14.
Bioorg Chem ; 87: 794-802, 2019 06.
Article in English | MEDLINE | ID: mdl-30978604

ABSTRACT

In the presented work, we report the design and synthesis of novel SLC-0111 thiazole and thiadiazole analogues (11a-d, 12a-d, 16a-c and 17a-d). A bioisosteric replacement approach was adopted to replace the 4-fluorophenyl tail of SLC-0111 with thiazole and thiadiazole ones, which were thereafter extended with lipophilic un/substituted phenyl moieties. All the newly synthesized SLC-0111 analogues were evaluated in vitro for their inhibitory activity towards a panel of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) isoforms (hCA I, II, IX and XII), using a stopped-flow CO2 hydrase assay. All the examined isoforms were inhibited by the primary sulfonamide derivatives (11a-d and 12a-d) in variable degrees with the following KI ranges: 162.6-7136 nM for hCA I, 9.0-833.6 nM for hCA II, 7.9-153.0 nM for hCA IX, and 9.4-94.0 nM for hCA XII. In particular, compounds 12b and 12d displayed 5.5-fold more potent inhibitory activity (KIs = 8.3 and 7.9 nM, respectively) than SLC-0111 (KI = 45 nM) towards hCA IX. Molecular docking study was carried out for 12d within the hCA IX (PDB 3IAI) active site, to justify its inhibitory activity.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Phenylurea Compounds/pharmacology , Sulfonamides/pharmacology , Thiadiazoles/pharmacology , Thiazoles/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Models, Molecular , Molecular Structure , Phenylurea Compounds/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Thiadiazoles/chemistry , Thiazoles/chemistry
15.
J Enzyme Inhib Med Chem ; 33(1): 309-318, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29281924

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with limited treatment options due to its heterogeneity and the lack of well-defined molecular targets. In our endeavour towards the development of novel anti-TNBC agents, herein we report a one-pot three-component synthesis of novel spirooxindoles 6a-p, and evaluation of their potential anti-proliferative activity towards TNBC MDA-MB-231 cells. Spirooxindoles 6a, 6e and 6i emerged as the most potent analogues with IC50 = 6.70, 6.40 and 6.70 µM, respectively. Compounds 6a and 6e induced apoptosis in MDA-MB-231 cells, as evidenced by the up-regulation of the Bax and down-regulation of the Bcl-2, besides boosting caspase-3 levels. Additionally, 6e displayed significant increase in the percent of annexin V-FITC positive apoptotic cells from 1.34 to 44%. Furthermore, spirooxindoles 6e and 6i displayed good inhibitory activity against EGFR (IC50 = 120 and 150 nM, respectively). Collectively, these data demonstrated that 6e might be a potential lead compound for the development of effective anti-TNBC agents.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Spiro Compounds/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , Triple Negative Breast Neoplasms/pathology
16.
J Enzyme Inhib Med Chem ; 33(1): 686-700, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29560733

ABSTRACT

On account of their significance as apoptosis inducing agents, merging indole and 3-hydrazinoindolin-2-one scaffolds is a logic tactic for designing pro-apoptotic agents. Consequently, 27 hybrids (6a-r, 9a-f and 11a-c) were synthesised and evaluated for their cytotoxicity against MCF-7, HepG-2 and HCT-116 cancer cell lines. SAR studies unravelled that N-propylindole derivatives were the most active compounds such as 6n (MCF-7; IC50=1.04 µM), which displayed a significant decrease of cell population in the G2/M phase and significant increase in the early and late apoptosis by 19-folds in Annexin-V-FTIC assay. Also, 6n increased the expression of caspase-3, caspase-9, cytochrome C and Bax and decreased the expression of Bcl-2. Moreover, compounds 6i, 6j, 6n and 6q generated ROS by significant increase in the level of SOD and depletion of the levels of CAT and GSH-Px in MCF-7.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Design , Hydrazones/pharmacology , Indoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Hep G2 Cells , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Indoles/chemical synthesis , Indoles/chemistry , MCF-7 Cells , Molecular Structure , Oxidative Stress/drug effects , Structure-Activity Relationship
17.
Molecules ; 23(6)2018 06 15.
Article in English | MEDLINE | ID: mdl-29914120

ABSTRACT

In our endeavor towards the development of effective anticancer agents, a novel series of pyridine-ureas 8a⁻n were synthesized. All the newly prepared derivatives were evaluated in vitro for their growth inhibitory activity towards the proliferation of breast cancer MCF-7 cell line. Compounds 8e and 8n were found to be the most active congeners against MCF-7 cells (IC50 = 0.22 and 1.88 µM after 48 h treatment; 0.11 and 0.80 µM after 72 h treatment, respectively) with increased activity compared to the reference drug doxorubicin (IC50 = 1.93 µM). Moreover, eight selected pyridines 8b, 8d, 8e, 8i, 8j and 8l⁻n were evaluated for their in vitro anticancer activity according to the US-NCI protocol. Pyridines 8b and 8e proved to be the most effective anticancer agents in the NCI assay with mean inhibition = 43 and 49%, respectively. Both 8b and 8e exhibited anti-proliferative activity against all tested cancer cell lines from all subpanels growth inhibition (GI for 8b; 12⁻78%, GI for 8e; 15⁻91%). Pyridines 8b and 8e were screened in vitro for their inhibitory activity against VEGFR-2. Both compounds inhibited VEGFR-2 at micromolar IC50 values 5.0 ± 1.91 and 3.93 ± 0.73 µM, respectively. The most active pyridines were filtered according to the Lipinski and Veber rules and all of them passed these filters. Finally, several ADME descriptors were predicted for the active pyridines through a theoretical kinetic study.


Subject(s)
Antineoplastic Agents/chemical synthesis , Breast Neoplasms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Pyridines/chemical synthesis , Urea/analogs & derivatives , Vascular Endothelial Growth Factor Receptor-2/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridines/chemistry , Pyridines/pharmacology
18.
Molecules ; 21(6)2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27294903

ABSTRACT

In our endeavor towards the development of potent anticancer agents, two different sets of biphenylurea-indolinone conjugates, 5a-s and 8a,b were synthesized. The in vitro cytotoxicity of the synthesized compounds was examined in two human cancer cell lines, namely MCF-7 breast cancer and PC-3 prostate cancer cells using the sulforhodamine B (SRB) colorimetric assay. In particular, the MCF-7 cancer cell line was more susceptible to the synthesized compounds. Compound 5o (IC50 = 1.04 ± 0.10 µM) emerged as the most active member in this study against MCF-7, with 7-fold increased activity compared to the reference drug, doxorubicin (IC50 = 7.30 ± 0.84 µM). Compounds 5l, 5q and 8b also exhibited superior cytotoxic activity against MCF-7 with IC50 values of 1.93 ± 0.17, 3.87 ± 0.31 and 4.66 ± 0.42 µM, respectively. All of the tested compounds were filtered according to the Lipinski and Veber rules and all of them passed the filters. Additionally, several ADME descriptors for the synthesized compounds 5a-s and 8a,b were predicted via a theoretical kinetic study performed using the Discovery Studio 2.5 software.


Subject(s)
Antineoplastic Agents/administration & dosage , Cell Proliferation/drug effects , Indoles/administration & dosage , Urea/administration & dosage , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Doxorubicin/administration & dosage , Drug Screening Assays, Antitumor , Female , Humans , Indoles/chemical synthesis , Indoles/chemistry , MCF-7 Cells , Male , Prostatic Neoplasms/drug therapy , Rhodamines/chemistry , Structure-Activity Relationship , Urea/chemical synthesis , Urea/chemistry
19.
Arch Pharm (Weinheim) ; 346(9): 688-98, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24006310

ABSTRACT

A series of 3,4-bis-chalcone-N-arylpyrazoles 3a-k was prepared from diacetyl pyrazoles 2a-e. The reaction of 2d and 2e with hydrazine hydrate gave pyrazolo[3,4-d]pyridazine derivatives 4a-b. Furthermore, the reaction of 2a-e with thiosemicarbazide afforded pyrazolo[3,4-d]pyridazine thiocyanate salts 5a-e. The synthesized compounds were subjected to in vivo anti-inflammatory and ulcerogenic activity measurements, in addition to determination of their in vitro COX selectivity, to give a full profile about their anti-inflammatory activities. Compounds 3c, 3f, 3i, and 3e showed significant anti-inflammatory activity among the synthesized compounds. Moreover, docking studies were performed to give an explanation for their anti-inflammatory activity through COX selectivity.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Pyrazoles/pharmacology , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Disease Models, Animal , Inflammation/pathology , Male , Molecular Docking Simulation , Prostaglandin-Endoperoxide Synthases/drug effects , Prostaglandin-Endoperoxide Synthases/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Rats , Stomach Ulcer/chemically induced
20.
BMC Chem ; 17(1): 127, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759329

ABSTRACT

New thienopyrimidine derivatives were designed and synthesized as GSK-3ß inhibitors based on the structure of active binding site of GSK-3ß enzyme. In this study, compounds 6b and 6a were found to be moderate GSK-3ß inhibitors with IC50s 10.2 and 17.3 µM, respectively. Molecular docking study was carried out by docking the targeted compounds in the binding site of the GSK-3ß enzyme using the MOE program. Moreover, ADME study was performed to predict certain pharmacokinetic properties. The results showed that all synthesized compounds may not be able to penetrate the blood brain barrier; so, the chances of CNS side effects are predicted to be low. CYP1D6 is predicted to be inhibited by compounds (5a, 5d, 6a, 9a and 9b), So drug-drug interactions are expected upon administration of these compounds.

SELECTION OF CITATIONS
SEARCH DETAIL