Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Cell Physiol ; 233(2): 1370-1383, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28518408

ABSTRACT

The naturally occurring sulfonium compound S-adenosyl-L-methionine (AdoMet) is an ubiquitous sulfur-nucleoside that represents the main methyl donor in numerous methylation reactions. In recent years, it has been shown that AdoMet possesses antiproliferative properties in various cancer cells, but the molecular mechanisms at the basis of the effect induced by AdoMet have been only in part investigated. In the present study, we found that AdoMet strongly inhibited the proliferation of breast cancer cells MCF-7 by inducing both autophagy and apoptosis. AdoMet consistently enhanced the levels of the autophagy markers beclin-1 and LC3B-II, and caused a significant increase of pro-apoptotic Bax/Bcl-2 ratio paralleled by poly (ADP ribose) polymerase (PARP) and caspase 9, and 6 cleavage. Notably, AdoMet, already at low doses, raised the percentage of cells in G2 /M phase of cell cycle by down-regulating the expression of cell cycle-regulatory proteins cyclin B and cyclin E with a remarkable increase of p53, p27, and p21. We also evaluated the combination of AdoMet and the autophagy inhibitor chloroquine (CLC) showing that autophagy block is synergistic in inducing both growth inhibition and apoptosis. These effects were paralleled by a strong inhibition of the activity of AKT and of the downstream effector mTOR and by an increased cleavage of caspase-6 and PARP. These data suggest, for the first time, that autophagy can act as an escape mechanism from the apoptotic activity of AdoMet, and that AdoMet could be used in combination with CLC or its analogs in the treatment of breast cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Breast Neoplasms/drug therapy , Chloroquine/pharmacology , S-Adenosylmethionine/pharmacology , Apoptosis Regulatory Proteins/metabolism , Beclin-1/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , MCF-7 Cells , Microtubule-Associated Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Time Factors
2.
Gastroenterology ; 152(6): 1449-1461.e7, 2017 05.
Article in English | MEDLINE | ID: mdl-28132890

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a consequence of defects in diverse metabolic pathways that involve hepatic accumulation of triglycerides. Features of these aberrations might determine whether NAFLD progresses to nonalcoholic steatohepatitis (NASH). We investigated whether the diverse defects observed in patients with NAFLD are caused by different NAFLD subtypes with specific serum metabolomic profiles, and whether these can distinguish patients with NASH from patients with simple steatosis. METHODS: We collected liver and serum from methionine adenosyltransferase 1a knockout (MAT1A-KO) mice, which have chronically low levels of hepatic S-adenosylmethionine (SAMe) and spontaneously develop steatohepatitis, as well as C57Bl/6 mice (controls); the metabolomes of all samples were determined. We also analyzed serum metabolomes of 535 patients with biopsy-proven NAFLD (353 with simple steatosis and 182 with NASH) and compared them with serum metabolomes of mice. MAT1A-KO mice were also given SAMe (30 mg/kg/day for 8 weeks); liver samples were collected and analyzed histologically for steatohepatitis. RESULTS: Livers of MAT1A-KO mice were characterized by high levels of triglycerides, diglycerides, fatty acids, ceramides, and oxidized fatty acids, as well as low levels of SAMe and downstream metabolites. There was a correlation between liver and serum metabolomes. We identified a serum metabolomic signature associated with MAT1A-KO mice that also was present in 49% of the patients; based on this signature, we identified 2 NAFLD subtypes. We identified specific panels of markers that could distinguish patients with NASH from patients with simple steatosis for each subtype of NAFLD. Administration of SAMe reduced features of steatohepatitis in MAT1A-KO mice. CONCLUSIONS: In an analysis of serum metabolomes of patients with NAFLD and MAT1A-KO mice with steatohepatitis, we identified 2 major subtypes of NAFLD and markers that differentiate steatosis from NASH in each subtype. These might be used to monitor disease progression and identify therapeutic targets for patients.


Subject(s)
Lipid Metabolism , Metabolome , Methionine Adenosyltransferase/genetics , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/classification , Adult , Animals , Biomarkers/blood , Ceramides/metabolism , Diglycerides/metabolism , Fatty Acids/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolism , S-Adenosylmethionine/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL