Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Publication year range
1.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31964750

ABSTRACT

Human genital Chlamydia infection is a major public health concern due to the serious reproductive system complications. Chlamydia binds several receptor tyrosine kinases (RTKs) on host cells, including the epidermal growth factor receptor (EGFR), and activates cellular signaling cascades for host invasion, cytoskeletal remodeling, optimal inclusion development, and induction of pathogenic epithelial-mesenchyme transition (EMT). Chlamydia also upregulates transforming growth factor beta (TGF-ß) expression, whose signaling pathway synergizes with the EGFR cascade, but its role in infectivity, inclusions, and EMT induction is unknown. We hypothesized that the EGFR and TGF-ß signaling pathways cooperate during chlamydial infection for optimal inclusion development and stable EMT induction. The results revealed that Chlamydia upregulated TGF-ß expression as early as 6 h postinfection of epithelial cells and stimulated both the EGFR and TGF-ß signaling pathways. Inhibition of either the EGFR or TGF-ßR1 signaling substantially reduced inclusion development; however, the combined inhibition of both EGFR and TGF-ßR1 signaling reduced inclusions by over 90% and prevented EMT induction. Importantly, EGFR inhibition suppressed TGF-ß expression, and an inhibitory thrombospondin-1 (Tsp1)-based peptide inhibited chlamydia-induced EMT, revealing a major source of active TGF-ß during infection. Finally, TGF-ßR signaling inhibition suppressed the expression of transforming acidic coiled-coil protein-3 (TACC3), which stabilizes EGFR signaling, suggesting reciprocal regulation between TGF-ß and EGFR signaling during chlamydial infection. Thus, RTK-mediated host invasion by chlamydia upregulated TGF-ß expression and signaling, which cooperated with other cellular signaling cascades and cytoskeletal remodeling to support optimal inclusion development and EMT induction. This finding may provide new targets for chlamydial disease biomarkers and prevention.


Subject(s)
Chlamydia Infections/physiopathology , Chlamydia/growth & development , Epithelial Cells/microbiology , ErbB Receptors/metabolism , Host-Pathogen Interactions , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Cell Line , Endocytosis , Epithelial-Mesenchymal Transition , Inclusion Bodies/microbiology , Mice , Models, Biological
2.
BMC Genomics ; 20(1): 143, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30777008

ABSTRACT

BACKGROUND: Genital C. trachomatis infection may cause pelvic inflammatory disease (PID) that can lead to tubal factor infertility (TFI). Understanding the pathogenesis of chlamydial complications including the pathophysiological processes within the female host genital tract is important in preventing adverse pathology. MicroRNAs regulate several pathophysiological processes of infectious and non-infectious etiologies. In this study, we tested the hypothesis that the miRNA profile of single and repeat genital chlamydial infections will be different and that these differences will be time dependent. Thus, we analyzed and compared differentially expressed mice genital tract miRNAs after single and repeat chlamydia infections using a C. muridarum mouse model. Mice were sacrificed and their genital tract tissues were collected at 1, 2, 4, and 8 weeks after a single and repeat chlamydia infections. Histopathology, and miRNA sequencing were performed. RESULTS: Histopathology presentation showed that the oviduct and uterus of reinfected mice were more inflamed, distended and dilated compared to mice infected once. The miRNAs expression profile was different in the reproductive tissues after a reinfection, with a greater number of miRNAs expressed after reinfection. Also, the number of miRNAs expressed each week after chlamydia infection and reinfection varied, with weeks eight and one having the highest number of differentially expressed miRNAs for chlamydia infection and reinfection respectively. Ten miRNAs; mmu-miR-378b, mmu-miR-204-5p, mmu-miR-151-5p, mmu-miR-142-3p, mmu-miR-128-3p, mmu-miR-335-3p, mmu-miR-195a-3p, mmu-miR-142-5p, mmu-miR-106a-5p and mmu-miR-92a-3p were common in both primary chlamydia infection and reinfection. Pathway analysis showed that, amongst other functions, the differentially regulated miRNAs control pathways involved in cellular and tissue development, disease conditions and toxicity. CONCLUSIONS: This study provides insights into the changes in miRNA expression over time after chlamydia infection and reinfection, as well as the pathways they regulate to determine pathological outcomes. The miRNAs networks generated in our study shows that there are differences in the focus molecules involved in significant biological functions in chlamydia infection and reinfection, implying that chlamydial pathogenesis occurs differently for each type of infection and that this could be important when determining treatments regime and disease outcome. The study underscores the crucial role of host factors in chlamydia pathogenesis.


Subject(s)
Chlamydia Infections/genetics , Chlamydia Infections/microbiology , Chlamydia , Genitalia/microbiology , MicroRNAs/genetics , Transcriptome , Animals , Biopsy , Cell Line , Chlamydia Infections/pathology , Computational Biology/methods , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation , Genitalia/pathology , Humans , Immunohistochemistry , Mice
3.
Biochem Biophys Res Commun ; 508(2): 421-429, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30503337

ABSTRACT

The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.


Subject(s)
Chlamydia muridarum/pathogenicity , Chlamydia trachomatis/pathogenicity , Host Microbial Interactions/physiology , Unfolded Protein Response/physiology , Animals , Chlamydia Infections/etiology , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia muridarum/metabolism , Chlamydia trachomatis/metabolism , HeLa Cells , Humans , Inclusion Bodies/metabolism , Mice , Myosin Type II/metabolism , Type III Secretion Systems/metabolism
4.
Malar J ; 18(1): 319, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31533729

ABSTRACT

BACKGROUND: Plasmodium falciparum, the deadliest causative agent of malaria, has high prevalence in Nigeria. Drug resistance causing failure of previously effective drugs has compromised anti-malarial treatment. On this basis, there is need for a proactive surveillance for resistance markers to the currently recommended artemisinin-based combination therapy (ACT), for early detection of resistance before it become widespread. METHODS: This study assessed anti-malarial resistance genes polymorphism in patients with uncomplicated P. falciparum malaria in Lagos, Nigeria. Sanger and Next Generation Sequencing (NGS) methods were used to screen for mutations in thirty-seven malaria positive blood samples targeting the P. falciparum chloroquine-resistance transporter (Pfcrt), P. falciparum multidrug-resistance 1 (Pfmdr1), and P. falciparum kelch 13 (Pfk13) genes, which have been previously associated with anti-malarial resistance. RESULTS: Expectedly, the NGS method was more proficient, detecting six Pfmdr1, seven Pfcrt and three Pfk13 mutations in the studied clinical isolates from Nigeria, a malaria endemic area. These mutations included rare Pfmdr1 mutations, N504K, N649D, F938Y and S967N, which were previously unreported. In addition, there was moderate prevalence of the K76T mutation (34.6%) associated with chloroquine and amodiaquine resistance, and high prevalence of the N86 wild type allele (92.3%) associated with lumefantrine resistance. CONCLUSION: Widespread circulation of mutations associated with resistance to current anti-malarial drugs could potentially limit effective malaria therapy in endemic populations.


Subject(s)
Antimalarials/therapeutic use , Drug Resistance/genetics , Multidrug Resistance-Associated Proteins/genetics , Mutation , Plasmodium falciparum/genetics , Polymorphism, Genetic , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Nigeria/epidemiology , Plasmodium falciparum/drug effects , Prevalence , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
5.
Infect Immun ; 86(1)2018 01.
Article in English | MEDLINE | ID: mdl-29084894

ABSTRACT

The reproductive system complications of genital chlamydial infection include fallopian tube fibrosis and tubal factor infertility. However, the molecular pathogenesis of these complications remains poorly understood. The induction of pathogenic epithelial-mesenchymal transition (EMT) through microRNA (miRNA) dysregulation was recently proposed as the pathogenic basis of chlamydial complications. Focusing on fibrogenesis, we investigated the hypothesis that chlamydia-induced fibrosis is caused by EMT-driven generation of myofibroblasts, the effector cells of fibrosis that produce excessive extracellular matrix (ECM) proteins. The results revealed that the targets of a major category of altered miRNAs during chlamydial infection are key components of the pathophysiological process of fibrogenesis; these target molecules include collagen types I, III, and IV, transforming growth factor ß (TGF-ß), TGF-ß receptor 1 (TGF-ßR1), connective tissue growth factor (CTGF), E-cadherin, SRY-box 7 (SOX7), and NFAT (nuclear factor of activated T cells) kinase dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1a (Dyrk1a). Chlamydial induction of EMT resulted in the generation of α-smooth muscle actin (α-SMA)-positive myofibroblasts that produced ECM proteins, including collagen types I and III and fibronectin. Furthermore, the inhibition of EMT prevented the generation of myofibroblasts and production of ECM proteins during chlamydial infection. These findings may provide useful avenues for targeting EMT or specific components of the EMT pathways as a therapeutic intervention strategy to prevent chlamydia-related complications.


Subject(s)
Chlamydia Infections/complications , Chlamydia Infections/pathology , Chlamydia/pathogenicity , Epithelial-Mesenchymal Transition/physiology , Fibrosis/etiology , Fibrosis/pathology , Actins/metabolism , Animals , Cadherins/metabolism , Cell Line , Chlamydia Infections/microbiology , Collagen/metabolism , Connective Tissue Growth Factor/metabolism , Extracellular Matrix Proteins/metabolism , Fibronectins/metabolism , Fibrosis/microbiology , Mice , MicroRNAs/metabolism , Myofibroblasts/microbiology , Myofibroblasts/pathology , NFATC Transcription Factors/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , SOXF Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
6.
Int J Med Sci ; 15(13): 1449-1457, 2018.
Article in English | MEDLINE | ID: mdl-30443164

ABSTRACT

The artemisinin-based combined therapy (ACT) post-treatment illness in Plasmodium falciparum-endemic areas is characterized by vague malaria-like symptoms. The roles of treatment modality, persistence of parasites and host proinflammatory response in disease course are unknown. We investigated the hypothesis that ACT post-treatment syndrome is driven by parasite genetic polymorphisms and proinflammatory response to persisting mutant parasites. Patients were categorized as treated, untreated and malaria-negative. Malaria positive samples were analyzed for Pfcrt, Pfmdr1, K13 kelch gene polymorphisms, while all samples were evaluated for cytokines (TNF-α, IL-12p70, IL-10, TGF-ß, IFN-γ) and corticosteroids (cortisol and dexamethasone) levels. The treated patients exhibited higher levels of parasitemia, TNF-α, and cortisol, increased incidence of parasite genetic mutations, and greater number of mutant alleles per patient. In addition, corticosteroid levels declined with increasing number of mutant alleles. TGF-ß levels were negatively correlated with parasitemia, while IL-10 and TGF-ß were negatively correlated with increasing number of mutant alleles. However, IL-12 displayed slight positive correlation and TNF-α exhibited moderate positive correlation with increasing number of mutant alleles. Since post-treatment management ultimately results in patient recovery, the high parasite gene polymorphism may act in concert with induced cortisol and TNF-α to account for ACT post-treatment syndrome.


Subject(s)
Artemisinins/pharmacology , Plasmodium falciparum/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adrenal Cortex Hormones/metabolism , Humans , Hydrocortisone/metabolism , Malaria, Falciparum/genetics , Malaria, Falciparum/metabolism , Mutation/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Polymorphism, Genetic/genetics , Real-Time Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/genetics
7.
J Infect Dis ; 215(3): 456-465, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27932618

ABSTRACT

Chlamydia is an obligate intracellular bacterium that relies on host cells for essential nutrients and adenosine triphosphate (ATP) for a productive infection. Although the unfolded protein response (UPR) plays a major role in certain microbial infectivity, its role in chlamydial pathogenesis is unknown. We hypothesized that Chlamydia induces UPR and exploits it to upregulate host cell uptake and metabolism of glucose, production of ATP, phospholipids, and other molecules required for its replicative development and host survival. Using a combination of biochemical and pathway inhibition assays, we showed that the 3 UPR pathway transducers-protein kinase RNA-activated (PKR)-like ER kinase (PERK), inositol-requiring enzyme-1α (IRE1α), and activating transcription factor-6α (ATF6α)-were activated during Chlamydia infection. The kinase activity of PERK and ribonuclease (RNase) of IRE1α mediated the upregulation of hexokinase II and production of ATP via substrate-level phosphorylation. In addition, the activation of PERK and IRE1α promoted autophagy formation and apoptosis resistance for host survival. Moreover, the activation of IRE1α resulted in the generation of spliced X-box binding protein 1 (sXBP1) and upregulation of lipid production. The vital role of UPR pathways in Chlamydia development and pathogenesis could lead to the identification of potential molecular targets for therapeutics against Chlamydia.


Subject(s)
Chlamydia Infections/microbiology , Chlamydia/pathogenicity , Unfolded Protein Response , Activating Transcription Factor 6/metabolism , Animals , Apoptosis , Cell Survival , Chlamydia Infections/metabolism , Endoribonucleases/metabolism , Enzyme Activation , Female , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , eIF-2 Kinase/metabolism
8.
BMC Immunol ; 18(1): 27, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28525970

ABSTRACT

BACKGROUND: We have previously reported that interleukin-10 (IL-10) deficient dendritic cells (DCs) are potent antigen presenting cells that induced elevated protective immunity against Chlamydia. To further investigate the molecular and biochemical mechanism underlying the superior immunostimulatory property of IL-10 deficient DCs we performed proteomic analysis on protein profiles from Chlamydia-pulsed wild-type (WT) and IL-10-/- DCs to identify differentially expressed proteins with immunomodulatory properties. RESULTS: The results showed that alpha enolase (ENO1), a metabolic enzyme involved in the last step of glycolysis was significantly upregulated in Chlamydia-pulsed IL-10-/- DCs compared to WT DCs. We further studied the immunoregulatory role of ENO1 in DC function by generating ENO1 knockdown DCs, using lentiviral siRNA technology. We analyzed the effect of the ENO1 knockdown on DC functions after pulsing with Chlamydia. Pyruvate assay, transmission electron microscopy, flow cytometry, confocal microscopy, cytokine, T-cell activation and adoptive transfer assays were also used to study DC function. The results showed that ENO1 knockdown DCs had impaired maturation and activation, with significant decrease in intracellular pyruvate concentration as compared with the Chlamydia-pulsed WT DCs. Adoptive transfer of Chlamydia-pulsed ENO1 knockdown DCs were poorly immunogenic in vitro and in vivo, especially the ability to induce protective immunity against genital chlamydia infection. The marked remodeling of the mitochondrial morphology of Chlamydia-pulsed ENO1 knockdown DCs compared to the Chlamydia-pulsed WT DCs was associated with the dysregulation of translocase of the outer membrane (TOM) 20 and adenine nucleotide translocator (ANT) 1/2/3/4 that regulate mitochondrial permeability. The results suggest that an enhanced glycolysis is required for efficient antigen processing and presentation by DCs to induce a robust immune response. CONCLUSIONS: The upregulation of ENO1 contributes to the superior immunostimulatory function of IL-10 deficient DCs. Our studies indicated that ENO1 deficiency causes the reduced production of pyruvate, which then contributes to a dysfunction in mitochondrial homeostasis that may affect DC survival, maturation and antigen presenting properties. Modulation of ENO1 thus provides a potentially effective strategy to boost DC function and promote immunity against infectious and non-infectious diseases.


Subject(s)
Biomarkers, Tumor/genetics , Chlamydia Infections/immunology , Chlamydia trachomatis/immunology , DNA-Binding Proteins/genetics , Dendritic Cells/physiology , Genitalia/immunology , Phosphopyruvate Hydratase/genetics , Tumor Suppressor Proteins/genetics , Animals , Antigen Presentation , Biomarkers, Tumor/metabolism , Cell Membrane Permeability , Cells, Cultured , DNA-Binding Proteins/metabolism , Dendritic Cells/microbiology , Female , Genitalia/microbiology , Immunity, Innate , Interleukin-10/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Phosphopyruvate Hydratase/metabolism , Proteomics , Pyruvic Acid/metabolism , RNA, Small Interfering/genetics , Tumor Suppressor Proteins/metabolism , Up-Regulation
9.
Infect Immun ; 83(12): 4662-72, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26371131

ABSTRACT

Interleukin-10 (IL-10) has been implicated in susceptibility to genital chlamydial infection and the development of tubal pathologies. IL-10 limitation also resulted in the rapid elicitation of immune responses against Chlamydia, and decreased levels of IL-10 correlated with protective anti-Chlamydia immunity. To investigate the molecular basis for these effects, we compared the reproductive pathologies and fertility rates in Chlamydia-infected wild-type (WT) and IL-10-knockout (IL-10(-/-)) mice; we also analyzed the expression of the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily, IL-1ß production, NLRP3 inflammasome assembly and activation, and the immunostimulatory capacity and apoptotic predilection of Chlamydia-exposed dendritic cells (DCs) from WT and IL-10(-/-) mice. Our results revealed that, in addition to the rapid clearance of infection, genitally infected IL-10(-/-) mice were protected from tubal pathologies and infertility, whereas WT (IL-10(+/+)) mice were not. Chlamydia-pulsed IL-10(-/-) DCs expressed larger numbers of TLR4/IL-1R molecules and had enhanced IL-1ß production. In addition, NLRP3 inflammasome assembly was suppressed in IL-10(-/-) DCs through the inhibition of the P2X purinoceptor 7 (P2X7) receptor (P2X7R), an ATP-gated ion channel, and a decrease in intracellular Ca(2+) levels, which inhibited DC apoptosis. Thus, the potent immunostimulatory capacity of IL-10-deficient DCs is due, at least in part, to the suppression of the intracellular inflammasome assembly, which prevents DC apoptosis, allowing efficient antigen presentation. The results indicate that IL-10 deficiency enables efficient antigen presentation by DCs for rapid and enhanced immune activation against Chlamydia, which results in rapid microbial clearance, which prevents tubal pathologies during infection. Our finding has important implications for the induction of protective immunity against Chlamydia and other infectious and noninfectious diseases by vaccines.


Subject(s)
Carrier Proteins/immunology , Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Dendritic Cells/immunology , Fertility/immunology , Interleukin-10/immunology , Adoptive Transfer , Animals , Antigen Presentation , Apoptosis/immunology , Calcium/immunology , Calcium/metabolism , Carrier Proteins/genetics , Chlamydia Infections/genetics , Chlamydia Infections/microbiology , Chlamydia Infections/pathology , Chlamydia muridarum/pathogenicity , Dendritic Cells/microbiology , Dendritic Cells/transplantation , Female , Gene Expression Regulation , Host-Pathogen Interactions , Inflammasomes/genetics , Inflammasomes/immunology , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Interleukin-1 Type I/genetics , Receptors, Interleukin-1 Type I/immunology , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/immunology , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
10.
BMC Immunol ; 15: 584, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25551828

ABSTRACT

BACKGROUND: We previously showed that the Vibrio cholerae ghost platform (VCG; empty V. cholerae cell envelopes) is an effective delivery system for vaccine antigens promoting the induction of substantial immunity in the absence of external adjuvants. However, the mechanism by which these cell envelopes enhance immunity and stimulate a predominantly Th1 cellular and humoral immune response has not been elucidated. We hypothesized that the immunostimulatory ability of VCG involves dendritic cell (DC) activation. OBJECTIVE: The aims of this study were: a) to investigate the ability of DCs [using mouse bone marrow-derived DCs (BMDCs) as a model system] to take up and internalize VCGs; b) to evaluate the immunomodulatory effect of internalized VCGs on DC activation and maturation and their functional capacity to present chlamydial antigen to naïve and infection-sensitized CD4+ T cells and; c) to evaluate the ability of VCGs to enhance the protective immunity of a chlamydial antigen. RESULTS: VCGs were efficiently internalized by DCs without affecting their viability and modulated DC-mediated immune responses. VCG-pulsed DCs showed increased secretion of proinflammatory cytokines and expression of co-stimulatory molecules associated with DC maturation in response to stimulation with UV-irradiated chlamydial elementary bodies (UV-EBs). Furthermore, this interaction resulted in effective chlamydial antigen presentation to infection-sensitized but not naïve CD4+ T cells and enhancement of protective immunity. CONCLUSIONS: The present study demonstrated that VCGs activate DCs leading to the surface expression of co-stimulatory molecules associated with DC activation and maturation and enhancement of protective immunity induced by a chlamydial antigen. The results indicate that the immunoenhancing activity of VCG for increased T-cell activation against antigens is mediated, at least in part, through DC triggering. Thus, VCGs could be harnessed as immunomodulators to target antigens to DCs for enhancement of protective immunity against microbial infections.


Subject(s)
Antigen Presentation , Antigens, Bacterial , Chlamydia trachomatis , Dendritic Cells/immunology , Th1 Cells/immunology , Vibrio cholerae , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Chlamydia trachomatis/chemistry , Chlamydia trachomatis/immunology , Female , HeLa Cells , Humans , Lymphocyte Activation , Mice , Vibrio cholerae/chemistry , Vibrio cholerae/immunology
11.
J Infect Dis ; 207(7): 1095-104, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23303804

ABSTRACT

Tubal factor infertility (TFI) represents 36% of female infertility and genital infection by Chlamydia trachomatis (C. trachomatis) is a major cause. Although TFI is associated with host inflammatory responses to bacterial components, the molecular pathogenesis of Chlamydia-induced infertility remains poorly understood. We investigated the hypothesis that activation of specific cysteine proteases, the caspases, during C. trachomatis genital infection causes the disruption of key fertility-promoting molecules required for embryo development and implantation. We analyzed the effect of caspase inhibition on infertility and the integrity of Dicer, a caspase-sensitive, fertility-promoting ribonuclease III enzyme, and key micro-RNAs in the reproductive system. Genital infection with the inflammation- and caspase-inducing, wild-type C. trachomatis serovar L2 led to infertility, but the noninflammation-inducing, plasmid-free strain did not. We confirmed that caspase-mediated apoptotic tissue destruction may contribute to chlamydial pathogenesis. Caspase-1 or -3 deficiency, or local administration of the pan caspase inhibitor, Z-VAD-FMK into normal mice protected against Chlamydia-induced infertility. Finally, the oviducts of infected infertile mice showed evidence of caspase-mediated cleavage inactivation of Dicer and alteration in critical miRNAs that regulate growth, differentiation, and development, including mir-21. These results provide new insight into the molecular pathogenesis of TFI with significant implications for new strategies for treatment and prevention of chlamydial complications.


Subject(s)
Caspase 1/metabolism , Caspase 3/metabolism , Chlamydia trachomatis/pathogenicity , Infertility, Female/microbiology , Infertility, Female/prevention & control , Pregnancy Complications, Infectious/prevention & control , Animals , Apoptosis , Caspase 1/genetics , Caspase 3/genetics , Chlamydia Infections/enzymology , Chlamydia Infections/microbiology , Chlamydia Infections/pathology , Enzyme Activation , Female , HeLa Cells , Humans , Infertility, Female/enzymology , Inflammation/microbiology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Pregnancy Complications, Infectious/enzymology , Pregnancy Complications, Infectious/microbiology , Pregnancy Complications, Infectious/pathology
12.
J Clin Microbiol ; 51(4): 1298-300, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23390274

ABSTRACT

Trichomonas vaginalis infections are usually asymptomatic or can result in nonspecific clinical symptoms, which makes laboratory-based detection of this protozoan parasite essential for diagnosis and treatment. We report the development of a battery of highly sensitive and specific PCR assays for detection of T. vaginalis in urine, a noninvasive specimen, and development of a protocol for differentiating among Trichomonas species that commonly infect humans.


Subject(s)
Clinical Laboratory Techniques/methods , Molecular Diagnostic Techniques/methods , Parasitology/methods , Polymerase Chain Reaction/methods , Trichomonas Infections/diagnosis , Trichomonas vaginalis/isolation & purification , Urine/parasitology , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Sensitivity and Specificity , Trichomonas vaginalis/classification , Trichomonas vaginalis/genetics
13.
Afr J Lab Med ; 12(1): 1964, 2023.
Article in English | MEDLINE | ID: mdl-36756213

ABSTRACT

A novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in China in 2019 and later ignited a global pandemic. Contrary to expectations, the effect of the pandemic was not as devastating to Africa and its young population compared to the rest of the world. To provide insight into the possible reasons for the presumed immune sufficiency to coronavirus disease 2019 (COVID-19) in Africa, this review critically examines literature published from 2020 onwards on the dynamics of COVID-19 infection and immunity and how other prevalent infectious diseases in Africa might have influenced the outcome of COVID-19. Studies characterising the immune response in patients with COVID-19 show that the correlates of protection in infected individuals are T-cell responses against the SARS-CoV-2 spike protein and neutralising titres of immunoglobin G and immunoglobin A antibodies. In some other studies, substantial pre-existing T-cell reactivity to SARS-CoV-2 was detected in many people from diverse geographical locations without a history of exposure. Certain studies also suggest that innate immune memory, which offers protection against reinfection with the same or another pathogen, might influence the severity of COVID-19. In addition, an initial analysis of epidemiological data showed that COVID­19 cases were not severe in some countries that implemented universal Bacillus Calmette-Guerin (BCG) vaccination policies, thus supporting the potential of BCG vaccination to boost innate immunity. The high burden of infectious diseases and the extensive vaccination campaigns previously conducted in Africa could have induced specific and non-specific protective immunity to infectious pathogens in Africans.

14.
Front Immunol ; 14: 1243743, 2023.
Article in English | MEDLINE | ID: mdl-37915580

ABSTRACT

Chlamydia abortus (Cab) causes spontaneous abortion and neonatal mortality in infected ruminants and pregnant women. Most Cab infections are asymptomatic, although they can be treated with antibiotics, signifying that control of these infections may require alternative strategies, including the use of effective vaccines. However, the limitations imposed by live attenuated and inactivated vaccines further suggest that employment of subunit vaccines may need to be considered. The efficacy of a newly generated Vibrio cholerae ghost (rVCG)-based subunit vaccine harboring the N-terminal portion of the Cab Pmp18D protein (rVCG-Pmp18.3) in preventing Cab-induced abortion or neonatal mortality was evaluated in pregnant mice. Mice were intranasally (IN) immunized and boosted twice, 2 weeks apart with the vaccine, and immunized and unimmunized mice were caged with males 4 weeks postimmunization. The mice were then infected either IN or transcervically (TC) 10 days after pregnancy, and the fertility rate was determined 7 days postpartum. Eight days after delivery, the mice were sacrificed, and Cab infectivity in the lungs and spleens was evaluated by culturing tissue homogenates in tissue culture. Our results demonstrated that the vaccine induced immune effectors that mediated complete clearance of infection in the lungs and significantly reduced Cab infectivity in the spleen following IN immunization. Vaccine immunization also afforded protection against Cab-induced upper genital tract pathology (uterine dilation). Furthermore, while there was no incidence of abortion in both immunized and unimmunized mice, immunized mice were completely protected against neonatal mortality compared to unimmunized infected controls, which lost a significant percentage of their litter 7 days postpartum. Our results establish the capability of the rVCG-Pmp18.3 vaccine to prevent infection in the lungs (mucosal) and spleen (systemic) and protect mice from Cab-induced tubal pathologies and neonatal mortality, a hallmark of Cab infection in ruminants. To advance the commercial potential of this vaccine, future studies will optimize the antigen dose and the number of vaccine doses required for protection of ruminants.


Subject(s)
Chlamydia Infections , Chlamydia , Humans , Pregnancy , Female , Animals , Mice , Bacterial Vaccines , Chlamydia Infections/prevention & control , Vaccines, Subunit , Ruminants
15.
Front Immunol ; 12: 698737, 2021.
Article in English | MEDLINE | ID: mdl-34249004

ABSTRACT

Efficacious vaccines are needed to control genital chlamydial diseases in humans and the veterinary industry. We previously reported a C. abortus (Cab) vaccine comprising recombinant Vibrio cholerae ghosts (rVCG) expressing the conserved and immunogenic N-terminal region of the Cab polymorphic membrane protein D (rVCG-Pmp18.1) protein that protected mice against intravaginal challenge. In this study, we investigated the immunomodulatory effect of the hematopoietic progenitor activator cytokine, Fms-like tyrosine kinase 3-ligand (FL) when co-administered with the rVCG-Pmp18.1 vaccine as a strategy to enhance the protective efficacy and the potential mechanism of immunomodulation. Groups of female C57BL/6J mice were immunized and boosted twice intranasally (IN) with rVCG-PmpD18.1 with and without FL or purified rPmp18.1 or rVCG-gD2 (antigen control) or PBS (medium) per mouse. The results revealed that co-administration of the vaccine with FL enhanced antigen-specific cellular and humoral immune responses and protected against live Cab genital infection. Comparative analysis of immune cell phenotypes infiltrating mucosal and systemic immune inductive tissue sites following immunization revealed that co-administration of rVCG-Pmp18.1 with FL significantly enhanced the number of macrophages, dendritic and NK cells, γδ and NK T cells in the spleen (systemic) and iliac lymph nodes (ILN) draining the genital tract (mucosal) tissues compared to rVCG-Pmp18.1 alone. Furthermore, FL enhanced monocyte infiltration in the ILN, while CD19+ B cells and CD4+ T cells were enhanced in the spleen. These results indicate that the immunomodulatory effect of FL is associated with its ability to mobilize innate immune cells and subsequent activation of robust antigen-specific immune effectors in mucosal and systemic lymphoid tissues.


Subject(s)
Adjuvants, Vaccine/pharmacokinetics , Bacterial Vaccines/immunology , Bacterial Vaccines/pharmacology , Chlamydia Infections , Membrane Proteins/immunology , Animals , Chlamydia , Female , Mice , Mice, Inbred C57BL , Vibrio cholerae
16.
Pathogens ; 10(5)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067003

ABSTRACT

Genital Chlamydia trachomatis infection causes severe reproductive pathologies such as salpingitis and pelvic inflammatory disease that can lead to tubal factor infertility. MicroRNAs (miRNAs) are evolutionarily conserved regulators of mammalian gene expression in development, immunity and pathophysiologic processes during inflammation and infection, including Chlamydia infection. Among the miRNAs involved in regulating host responses and pathologic outcome of Chlamydia infection, we have shown that miR-378b was significantly differentially expressed during primary infection and reinfection. In this study, we tested the hypothesis that miR-378b is involved in the pathological outcome of Chlamydia infection. We developed miR-378b knockout mice (miR-378b-/-) using Crispr/Cas and infected them along with their wild-type (WT) control with Chlamydia to compare the infectivity and reproductive pathologies. The results showed that miR-378b-/- mice were unable to clear the infection compared to WT mice; also, miR-378b-/- mice exhibited a relatively higher Chlamydia burden throughout the duration of infection. However, gross pathology results showed that miR-378b-/- mice had significantly reduced uterine dilatations and pathologic lesions after two infections compared to WT mice. In addition, the pregnancy and fertility rates for infected miR-378b-/- mice showed protection from Chlamydia-induced infertility with fertility rate that was comparable to uninfected WT mice. These results are intriguing as they suggest that miR-378b is important in regulating host immune responses that control Chlamydial replication and drive the inflammation that causes complications such as infertility. The finding has important implications for biomarkers of Chlamydial complications and targets for prevention of disease.

17.
Front Immunol ; 12: 625318, 2021.
Article in English | MEDLINE | ID: mdl-33692799

ABSTRACT

Vaccine-induced immune responses following immunization with promising Chlamydia vaccines protected experimental animals from Chlamydia-induced upper genital tract pathologies and infertility. In contrast, primary genital infection with live Chlamydia does not protect against these pathologies. We hypothesized that differential miRNA profiles induced in the upper genital tracts (UGT) of mice correlate with the disparate immunity vs. pathologic outcomes associated with vaccine immunization and chlamydial infection. Thus, miRNA expression profiles in the UGT of mice after Chlamydia infection (Live EB) and immunization with dendritic cell (DC)-based vaccine (DC vaccine) or VCG-based vaccine (VCG vaccine) were compared using the NanoString nCounter Mouse miRNA assay. Of the 602 miRNAs differentially expressed (DE) in the UGT of immunized and infected mice, we selected 58 with counts >100 and p-values < 0.05 for further analysis. Interestingly, vaccine immunization and Chlamydia infection induced the expression of distinct miRNA profiles with a higher proportion in vaccine-immunized compared to Chlamydia infected mice; DC vaccine (41), VCG vaccine (23), and Live EB (15). Hierarchical clustering analysis showed notable differences in the uniquely DE miRNAs for each experimental group, with DC vaccine showing the highest number (21 up-regulated, five down-regulated), VCG vaccine (two up-regulated, five down-regulated), and live EB (two up-regulated, four down-regulated). The DC vaccine-immunized group showed the highest number (21 up-regulated and five down-regulated compared to two up-regulated and four down-regulated in the live Chlamydia infected group). Pathway analysis showed that the DE miRNAs target genes that regulate several biological processes and functions associated with immune response and inflammation. These results suggest that the induction of differential miRNA expression plays a significant role in the disparate immunity outcomes associated with Chlamydia infection and vaccination.


Subject(s)
Bacterial Vaccines/administration & dosage , Chlamydia Infections/prevention & control , Chlamydia muridarum/immunology , Dendritic Cells/immunology , Immunogenicity, Vaccine , MicroRNAs/genetics , Transcriptome , Adoptive Transfer , Animals , Bacterial Vaccines/immunology , Chlamydia Infections/genetics , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Chlamydia muridarum/pathogenicity , Dendritic Cells/microbiology , Dendritic Cells/transplantation , Disease Models, Animal , Female , Gene Expression Profiling , Host-Pathogen Interactions , Mice, Inbred C57BL , MicroRNAs/immunology , MicroRNAs/metabolism , Vaccination , Vibrio cholerae/genetics , Vibrio cholerae/immunology
18.
J Immunol ; 181(6): 4037-42, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18768859

ABSTRACT

We investigated the hypothesis that the enhanced Ag-presenting function of IL-10-deficient dendritic cells (DCs) is related to specific immunoregulatory cytoskeletal molecules expressed when exposed to Ags. We analyzed the role of a prominent cytoskeletal protein, LEK1, in the immunoregulation of DC functions; specifically cytokine secretion, costimulatory molecule expression, and T cell activation against Chlamydia. Targeted knockdown of LEK1 expression using specific antisense oligonucleotides resulted in the rapid maturation of Chlamydia-exposed DCs as measured by FACS analysis of key activation markers (i.e., CD14, CD40, CD54, CD80, CD86, CD197, CD205, and MHC class II). The secretion of mostly Th1 cytokines and chemokines (IL-1a, IL-9, IL-12, MIP-1a, and GM-CSF but not IL-4 and IL-10) was also enhanced by blocking of LEK1. The function of LEK1 in DC regulation involves cytoskeletal changes, since the dynamics of expression of vimentin and actin, key proteins of the cellular cytoskeleton, were altered after exposure of LEK1 knockdown DCs to Chlamydia. Furthermore, targeted inhibition of LEK1 expression resulted in the enhancement of the immunostimulatory capacity of DCs for T cell activation against Chlamydia. Thus, LEK1 knockdown DCs activated immune T cells at least 10-fold over untreated DCs. These results suggest that the effect of IL-10 deficiency is mediated through LEK1-related events that lead to rapid maturation of DCs and acquisition of the capacity to activate an elevated T cell response. Targeted modulation of LEK1 expression provides a novel strategy for augmenting the immunostimulatory function of DCs for inducing an effective immunity against pathogens.


Subject(s)
Chlamydia trachomatis/immunology , Chromosomal Proteins, Non-Histone/physiology , Dendritic Cells/immunology , Dendritic Cells/microbiology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/microbiology , Animals , Biomarkers/analysis , Cell Differentiation/immunology , Cells, Cultured , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Chromosomal Proteins, Non-Histone/biosynthesis , Chromosomal Proteins, Non-Histone/deficiency , Cytokines/biosynthesis , Cytokines/genetics , Cytokines/metabolism , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/biosynthesis , Cytoskeletal Proteins/deficiency , Cytoskeletal Proteins/physiology , Dendritic Cells/cytology , Dendritic Cells/metabolism , Female , Interleukin-10/antagonists & inhibitors , Interleukin-10/biosynthesis , Interleukin-10/genetics , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins , Oligonucleotides, Antisense/pharmacology , T-Lymphocyte Subsets/metabolism
19.
Sci Rep ; 10(1): 15389, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32958779

ABSTRACT

Shift work, performed by approximately 21 million Americans, is irregular or unusual work schedule hours occurring after 6:00 pm. Shift work has been shown to disrupt circadian rhythms and is associated with several adverse health outcomes and chronic diseases such as cancer, gastrointestinal and psychiatric diseases and disorders. It is unclear if shift work influences the complications associated with certain infectious agents, such as pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility resulting from genital chlamydial infection. We used an Environmental circadian disruption (ECD) model mimicking circadian disruption occurring during shift work, where mice had a 6-h advance in the normal light/dark cycle (LD) every week for a month. Control group mice were housed under normal 12/12 LD cycle. Our hypothesis was that compared to controls, mice that had their circadian rhythms disrupted in this ECD model will have a higher Chlamydia load, more pathology and decreased fertility rate following Chlamydia infection. Results showed that, compared to controls, mice that had their circadian rhythms disrupted (ECD) had higher Chlamydia loads, more tissue alterations or lesions, and lower fertility rate associated with chlamydial infection. Also, infected ECD mice elicited higher proinflammatory cytokines compared to mice under normal 12/12 LD cycle. These results imply that there might be an association between shift work and the increased likelihood of developing more severe disease from Chlamydia infection.


Subject(s)
Chlamydia Infections/etiology , Circadian Rhythm/physiology , Shift Work Schedule/adverse effects , Animals , Chlamydia/pathogenicity , Chlamydia Infections/metabolism , Chlamydia Infections/pathology , Chlamydia muridarum/pathogenicity , Female , Mice , Mice, Inbred C57BL , Pelvic Inflammatory Disease/etiology , Photoperiod , Pregnancy , Pregnancy, Ectopic/etiology
SELECTION OF CITATIONS
SEARCH DETAIL