Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Microbiol Rev ; 37(2): e0016123, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38634634

ABSTRACT

SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Lincosamides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Lincosamides/pharmacology , Lincosamides/therapeutic use , Humans , Drug Resistance, Bacterial/genetics , Bacteria/drug effects , Bacteria/genetics
2.
Molecules ; 28(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049742

ABSTRACT

An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein-protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein-ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target's active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes.


Subject(s)
Brain Neoplasms , Glioma , Humans , Tumor Suppressor Protein p53/metabolism , Molecular Docking Simulation , Proto-Oncogene Proteins c-mdm2/metabolism , DNA Copy Number Variations , Prognosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Biomarkers , Drug Development , Brain/metabolism
3.
Microb Pathog ; 163: 105389, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34998933

ABSTRACT

Emergence of multidrug resistance in E. coli and advent of newer strains is becoming serious concern which requires keen observations. This study was designed to find the ciprofloxacin resistant E. coli isolates co-existed with multi-drug resistance along with ß-lactamase production from poultry source, and finally the genome sequencing of these strains to explore genetic variations. Study constituted on isolation of n = 225 E. coli from broiler farms of central China which were further subjected to identification of resistance against ciprofloxacin followed by antibiogram of n = 26 antibiotics and identification of ß-lactamase production. Whole genome resequencing was performed using Illumina HiSeq 4000 system. PCR results revealed predominant ß-lactamase genes i.e.CTX-M, CTX-M-1, CTX-M3, TEM-1 and OXA. Furthermore, the MDR isolates were containing most of the tested virulence genes. The most prevalent virulence genes were pap-C, fim-C, fim-H, iuc-D, irp-2, tra-T, iro-N and iut-A. The single nucleotide polymorphisms (SNPs) loci mentioned in this data give valuable genetic markers to growing high-throughput techniques for fine-determination of genotyping of MDR and virulent isolates. Characterization of SNPs on functional basis shed new bits of knowledge on the evolution, disease transmission and pathogenesis of MDR E. coli isolates. In conclusion, these findings provide evidence that most of poultry E. coli are MDR, ß-lactamase producers, and virulent which could be a zoonotic threat to the humans. The whole genome resequencing data provide higher resolution of resistance and virulence characteristics in E. coli which can further be used for the development of prevention and treatment strategies.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Infections/veterinary , Humans , Virulence/genetics , beta-Lactamases/genetics
4.
J Mater Sci Mater Med ; 33(5): 42, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35536369

ABSTRACT

This study aims to evaluate the feasibility and cardio-protective effects of biocompatible silicon-built restraint device (ASD) in the rat's heart failure (HF) model. The performance and compliance characteristics of the ASD device were assessed in vitro by adopting a pneumatic drive and ball burst test. Sprague-Dawley (SD) rats were divided into four groups (n = 6); control, HF, HF + CSD, and HF + ASD groups, respectively. Heart failure was developed by left anterior descending (LAD) coronary artery ligation in all groups except the control group. The ASD and CSD devices were implanted in the heart of HF + ASD and HF + CSD groups, respectively. The ASD's functional and expansion ability was found to be safe and suitable for attenuating ventricular remodeling. ASD-treated rats showed normal heart rhythm, demonstrated by smooth -ST and asymmetrical T-wave. At the same time, hemodynamic parameters of the HF + ASD group improved systolic and diastolic functions, reducing ventricular wall stress, which indicated reverse remodeling. The BNP values were reduced in the HF + ASD group, which confirmed ASD feasibility and reversed remodeling at a molecular level. Furthermore, the HF + ASD group with no fibrosis suggests that ASD has significant curative effects on the heart muscles. In conclusion, ASD was found to be a promising restraint therapy than the previously standard restraint therapies. Stepwise ASD fabrication process (a) 3D computer model of ASD was generated by using Rhinoceros 5.0 software (b) 3D blue wax model of ASD (c) Silicon was prepared by mixing the solutions (as per manufacturer instruction) (d) Blue wax model of ASD was immersed into liquid Silicon (e) ASD model was put into the oven for 3 hours at 50 °C. (f) Blue wax started melting from the ASD model (g) ASD model was built from pure silicon (h) Two access lines were linked to the ASD device, which was connected with an implantable catheter (Port-a-cath), scale bar 100 µm. (Nikon Ldx 2.0).


Subject(s)
Heart Failure , Ventricular Remodeling , Animals , Heart Failure/therapy , Hemodynamics , Rats , Rats, Sprague-Dawley , Silicon
5.
Microb Pathog ; 160: 105201, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34547409

ABSTRACT

The emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains of animal origin that are resistant to several antibiotics is of great concern. Cefquinome is a fourth-generation cephalosporin developed specifically for veterinary use. The mechanism of MRSA resistance to cefquinome is still not established. Therefore, we designed this study to evaluate the effect of cefquinome on the transcriptome of MRSA1679a, a strain that was isolated from a chicken. The transcriptome analysis indicated that multiple efflux pumps (QacA, NorB, Bcr, and ABCb) were upregulated in MRSA1679a as a resistance mechanism to expel cefquinome. Additionally, penicillin-binding protein 1A was overexpressed, which conferred resistance to cefquinome, a ß-lactam antibiotic. Adhesion and the biofilm-forming capacity of the MRSA strain was also enhanced in addition to overexpression of many stress-related genes. Genes related to carbohydrate metabolism, secretion systems, and transport activity were also significantly upregulated in MRSA1679a. In conclusion, global transcription was triggered to overcome the stress induced by cefquinome, and the MRSA1679a showed a great genetic potential to survive in this challenging environment. This study provides a profound understanding of MRSA1679a as a potentially important pathogen and identifies key resistance characteristics of MRSA against cefquinome. Studies should be aimed to demonstrate multidrug resistance mechanisms of virulent strains by exposing to different antibiotic combinations.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Cephalosporins/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , RNA-Seq
6.
Cytokine ; 136: 155256, 2020 12.
Article in English | MEDLINE | ID: mdl-32866898

ABSTRACT

The COVID-19 pandemic has rapidly spread around the world with significant morbidity and mortality in a subset of patients including the elderly. The poorer outcomes are associated with 'cytokine storm-like' immune responses, otherwise referred to as 'hyperinflammation'. While most of the infected individuals show minimal or no symptoms and recover spontaneously, a small proportion of the patients exhibit severe symptoms characterized by extreme dyspnea and low tissue oxygen levels, with extensive damage to the lungs referred to as acute respiratory distress symptom (ARDS). The consensus is that the hyperinflammatory response of the host is akin to the cytokine storm observed during sepsis and is the major cause of death. Uncertainties remain on the factors that lead to hyperinflammatory response in some but not all individuals. Hyperinflammation is a common feature in different viral infections such as dengue where existing low-titer antibodies to the virus enhances the infection in immune cells through a process called antibody-dependent enhancement or ADE. ADE has been reported following vaccination or secondary infections with other corona, Ebola and dengue virus. Detailed analysis has shown that antibodies to any viral epitope can induce ADE when present in sub-optimal titers or is of low affinity. In this review we will discuss ADE in the context of dengue and coronavirus infections including Covid-19.


Subject(s)
Antibody-Dependent Enhancement/immunology , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Feline Infectious Peritonitis/immunology , Inflammation/pathology , Pandemics/veterinary , Pneumonia, Viral/immunology , Pneumonia, Viral/veterinary , Severe Dengue/immunology , Animals , COVID-19 , Cats , Cytokines/metabolism
7.
BMC Cancer ; 20(1): 774, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32807134

ABSTRACT

BACKGROUND: SOCS1 and SOCS3 genes are considered tumor suppressors in hepatocellular carcinoma (HCC) due to frequent epigenetic repression. Consistent with this notion, mice lacking SOCS1 or SOCS3 show increased susceptibility to diethylnitrosamine (DEN)-induced HCC. As SOCS1 and SOCS3 are important regulators of cytokine and growth factor signaling, their loss could activate oncogenic signaling pathways. Therefore, we examined the correlation between SOCS1/SOCS3 and key oncogenic signaling pathway genes as well as their prognostic significance in HCC. METHODS: The Cancer Genome Atlas dataset on HCC comprising clinical and transcriptomic data was retrieved from the cBioportal platform. The correlation between the expression of SOCS1 or SOCS3 and oncogenic pathway genes was evaluated using the GraphPad PRISM software. The inversely correlated genes were assessed for their impact on patient survival using the UALCAN platform and their expression quantified in the regenerating livers and DEN-induced HCC tissues of mice lacking Socs1 or Socs3. Finally, the Cox proportional hazards model was used to evaluate the predictive potential of SOCS1 and SOCS3 when combined with the genes of select oncogenic signaling pathways. RESULTS: SOCS1 expression was comparable between HCC and adjacent normal tissues, yet higher SOCS1 expression predicted favorable prognosis. In contrast, SOCS3 expression was significantly low in HCC, yet it lacked predictive potential. The correlation between SOCS1 or SOCS3 expression and key genes of the cell cycle, receptor tyrosine kinase, growth factor and MAPK signaling pathways were mostly positive than negative. Among the negatively correlated genes, only a few showed elevated expression in HCC and predicted survival. Many PI3K pathway genes showed mutual exclusivity with SOCS1 and/or SOCS3 and displayed independent predictive ability. Among genes that negatively correlated with SOCS1 and/or SOCS3, only CDK2 and AURKA showed corresponding modulations in the regenerating livers and DEN-induced tumors of hepatocyte-specific Socs1 or Socs3 deficient mice and predicted patient survival. The Cox proportional hazards model identified the combinations of SOCS1 or SOCS3 with CXCL8 and DAB2 as highly predictive. CONCLUSIONS: SOCS1 expression in HCC has an independent prognostic value whereas SOCS3 expression does not. The predictive potential of SOCS1 expression is increased when combined with other oncogenic signaling pathway genes.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Datasets as Topic , Diethylnitrosamine/toxicity , Gene Expression Regulation, Neoplastic , Hepatocytes , Humans , Kaplan-Meier Estimate , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Male , Mice, Knockout , Predictive Value of Tests , Prognosis , RNA-Seq , Signal Transduction/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism
8.
AAPS PharmSciTech ; 21(4): 132, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32409932

ABSTRACT

The superiority of nanomedicine over conventional medicines in the treatment of cancer has gained immediate recognition worldwide. As traditional cancer therapies are nonspecific and detrimental to healthy cells, the ability of nanomedicine to release drugs to target tumor cells specifically instead of healthy cells has brought new hope to cancer patients. This review focuses on the effects of various factors of nanoparticles such as transport, concentration in cells, tumor microenvironment, interaction with protein, penetration, uptake by tumor cells, cancer cell mutations, and intracellular trafficking of the nanoparticle. Besides the history of nanomedicine, future perspectives of nanomedicines are also explored in this text.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Nanomedicine/methods , Nanoparticles/administration & dosage , Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Humans , Nanoparticles/chemistry , Nanoparticles/metabolism , Neoplasms/metabolism , Tumor Microenvironment/physiology
9.
Andrologia ; 51(11): e13435, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31613015

ABSTRACT

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common clinical syndrome with unknown aetiology. In this study, we used the T2 peptide in C57BL/6 (B6) mice and Sprague Dawley (SD) rats model during different stages. We sought to understand the role of CD4+ T cells and macrophages in CP/CPPS. A total of 16 B6 mice and 18 SD rats were divided into five groups: B6-naïve (n = 6), B6 model (n = 10), SD-naïve (n = 6), SD-45-day model (n = 6) and SD-56-day model (n = 6). The B6 model group was subcutaneously injected with 0.2 ml of (225µg/ml) T2 peptide on 0 and 14th day and was finally sacrificed on 28th day. The SD-45- and SD-56-day model groups were subcutaneously injected with 1ml of (50 µg/ml) T2 peptide on 0 and 14th day and were finally sacrificed on 45th and 56th day respectively. An equivalent volume of normal saline (NS) solution was injected to the naïve groups and analysed the pain and voiding behaviour. We have calculated the prostate index, H&E staining and immunofluorescence of CD4+ T cells and macrophages (CD68) in each group. T2 peptide immunization in B6 mice and SD rats caused severe prostatitis and cell infiltration, mainly composed of CD4+ T cells and macrophages. The SD-56-day model group showed more severe inflammatory cells infiltration than SD-45-day model group. Moreover, inflammatory cells infiltration and red secretions in B6 model were less than SD model. Expression of CD4+ T cells and macrophages was also consistent with H&E results. These results indicated that different stages of CP/CPPS, inflammatory response, and the inflammation of the rat were stronger than the mouse. Our study suggests that CD4+ T cells and macrophages are key factors in the development of CP/CPPS.


Subject(s)
Prostatitis/immunology , Animals , Behavior, Animal , CD4-Positive T-Lymphocytes/physiology , Disease Models, Animal , Macrophages/physiology , Male , Mice, Inbred C57BL , Prostate/immunology , Prostate/pathology , Prostatitis/metabolism , Prostatitis/pathology , Prostatitis/psychology , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
10.
Microb Pathog ; 116: 91-99, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29353147

ABSTRACT

Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses.


Subject(s)
Conserved Sequence , Glycoproteins/genetics , Viral Structural Proteins/genetics , Animals , Binding Sites , Computational Biology , Herpesviridae , Humans , Protein Domains
11.
Nucleic Acids Res ; 42(Database issue): D352-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24311564

ABSTRACT

RepeatsDB (http://repeatsdb.bio.unipd.it/) is a database of annotated tandem repeat protein structures. Tandem repeats pose a difficult problem for the analysis of protein structures, as the underlying sequence can be highly degenerate. Several repeat types haven been studied over the years, but their annotation was done in a case-by-case basis, thus making large-scale analysis difficult. We developed RepeatsDB to fill this gap. Using state-of-the-art repeat detection methods and manual curation, we systematically annotated the Protein Data Bank, predicting 10,745 repeat structures. In all, 2797 structures were classified according to a recently proposed classification schema, which was expanded to accommodate new findings. In addition, detailed annotations were performed in a subset of 321 proteins. These annotations feature information on start and end positions for the repeat regions and units. RepeatsDB is an ongoing effort to systematically classify and annotate structural protein repeats in a consistent way. It provides users with the possibility to access and download high-quality datasets either interactively or programmatically through web services.


Subject(s)
Databases, Protein , Repetitive Sequences, Amino Acid , Internet , Molecular Sequence Annotation , Protein Conformation
12.
Regul Toxicol Pharmacol ; 74: 123-36, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26617409

ABSTRACT

Cyadox (CYA) is a synthetic antimicrobial agent, belonging to quinoxaline (QdNO) family. Cy1 (bidesoxy cyadox), Cy2 (N4-desoxycyadox) and Cy10 (N1-desoxycyadox) are the primary metabolites of CYA. In our present study, an acute toxicity test, a sub-chronic toxicity test, and a battery of three genotoxicity tests were carried out according to standard protocols. The LD50 of the metabolites were above 5000 mg/kg b.w. The maximum tolerated dose (MTD) of Cy1 and Cy-M (mixture of Cy2 and Cy10) in rats, and the MTD of Cy1, Cy2 and Cy10 in mice were above 6000 mg/kg b.w./day. In subchronic study, rats were separately administered Cy1 and Cy-M at the dose levels of 0, 50, 150 and 2500 mg/kg diet for 90 days, with CYA (2500 mg/kg) as a control. Significant decreases in body weight and changes in clinical serum biochemistry were observed in the high-dose group of Cy1 and Cy-M, as well as CYA. Significant changes in relative weights of organs at 150 and 2500 mg/kg diet of Cy1 and CYA were noted. Additionally, the high-dose groups of Cy1, Cy-M and CYA showed pathological changes near the hepatic portal area. There was no evidence for genotoxic activity of any of the three metabolites in the bacterial reverse mutation test, mouse bone marrow micronucleus assay or an in vitro assay for clastogenicity. Based on the subchronic study, the target organ of the primary metabolites was the liver, and the no-observed-adverse-effect level for Cy1 and Cy-M was 150 mg/kg diet.


Subject(s)
Anti-Infective Agents/toxicity , Liver/drug effects , Mutagenicity Tests , Toxicity Tests, Acute , Toxicity Tests, Subchronic , Animals , Anti-Infective Agents/metabolism , Biomarkers/blood , Biotransformation , Dose-Response Relationship, Drug , Female , Lethal Dose 50 , Liver/metabolism , Liver/pathology , Male , Maximum Tolerated Dose , Mice, Inbred BALB C , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Organ Size/drug effects , Quinoxalines/metabolism , Quinoxalines/toxicity , Rats, Wistar , Risk Assessment , Time Factors , Weight Loss/drug effects
13.
Regul Toxicol Pharmacol ; 73(1): 232-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26209270

ABSTRACT

Diaveridine, a developed dihydrofolate reductase inhibitor, has been widely used as anticoccidial drug and antibacterial synergist. However, few studies have been performed to investigate its toxicity. To provide detailed toxicity with a wide spectrum of doses for diaveridine, acute and sub-chronic toxicity studies were conducted. Calculated LD50 was 2330 mg/kg b.w. in females and 3100 mg/kg b.w. in males, and chromodacryorrhea was noted in some females before their death. In the sub-chronic study, diaveridine was fed to Wistar rats during 90 days at dietary levels of 0, 23, 230, 1150 and 2000 mg/kg, which were about 0, 2.0-2.3, 21.0-23.5, 115.2-126.9 and 212.4-217.9 mg/kg b.w., respectively. Significant decrease in body weights in both genders at 1150 and 2000 mg/kg groups and significant increases in relative weights of brain in both genders, liver in females, kidneys and testis in males, alkaline phosphatase and potassium in both genders at 2000 mg/kg diet were noted. Significant decrease in absolute weights of several organs, hemoglobin and red blood cell count in both genders, albumin and total protein in females were observed at 2000 mg/kg diet. Fibroblasts in the kidneys, cell swelling of the glomerular zone in the adrenals and inflammation in the liver were found at 2000 mg/kg group. The no-observed-adverse-effect level of diaveridine was 230 mg/kg diet (21.0-23.5 mg/kg b.w./day).


Subject(s)
Pyrimidines/adverse effects , Animals , Body Weight/drug effects , Carcinogenicity Tests/methods , Diet , Female , Kidney/drug effects , Kidney Diseases/chemically induced , Liver/drug effects , Male , Mutagenicity Tests/methods , No-Observed-Adverse-Effect Level , Organ Size/drug effects , Rats , Rats, Wistar
14.
Regul Toxicol Pharmacol ; 73(2): 652-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26408151

ABSTRACT

Cyadox (2-formylquinoxaline-N(1),N(4)-dioxide cyanocetylhydrazone) is a new antimicrobial agent and growth-promoter to be used in food-producing animals. Although its toxicity has been clearly documented in rodents, no study is available in non-rodent animals. Therefore, we studied the subchronic effects of cyadox in Beagle dogs to provide additional information with which to establish safety criteria for human exposure. For this purpose, 36 Beagle dogs, 18 males and 18 females, were divided into four groups and fed diets containing 0, 100, 450 and 2500 mg/kg of cyadox, respectively, for 13 weeks. It was found that there were no significant changes among the examined parameters, except for an increase in the level of serum potassium (K(+)) in 2500 mg/kg cyadox group in males at week 13 of the study. However, the K(+) level returned to normal during the recovery period. In conclusion, cyadox showed slight effects in Beagle dogs in the subchronic oral toxicity study. The no-observed-adverse-effect level of cyadox was considered to be 450 mg/kg diet, which equates to approximately 15.3-15.4 mg/kg b.w./day. The study provided subchronic effects of cyadox in Beagle dogs, suggesting that cyadox might present mild toxicity in non-rodents.


Subject(s)
Toxicity Tests, Subchronic/methods , Administration, Oral , Animals , Body Weight/drug effects , Body Weight/physiology , Dogs , Eating/drug effects , Eating/physiology , Female , Male , No-Observed-Adverse-Effect Level , Organ Size/drug effects , Organ Size/physiology , Quinoxalines/administration & dosage , Quinoxalines/toxicity , Time Factors
15.
J Appl Toxicol ; 35(11): 1415-26, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25663419

ABSTRACT

Aditoprim (ADP), a new developed dihydrofolate reductase (DHFR) inhibitor, has great potential in clinical veterinary medicine because of its greater pharmacokinetic properties than structural analogs. Preclinical toxicology studies were performed to assess the safety of ADP including an acute oral toxicity test, a subchronic toxicity test and five mutagenicity tests. In the acute oral toxicity test, ADP was administered singly by oral gavage to Wistar rats and Kunming mice. The LD50 calculated was 1400 mg kg(-1) body weight (BW) day(-1) in rats and 1130 mg kg(-1) BW day(-1) in mice. In a subchronic study, Wistar rats were administered ADP at dose levels of 0, 20, 100 and 1000 mg kg(-1) diet for 90 days. Significant decreases were observed on body weight and food efficiency in the high-dose group. Treatment-related changes in clinical serum biochemistry were found in the medium- and high-dose groups. Significant increases in the relative weights of livers and kidneys in females and testis in males in the 1000 mg kg(-1) diet, and significant decrease in relative weights of livers in males in the 100 mg kg(-1) diet were noted. Histopathological observations revealed that the 1000 mg kg(-1) ADP diet could induce lymphocytic infiltration and hepatocytic necrosis near the hepatic portal area. The genotoxicity of ADP was negative in tests, such as the bacterial reverse mutation assay, mice bone marrow erythrocyte micronucleus assay, in vitro chromosomal aberration test, in vitro cho/hgprt mammalian cell mutagenesis assay and mice testicle cells chromosome aberration. Based on the subchronic study, the no-observed-adverse-effect level for ADP was a 20 mg kg(-1) diet, which is about 1.44-1.53 mg kg(-1) BW day(-1) in rats.


Subject(s)
Toxicity Tests, Acute/methods , Toxicity Tests, Subchronic/methods , Trimethoprim/analogs & derivatives , Animals , Body Weight , CHO Cells , Cricetulus , Diet , Dose-Response Relationship, Drug , Female , Kidney/drug effects , Liver/drug effects , Male , Mice , Micronucleus Tests , Mutagenicity Tests , No-Observed-Adverse-Effect Level , Organ Size/drug effects , Rats , Rats, Wistar , Risk Assessment , Trimethoprim/toxicity
16.
Expert Opin Drug Metab Toxicol ; : 1-21, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38980754

ABSTRACT

INTRODUCTION: Carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) are extensively used worldwide due to their antipyretic, analgesic, and anti-inflammatory effects. CBA-NSAIDs have reasonable margin of safety at therapeutic doses, and in the current climate, do not possess addiction potential like opioid drugs. Studies have revealed that various adverse events of CBA-NSAIDs are related mitochondrial dysfunction and oxidative stress. AREAS COVERED: This review article summarizes adverse events induced by CBA-NSAIDs, mechanisms of mitochondrial damage, oxidative stress, and metabolic interactions. Meanwhile, this review discusses the treatment and prevention of CBA-NSAIDs damage by natural plant extracts based on antioxidant effects. EXPERT OPINION: CBA-NSAIDs can induce reactive oxygen species (ROS) production, mediate DNA, protein and lipid damage, lead to imbalance of cell antioxidant status, change of mitochondrial membrane potential, activate oxidative stress signal pathway, thus leading to oxidative stress and cell damage. Adverse events caused by CBA-NSAIDs often exhibit dose and time dependence. In order to avoid adverse events caused by CBA-NSAIDs, it is necessary to provide detailed patient consultation and eliminate influencing factors. Moreover, constructive research studies on the organ-specific toxicity and mechanism of natural plant extracts in preventing and treating metabolic abnormalities of CBA-NSAIDs, will provide important value for warning and guidance for use of CBA-NSAIDs.

17.
Metabolites ; 13(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37110187

ABSTRACT

There is often abuse of drugs in livestock and poultry production, and the improper use of drugs leads to the existence of a low level of residues in eggs, which is a potential threat to human safety. Enrofloxacin (EF) and tilmicosin (TIM) are regularly combined for the prevention and treatment of poultry diseases. The current studies on EF or TIM mainly focus on a single drug, and the effects of the combined application of these two antibiotics on EF metabolism in laying hens are rarely reported. In this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the residual EF and TIM in laying hens and to investigate the effect of TIM on the EF metabolism in laying hens. In this paper, we first establish a method that can detect EF and TIM simultaneously. Secondly, the results showed that the highest concentration of EF in the egg samples was 974.92 ± 441.71 µg/kg on the 5th day of treatment. The highest concentration of EF in the egg samples of the combined administration group was 1256.41 ± 226.10 µg/kg on the 5th day of administration. The results showed that when EF and TIM were used in combination, the residue of EF in the eggs was increased, the elimination rate of EF was decreased, and the half-life of EF was increased. Therefore, the use of EF and TIM in combination should be treated with greater care and supervision should be strengthened to avoid risks to human health.

18.
Food Chem Toxicol ; 174: 113687, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36863559

ABSTRACT

T-2 toxin is a natural contaminant in grain cereals produced by species of Fusarium. Studies indicate that T-2 toxin can positively affect mitochondrial function, but the underlying mechanism is unclear. In this study, we examined the role of nuclear respiratory factor 2α (NRF-2α) in T-2 toxin-activated mitochondrial biogenesis and the direct target genes of NRF-2α. Furthermore, we investigated T-2 toxin-induced autophagy and mitophagy, and the role of mitophagy in changes in mitochondrial function and apoptosis. It was found that T-2 toxin significantly increased NRF-2α levels and nuclear localization of NRF-2α was induced. NRF-2α deletion significantly increased the production of reactive oxygen species (ROS), abrogated T-2 toxin-induced increases in ATP and mitochondrial complex I activity, and inhibited the mitochondrial DNA copy number. Meanwhile, With chromatin immunoprecipitation sequencing (ChIP-Seq), various novel NRF-2α target genes were identified, such as mitochondrial iron-sulphur subunits (Ndufs 3,7) and mitochondrial transcription factors (Tfam, Tfb1m, and Tfb2m). Some target genes were also involved in mitochondrial fusion and fission (Drp1), mitochondrial translation (Yars2) and splicing (Ddx55), and mitophagy. Further studies showed that T-2 toxin induced Atg5 dependent autophagy and Atg5/PINK1-dependent mitophagy. In addition, mitophagy defects increase ROS production, inhibit ATP levels and the expression of genes related to mitochondrial dynamics, and promote apoptosis in the presence of T-2 toxins. Altogether, these results suggest that NRF-2α plays a critical role in promoting mitochondrial function and biogenesis through regulation of mitochondrial genes, and, interestingly, mitophagy caused by T-2 toxin positively affected mitochondrial function and protected cell survival against T-2 toxin.


Subject(s)
T-2 Toxin , Nuclear Respiratory Factors/metabolism , T-2 Toxin/metabolism , Reactive Oxygen Species/metabolism , Mitophagy , Mitochondria/metabolism , Adenosine Triphosphate/metabolism
19.
Metabolites ; 13(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37512503

ABSTRACT

Cancer is a huge challenge for people worldwide. High reactive oxygen species (ROS) levels are a recognized hallmark of cancer and an important aspect of cancer treatment research. Abnormally elevated ROS levels are often attributable to alterations in cellular metabolic activities and increased oxidative stress, which affects both the development and maintenance of cancer. Moderately high levels of ROS are beneficial to maintain tumor cell genesis and development, while toxic levels of ROS have been shown to be an important force in destroying cancer cells. ROS has become an important anticancer target based on the proapoptotic effect of toxic levels of ROS. Therefore, this review summarizes the role of increased ROS in DNA damage and the apoptosis of cancer cells caused by changes in cancer cell metabolism, as well as various anticancer therapies targeting ROS generation, in order to provide references for cancer therapies based on ROS generation.

20.
Methods Mol Biol ; 2452: 197-212, 2022.
Article in English | MEDLINE | ID: mdl-35554909

ABSTRACT

As the knowledge of biomolecules is increasing from the last decades, it is helping the researchers to understand the unsolved issues regarding virology. Recent technologies in high-throughput sequencing are providing the swift generation of SARS-CoV-2 genomic data with the basic inside of viral infection. Owing to various virus-host protein interactions, high-throughput technologies are unable to provide complete details of viral pathogenesis. Identifying the virus-host protein interactions using bioinformatics approaches can assist in understanding the mechanism of SARS-CoV-2 infection and pathogenesis. In this chapter, recent integrative bioinformatics approaches are discussed to help the virologists and computational biologists in the identification of structurally similar proteins of human and SARS-CoV-2 virus, and to predict the potential of virus-host interactions. Considering experimental and time limitations for effective viral drug development, computational aided drug design (CADD) can reduce the gap between drug prediction and development. More research with respect to evolutionary solutions could be helpful to make a new pipeline for virus-host protein-protein interactions and provide more understanding to disclose the cases of host switch, and also expand the virulence of the pathogen and host range in developing viral infections.


Subject(s)
COVID-19 , Computational Biology , Host Microbial Interactions , Host-Pathogen Interactions/genetics , Humans , Proteins , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL