Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Yeast ; 41(5): 299-306, 2024 May.
Article in English | MEDLINE | ID: mdl-38297467

ABSTRACT

Trichosporon asahii is a pathogenic yeast that cause trichosporonosis. T. asahii exhibits several colony morphologies, such as white (W)- or off-white (O)-type, which may affect virulence. In this study, we compared the expression pattern of heparin-binding proteins in various colony morphologies and identified heparin-binding protein in T. asahii. Surface plasmon resonance analysis revealed that cell surface molecules attached more strongly to heparin in W- than O-type cells. We purified and identified a heparin-binding protein strongly expressed in W-type cells using heparin-Sepharose beads, named it heparin-binding protein 1 (HepBP1), and expressed Flag-tagged HepBP1 in mammalian cells. The heparin-binding ability of Flag-tagged HepBP1 was confirmed by pulldown assay using heparin-Sepharose beads. Thus, HepBP1 is a heparin-binding protein on T. asahii cell surface. These results suggest that several T. asahii cell surface proteins interact with glycosaminoglycans; therefore, they could contribute to infection.


Subject(s)
Heparin , Heparin/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Protein Binding , Membrane Proteins/genetics , Membrane Proteins/metabolism , Trichosporonosis/microbiology , Humans , Surface Plasmon Resonance , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane/metabolism , Basidiomycota
2.
Discov Med ; 36(182): 457-466, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531787

ABSTRACT

Chitosan seems to be an innovative biological material potentially utilized as a nanoparticle carrier for drug delivery, which could be low toxic, biocompatible, and easy to prepare. Chitosan nanoparticles have been employed in gene delivery. As a type of multifunctional adjuvant, chitosan nanoparticles could activate the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway to induce cell protection and/or proliferation via the modulation of autophagy within dendritic cells. In general, adjuvants may improve the innate and/or adaptive immune responses to a vaccine antigen by facilitating the antigen presentation of antigen presenting cells such as dendritic cells. The choice of a suitable adjuvant has become vital for improved safety and/or expanded application of vaccines. Fortunately, chitosan nanoparticles could be designed to target the dendritic cells to be enhanced by its adjuvant effect and for stimulating robust immune responses. Therefore, chitosan nanoparticles may be a good immune stimulant with encouraging properties for the development of superior vaccine delivery. Indeed, vaccines could play a key role in human health. In this review, we summarize the concept and/or recent progress in the field of chitosan nanoparticles, providing a valuable resource for investigating the molecular mechanisms of chitosan for the development of a greater vaccine.


Subject(s)
Chitosan , Nanoparticles , Vaccines , Humans , Phosphatidylinositol 3-Kinases , Adjuvants, Immunologic
3.
Biomolecules ; 14(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38397444

ABSTRACT

Polycystic kidney disease (PKD) is the most common genetic form of chronic kidney disease (CKD), and it involves the development of multiple kidney cysts. Not enough medical breakthroughs have been made against PKD, a condition which features regional hypoxia and activation of the hypoxia-inducible factor (HIF) pathway. The following pathology of CKD can severely instigate kidney damage and/or renal failure. Significant evidence verifies an imperative role for mitophagy in normal kidney physiology and the pathology of CKD and/or PKD. Mitophagy serves as important component of mitochondrial quality control by removing impaired/dysfunctional mitochondria from the cell to warrant redox homeostasis and sustain cell viability. Interestingly, treatment with the peroxisome proliferator-activated receptor-α (PPAR-α) agonist could reduce the pathology of PDK and might improve the renal function of the disease via the modulation of mitophagy, as well as the condition of gut microbiome. Suitable modulation of mitophagy might be a favorable tactic for the prevention and/or treatment of kidney diseases such as PKD and CKD.


Subject(s)
Polycystic Kidney Diseases , Renal Insufficiency, Chronic , Humans , Mitophagy/genetics , Polycystic Kidney Diseases/therapy , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/pathology , Hypoxia , Oxidation-Reduction
4.
Noncoding RNA ; 10(1)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38392966

ABSTRACT

Noncoding RNAs (ncRNAs), including circular RNAs (circRNAs) and N6-methyladenosine (m6A), have been shown to play a critical role in the development of various diseases including obesity and metabolic disorder-associated fatty liver disease (MAFLD). Obesity is a chronic disease caused by excessive fat accumulation in the body, which has recently become more prevalent and is the foremost risk factor for MAFLD. Causes of obesity may involve the interaction of genetic, behavioral, and social factors. m6A RNA methylation might add a novel inspiration for understanding the development of obesity and MAFLD with post-transcriptional regulation of gene expression. In particular, circRNAs, microRNAs (miRNAs), and m6A might be implicated in the progression of MAFLD. Interestingly, m6A modification can modulate the translation, degradation, and other functions of ncRNAs. miRNAs/circRNAs can also modulate m6A modifications by affecting writers, erasers, and readers. In turn, ncRNAs could modulate the expression of m6A regulators in different ways. However, there is limited evidence on how these ncRNAs and m6A interact to affect the promotion of liver diseases. It seems that m6A can occur in DNA, RNA, and proteins that may be associated with several biological properties. This study provides a mechanistic understanding of the association of m6A modification and ncRNAs with liver diseases, especially for MAFLD. Comprehension of the association between m6A modification and ncRNAs may contribute to the development of treatment tactics for MAFLD.

5.
Genes (Basel) ; 15(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38674366

ABSTRACT

Many investigations have evaluated the expression of noncoding RNAs (ncRNAs) as well as their related molecular functions and biological machineries in individuals with alcohol dependence. Alcohol dependence may be one of the most prevailing psychological disorders globally, and its pathogenesis is intricate and inadequately comprehended. There is substantial evidence indicating significant links between multiple genetic factors and the development of alcohol dependence. In particular, the critical roles of ncRNAs have been emphasized in the pathology of mental illnesses, probably including alcohol dependence. In the comprehension of the action of ncRNAs and their machineries of modification, furthermore, they have emerged as therapeutic targets for a variety of psychiatric illnesses, including alcohol dependence. It is worth mentioning that the dysregulated expression of ncRNAs has been regularly detected in individuals with alcohol dependence. An in-depth knowledge of the roles of ncRNAs and m6A modification may be valuable for the development of a novel treatment against alcohol dependence. In general, a more profound understanding of the practical roles of ncRNAs might make important contributions to the precise diagnosis and/or actual management of alcohol dependence. Here, in this review, we mostly focused on up-to-date knowledge regarding alterations and/or modifications in the expression of ncRNAs in individuals with alcohol dependence. Then, we present prospects for future research and therapeutic applications with a novel concept of the engram system.


Subject(s)
Alcoholism , Gastrointestinal Microbiome , RNA, Untranslated , Humans , Alcoholism/genetics , Alcoholism/microbiology , Gastrointestinal Microbiome/genetics , RNA, Untranslated/genetics , Animals
6.
CEN Case Rep ; 13(4): 290-296, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38135868

ABSTRACT

Fabry disease is an X-linked hereditary disorder caused by deficient α-galactosidase A (GLA) activity. Patients with Fabry disease are often treated with enzyme replacement therapy (ERT). However, ERT often induces the formation of neutralizing antidrug antibodies (ADAs), which may impair the therapeutic efficacy. Here, we report the case of a 32-year-old man with Fabry disease and resultant neutralizing ADAs who was treated by switching from agalsidase-α to agalsidase-ß. We monitored biomarkers, such as plasma globotriaosylsphingosine (lyso-Gb3), urinary globotriaosylceramide (Gb3), urinary mulberry bodies, renal and cardiac parameters, and disease severity during the treatment period. Although plasma lyso-Gb3 and urinary Gb3 levels quickly decreased within two months after the initiation of ERT with agalsidase-α, they gradually increased thereafter. The urinary mulberry bodies continued to appear. Both the ADA titer and serum mediated GLA inhibition rates started to increase after two months. Moreover, 3.5 years after ERT, the vacuolated podocyte area in the renal biopsy decreased slightly from 23.1 to 18.9%. However, plasma lyso-Gb3 levels increased, and urinary Gb3, mulberry body levels, and ADA titers remained high. Therefore, we switched to agalsidase-ß which reduced, but did not normalize, plasma lyso-Gb3 levels and stabilized renal and cardiac parameters. Disease severity was attenuated. However, urinary Gb3 and mulberry body levels did not decrease noticeably in the presence of high ADA titers. The kidneys take up a small amount of the administered recombinant enzyme, and the clearance of Gb3 that has accumulated in the kidney may be limited despite the switching from agalsidase-α to agalsidase-ß.


Subject(s)
Antibodies, Neutralizing , Biomarkers , Enzyme Replacement Therapy , Fabry Disease , Isoenzymes , Sphingolipids , Trihexosylceramides , alpha-Galactosidase , Humans , Fabry Disease/drug therapy , Fabry Disease/diagnosis , Male , Adult , alpha-Galactosidase/therapeutic use , alpha-Galactosidase/administration & dosage , alpha-Galactosidase/immunology , Biomarkers/blood , Enzyme Replacement Therapy/methods , Isoenzymes/therapeutic use , Isoenzymes/administration & dosage , Antibodies, Neutralizing/blood , Trihexosylceramides/urine , Sphingolipids/blood , Glycolipids , Kidney/pathology , Severity of Illness Index , Treatment Outcome , Recombinant Proteins
7.
World J Clin Oncol ; 14(12): 620-627, 2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38179403

ABSTRACT

BACKGROUND: Intraductal tubulopapillary neoplasm (ITPN) is a rare disease accounting for approximately 3% of all intraductal pancreatic tumors, with intraductal papillary mucinous neoplasm (IPMN) being one of the most common differential diagnoses. Both ITPN and IPMN display slow growth. A branched pancreatic duct type is commonly observed in IPMN, whereas ITPN derived from the branched pancreatic duct has been reported in a limited number of cases; hence, its pathogenesis remains unclear. CASE SUMMARY: Here, we present the case of a patient with ITPN localized in a branched pancreatic duct, with poorly controlled irritable bowel syndrome. A contrast-enhanced computed tomography scan of the abdomen incidentally revealed a 5-mm oligemic nodule-like change in the body of the pancreas. Endoscopic ultrasound (EUS) indicated a 10-mm hypoechoic mass without any cystic structures that had grown within 2 mo. EUS-guided fine needle aspiration was performed for definitive diagnosis, and the findings suggested ductal papillary carcinoma. Distal pancreatectomy was performed, and the tumor was pathologically diagnosed as ITPN with an invasive cancerous component, pT3N1aM0, pStage IIB (International Cancer Control, 8th edition). The patient underwent treatment with postoperative adjuvant chemotherapy (S-1 monotherapy); however, relapse was observed 1 year and 10 mo after surgical resection, and subsequent treatment involving a combination of chemotherapy and radiotherapy was administered. Maintenance therapy has since facilitated a stable disease state. CONCLUSION: Regardless of the microscopic size of the neoplasm, early diagnosis of ITPN with EUS-guided fine needle aspiration and surgical resection are crucial.

SELECTION OF CITATIONS
SEARCH DETAIL