Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 81(18): 3820-3832.e7, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34233158

ABSTRACT

A metabolic imbalance between lipid synthesis and degradation can lead to hepatic lipid accumulation, a characteristic of patients with non-alcoholic fatty liver disease (NAFLD). Here, we report that high-fat-diet-induced sterol regulatory element-binding protein (SREBP)-1c, a key transcription factor that regulates lipid biosynthesis, impairs autophagic lipid catabolism via altered H2S signaling. SREBP-1c reduced cystathionine gamma-lyase (CSE) via miR-216a, which in turn decreased hepatic H2S levels and sulfhydration-dependent activation of Unc-51-like autophagy-activating kinase 1 (ULK1). Furthermore, Cys951Ser mutation of ULK1 decreased autolysosome formation and promoted hepatic lipid accumulation in mice, suggesting that the loss of ULK1 sulfhydration was directly associated with the pathogenesis of NAFLD. Moreover, silencing of CSE in SREBP-1c knockout mice increased liver triglycerides, confirming the connection between CSE, autophagy, and SREBP-1c. Overall, our results uncover a 2-fold mechanism for SREBP-1c-driven hepatic lipid accumulation through reciprocal activation and inhibition of hepatic lipid biosynthesis and degradation, respectively.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Fatty Liver/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Autophagy , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/physiology , Cell Line, Tumor , Diet, High-Fat/adverse effects , Fatty Liver/physiopathology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Lipid Metabolism/physiology , Lipids/physiology , Lipogenesis , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/physiology , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/physiology , Triglycerides/metabolism
2.
Pflugers Arch ; 476(2): 151-161, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37940681

ABSTRACT

Pancreatic beta cells utilize Ca2+ to secrete insulin in response to glucose. The glucose-dependent increase in cytosolic Ca2+ concentration ([Ca2+]C) activates a series of insulin secretory machinery in pancreatic beta cells. Therefore, the amount of insulin secreted in response to glucose is determined in a [Ca2+]C-dependent manner, at least within a moderate range. However, the demand for insulin secretion may surpass the capability of beta cells. Abnormal elevation of [Ca2+]C levels beyond the beta-cell endurance capacity can damage them by inducing endoplasmic reticulum (ER) stress and cell death programs such as apoptosis. Therefore, while Ca2+ is essential for the insulin secretory functions of beta cells, it could affect their survival at pathologically higher levels. Because an increase in beta-cell [Ca2+]C is inevitable under certain hazardous conditions, understanding the regulatory mechanism for [Ca2+]C is important. Therefore, this review discusses beta-cell function, survival, ER stress, and apoptosis associated with intracellular and ER Ca2+ homeostasis.


Subject(s)
Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Calcium Signaling , Insulin/metabolism , Endoplasmic Reticulum/metabolism , Calcium/metabolism , Glucose/metabolism
3.
Gastroenterology ; 164(3): 439-453, 2023 03.
Article in English | MEDLINE | ID: mdl-36402191

ABSTRACT

BACKGROUND & AIMS: Obesity predisposes to type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD), but underlying mechanisms are incompletely understood. Potassium channel tetramerization domain-containing protein 17 (Kctd17) levels are increased in livers from obese mice and humans. In this study, we investigated the mechanism of increased Kctd17 and whether it is causal to obesity-induced metabolic complications. METHODS: We transduced Rosa26-LSL-Cas9 knockin mice with AAV8-TBG-Cre (Control), AAV8-U6-Kctd17 sgRNA-TBG-Cre (L-Kctd17), AAV8-U6-Oga sgRNA-TBG-Cre (L-Oga), or AAV8-U6-Kctd17/Oga sgRNA-TBG-Cre (DKO). We fed mice a high-fat diet (HFD) and assessed for hepatic glucose and lipid homeostasis. We generated Kctd17, O-GlcNAcase (Oga), or Kctd17/Oga-knockout hepatoma cells by CRISPR-Cas9, and Kctd17-directed antisense oligonucleotide to test therapeutic potential in vivo. We analyzed transcriptomic data from patients with NAFLD. RESULTS: Hepatocyte Kctd17 expression was increased in HFD-fed mice due to increased Srebp1c activity. HFD-fed L-Kctd17 or Kctd17 antisense oligonucleotide-treated mice show improved glucose tolerance and hepatic steatosis, whereas forced Kctd17 expression caused glucose intolerance and hepatic steatosis even in lean mice. Kctd17 induced Oga degradation, resulting in increasing carbohydrate response element-binding protein (Chrebp) protein, so concomitant Oga knockout negated metabolic benefits of hepatocyte Kctd17 deletion. In patients with NAFLD, KCTD17 messenger RNA was positively correlated with expression of Chrebp target and other lipogenic genes. CONCLUSIONS: Srebp1c-induced hepatocyte Kctd17 expression in obesity disrupted glucose and lipid metabolism by stabilizing Chrebp, and may represent a novel therapeutic target for obesity-induced T2D and NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/complications , Insulin Resistance/physiology , Transcription Factors/genetics , Liver/metabolism , Hepatocytes/metabolism , Obesity/complications , Glucose/metabolism , Diet, High-Fat , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism
4.
Proc Natl Acad Sci U S A ; 115(52): E12228-E12234, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30530672

ABSTRACT

There is a growing appreciation for a fundamental connection between lipid metabolism and the immune response. Macrophage phagocytosis is a signature innate immune response to pathogen exposure, and cytoplasmic membrane expansion is required to engulf the phagocytic target. The sterol regulatory element binding proteins (SREBPs) are key transcriptional regulatory proteins that sense the intracellular lipid environment and modulate expression of key genes of fatty acid and cholesterol metabolism to maintain lipid homeostasis. In this study, we show that TLR4-dependent stimulation of macrophage phagocytosis requires mTORC1-directed SREBP-1a-dependent lipid synthesis. We also show that the phagocytic defect in macrophages from SREBP-1a-deficient mice results from decreased interaction between membrane lipid rafts and the actin cytoskeleton, presumably due to reduced accumulation of newly synthesized fatty acyl chains within major membrane phospholipids. We show that mTORC1-deficient macrophages also have a phagocytic block downstream from TLR4 signaling, and, interestingly, the reduced level of phagocytosis in both SREBP-1a- and mTORC1-deficient macrophages can be restored by ectopic SREBP-1a expression. Taken together, these observations indicate SREBP-1a is a major downstream effector of TLR4-mTORC1 directed interactions between membrane lipid rafts and the actin cytoskeleton that are required for pathogen-stimulated phagocytosis in macrophages.


Subject(s)
Lipids/biosynthesis , Macrophages/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Phagocytosis , Sterol Regulatory Element Binding Protein 1/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cells, Cultured , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Sterol Regulatory Element Binding Protein 1/genetics , Toll-Like Receptor 4/genetics
5.
Int J Mol Sci ; 22(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198910

ABSTRACT

Changes in structural and functional neuroplasticity have been implicated in various neurological disorders. Sterol regulatory element-binding protein (SREBP)-1c is a critical regulatory molecule of lipid homeostasis in the brain. Recently, our findings have shown the potential involvement of SREBP-1c deficiency in the alteration of novel modulatory molecules in the hippocampus and occurrence of schizophrenia-like behaviors in mice. However, the possible underlying mechanisms, related to neuronal plasticity in the hippocampus, are yet to be elucidated. In this study, we investigated the hippocampus-dependent memory function and neuronal architecture of hippocampal neurons in SREBP-1c knockout (KO) mice. During the passive avoidance test, SREBP-1c KO mice showed memory impairment. Based on Golgi staining, the dendritic complexity, length, and branch points were significantly decreased in the apical cornu ammonis (CA) 1, CA3, and dentate gyrus (DG) subregions of the hippocampi of SREBP-1c KO mice, compared with those of wild-type (WT) mice. Additionally, significant decreases in the dendritic diameters were detected in the CA3 and DG subregions, and spine density was also significantly decreased in the apical CA3 subregion of the hippocampi of KO mice, compared with that of WT mice. Alterations in the proportions of stubby and thin-shaped dendritic spines were observed in the apical subcompartments of CA1 and CA3 in the hippocampi of KO mice. Furthermore, the corresponding differential decreases in the levels of SREBP-1 expression in the hippocampal subregions (particularly, a significant decrease in the level in the CA3) were detected by immunofluorescence. This study suggests that the contributions of SREBP-1c to the structural plasticity of the mouse hippocampus may have underlain the behavioral alterations. These findings offer insights into the critical role of SREBP-1c in hippocampal functioning in mice.


Subject(s)
Dendritic Spines/genetics , Memory/physiology , Neurons/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Animals , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Dendritic Spines/pathology , Gene Expression Regulation/genetics , Hippocampus/metabolism , Hippocampus/pathology , Humans , Mice , Mice, Knockout , Neuronal Plasticity/genetics , Neurons/pathology , Sterol Regulatory Element Binding Protein 1/deficiency
6.
Biochem Biophys Res Commun ; 529(1): 70-76, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32560822

ABSTRACT

Pathogenic bacteria acquire the acquisition of iron from the host to ensure their survival. Salmonella spp. utilizes siderophores, including salmochelin, for high affinity aggressive import of iron. Although the iroBCDEN operon is reportedly responsible for the production and the transport of salmochelin, the molecular mechanisms underlying the regulation of its gene expression have not yet been characterized. Here, we analyzed the expression pattern of iroB using the lacZY transcriptional reporter system and determined the transcription start site in response to iron availability using primer extension analysis. We further examined the regulation of iroB expression by the ferric uptake regulator (Fur), a key regulatory protein involved in the maintenance of iron homeostasis in various bacteria, including Salmonella. Using sequence analysis followed by a gel shift assay, we verified that the Fur box lies within the promoter region of iroBCDE. The Fur box contained the consensus sequence (GATATTGGTAATTATTATC) and overlapped with the -10-element region. The expression of iroB was repressed by Fur in the presence of iron, as determined using an in vitro transcription assay. Therefore, we found that the iron acquisition system is regulated in a Fur-dependent manner in Salmonella.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobactin/analogs & derivatives , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Bacterial Proteins/chemistry , Base Sequence , Biobehavioral Sciences , Consensus Sequence , DNA, Bacterial/genetics , Enterobactin/metabolism , Gene Expression Regulation, Bacterial , Humans , Iron/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Multimerization , Repressor Proteins/chemistry , Siderophores/metabolism , Transcription, Genetic
7.
Proc Natl Acad Sci U S A ; 114(45): 11926-11931, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29078297

ABSTRACT

Insulin resistance, a key etiological factor in metabolic syndrome, is closely linked to ectopic lipid accumulation and increased intracellular Ca2+ concentrations in muscle and liver. However, the mechanism by which dysregulated intracellular Ca2+ homeostasis causes insulin resistance remains elusive. Here, we show that increased intracellular Ca2+ acts as a negative regulator of insulin signaling. Chronic intracellular Ca2+ overload in hepatocytes during obesity and hyperlipidemia attenuates the phosphorylation of protein kinase B (Akt) and its key downstream signaling molecules by inhibiting membrane localization of pleckstrin homology (PH) domains. Pharmacological approaches showed that elevated intracellular Ca2+ inhibits insulin-stimulated Akt phosphorylation and abrogates membrane localization of various PH domain proteins such as phospholipase Cδ and insulin receptor substrate 1, suggesting a common mechanism inhibiting the membrane targeting of PH domains. PH domain-lipid overlay assays confirmed that Ca2+ abolishes the binding of various PH domains to phosphoinositides (PIPs) with two adjacent phosphate groups, such as PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3 Finally, thermodynamic analysis of the binding interaction showed that Ca2+-mediated inhibition of targeting PH domains to the membrane resulted from the tight binding of Ca2+ rather than PH domains to PIPs forming Ca2+-PIPs. Thus, Ca2+-PIPs prevent the recognition of PIPs by PH domains, potentially due to electrostatic repulsion between positively charged side chains in PH domains and the Ca2+-PIPs. Our findings provide a mechanistic link between intracellular Ca2+ dysregulation and Akt inactivation in insulin resistance.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Insulin Resistance/physiology , Phosphatidylinositols/metabolism , Pleckstrin Homology Domains/physiology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Diet, High-Fat , Glucose Intolerance/pathology , Hyperinsulinism/pathology , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/pathology , Phospholipase C delta/metabolism , Phosphorylation , Protein Binding
8.
Int J Mol Sci ; 21(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32531902

ABSTRACT

Lipid homeostasis is an important component of brain function, and its disturbance causes several neurological disorders, such as Huntington's, Alzheimer's, and Parkinson's diseases as well as mood disorders. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key modulatory molecule involved in lipid homeostasis in the central nervous system. However, little is known about the biological effects of SREBP-1c in the brain. Our previous study uncovered that mice deficient in SREBP-1c exhibit schizophrenia-like behaviors. To investigate whether there are novel molecular mechanisms involved in the neurological aberrations caused by SREBP-1c deficiency, we analyzed the transcriptomes of the hippocampus of SREBP-1c knockout (KO) mice and wild-type mice. We found seven differentially expressed genes (three up-regulated and four down-regulated genes) in the hippocampus of SREBP-1c KO mice. For further verification, we selected the three most significantly changed genes: glucagon-like peptide 2 receptors (GLP2R) involved in hippocampal neurogenesis and neuroplasticity as well as in cognitive impairments; necdin (NDN) which is related to neuronal death and neurodevelopmental disorders; and Erb-B2 receptor tyrosine kinase 4 (ERBB4) which is a receptor for schizophrenia-linked protein, neuregulin-1. The protein levels of GLP2R and NDN were considerably decreased, but the level of ERBB4 was significantly increased in the hippocampus of SREBP-1c KO mice. However, further confirmation is warranted to establish the translatability of these findings from this rodent model into human patients. We suggest that these data provide novel molecular evidence for the modulatory role of SREBP-1c in the mouse hippocampus.


Subject(s)
Behavior, Animal/physiology , Hippocampus/physiology , Sterol Regulatory Element Binding Protein 1/genetics , Animals , Cell Differentiation/genetics , Cell Survival/genetics , Gene Expression Profiling , Hippocampus/pathology , Mice, Inbred C57BL , Mice, Knockout , Protein Interaction Maps/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Schizophrenia/genetics , Signal Transduction/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
9.
Pflugers Arch ; 471(11-12): 1407-1418, 2019 12.
Article in English | MEDLINE | ID: mdl-31667577

ABSTRACT

Orexin A (OXA) is a neuropeptide associated with plasma insulin and leptin levels involved in body weight and appetite regulation. However, little is known about the effect of OXA on leptin secretion in adipocytes and its physiological roles. Leptin secretion and expression were analysed in 3T3-L1 adipocytes. Plasma leptin, adiponectin and insulin levels were measured by ELISA assay. Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) levels in the hypothalamus were evaluated by western blotting. OXA dose-dependently suppressed leptin secretion from 3T3-L1 adipocytes by inhibiting its gene expression while facilitating adiponectin secretion. The leptin inhibition by OXA was mediated via orexin receptors (OXR1 and OXR2). In addition to the pathway via extracellular signal-regulated kinases, OXA triggered adenylyl cyclase-induced cAMP elevation, which results in protein kinase A-mediated activation of cAMP response element-binding proteins (CREB). Accordingly, CREB inhibition restored the OXA-induced downregulation of leptin gene expression and secretion. Exogenous OXA for 4 weeks decreased fasting plasma leptin levels and increased hypothalamic pSTAT3 levels in high-fat diet-fed mice, regardless of increase in body weight and food intake. These results suggest that high dose of OXA directly inhibits leptin mRNA expression and thus secretion in adipocytes, which may be a peripheral mechanism of OXA for its role in appetite drive during fasting. It may be also critical for lowering basal plasma leptin levels and thus maintaining postprandial hypothalamic leptin sensitivity.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Leptin/blood , Leptin/metabolism , Orexins/pharmacology , 3T3-L1 Cells , Animals , Appetite/drug effects , Body Weight/drug effects , Cell Line , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Neuropeptides/metabolism , Orexin Receptors/metabolism
10.
Pflugers Arch ; 471(6): 829-843, 2019 06.
Article in English | MEDLINE | ID: mdl-30617744

ABSTRACT

Hydrogen peroxide (H2O2) produced endogenously can cause mitochondrial dysfunction and metabolic complications in various cell types by inducing oxidative stress. In the liver, oxidative and endoplasmic reticulum (ER) stress affects the development of non-alcoholic fatty liver disease (NAFLD). Although a link between both stresses and fatty liver diseases has been suggested, few studies have investigated the involvement of catalase in fatty liver pathogenesis. We examined whether catalase is associated with NAFLD, using catalase knockout (CKO) mice and the catalase-deficient human hepatoma cell line HepG2. Hepatic morphology analysis revealed that the fat accumulation was more prominent in high-fat diet (HFD) CKO mice compared to that in age-matched wild-type (WT) mice, and lipid peroxidation and H2O2 release were significantly elevated in CKO mice. Transmission electron micrographs indicated that the liver mitochondria from CKO mice tended to be more severely damaged than those in WT mice. Likewise, mitochondrial DNA copy number and cellular ATP concentrations were significantly lower in CKO mice. In fatty acid-treated HepG2 cells, knockdown of catalase accelerated cellular lipid accumulation and depressed mitochondrial biogenesis, which was recovered by co-treatment with N-acetyl cysteine or melatonin. This effect of antioxidant was also true in HFD-fed CKO mice, suppressing fatty liver development and improving hepatic mitochondrial function. Expression of ER stress marker proteins and hepatic fat deposition also increased in normal-diet, aged CKO mice compared to WT mice. These findings suggest that H2O2 production may be an important event triggering NAFLD and that catalase may be an attractive therapeutic target for preventing NAFLD.


Subject(s)
Catalase/metabolism , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/enzymology , Obesity/complications , Animals , Antioxidants , Endoplasmic Reticulum Stress , Hep G2 Cells , Humans , Hydrogen Peroxide/metabolism , Liver/ultrastructure , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Liver/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Obesity/enzymology , Oxidative Stress
11.
Biochem Biophys Res Commun ; 496(2): 450-454, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29337054

ABSTRACT

Primary cilium is a microtubule-based non-motile organelle that plays critical roles in kidney pathophysiology. Our previous studies revealed that the lengths of primary cilia decreased upon renal ischemia/reperfusion injury and oxidative stress, and restored with recovery. Here, we tested the hypothesis that lack of primary cilium causes epithelial to mesenchymal transition (EMT) of kidney tubule cells. We investigated the alteration of length of primary cilia in TGF-ß-induced EMT via visualization of primary cilia by fluorescence staining against acetylated α-tubulin. EMT was determined by measuring mesenchymal protein expression using quantitative PCR and indirect fluorescence staining. As a result, TGF-ß treatment decreased ciliary length along with EMT. To test whether defect of primary cilia trigger onset of EMT, cilia formation was disturbed by knock down of ciliary protein using siRNA along with/without TGF-ß treatment. Knock down of Arl13b and Ift20 reduced cilia elongation and increased expression of EMT markers such as fibronectin, α-SMA, and collagen III. TGF-ß-induced EMT was greater as well in Arl13b and Ift20-knock down cells compared to control cells. Taken together, deficiency of primary cilia trigger EMT and exacerbates it under pro-fibrotic signals.


Subject(s)
Cilia/drug effects , Epithelial-Mesenchymal Transition/drug effects , Transforming Growth Factor beta/pharmacology , Tubulin/genetics , ADP-Ribosylation Factors/antagonists & inhibitors , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Actins/genetics , Actins/metabolism , Animals , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Size , Cilia/metabolism , Cilia/ultrastructure , Collagen Type III/genetics , Collagen Type III/metabolism , Dogs , Epithelial-Mesenchymal Transition/genetics , Fibronectins/genetics , Fibronectins/metabolism , Gene Expression Regulation , Madin Darby Canine Kidney Cells , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Tubulin/metabolism
12.
Mol Cell Biochem ; 444(1-2): 17-25, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29196971

ABSTRACT

In this study, we examined the effect of tomatidine on tumor necrosis factor (TNF)-α-induced apoptosis in C2C12 myoblasts. TNF-α treatment increased cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP) protein levels in a dose- and time-dependent manner. Pretreatment of cells with 10 µM tomatidine prevented TNF-α-induced apoptosis, caspase 3 cleavage, and PARP cleavage. Cells were treated with 100 ng/mL TNF-α for 24 h, and flow cytometry was utilized to assess apoptosis using annexin-V and 7-aminoactinomycin D. TNF-α up-regulated activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression. This effect was suppressed by pretreatment with tomatidine. Pretreatment with 4-phenylbutyric acid (a chemical chaperone) also inhibited TNF-α-induced cleavage of caspase 3 and PARP and up-regulation of ATF4 and CHOP expression. In addition, tomatidine-mediated inhibition of phosphorylation of c-Jun amino terminal kinase (JNK) attenuated TNF-α-induced cleavage of PARP and caspase 3. However, tomatidine did not affect NF-κB activation in TNF-α-treated C2C12 myoblast cells. Taken together, the present study demonstrates that tomatidine attenuates TNF-α-induced apoptosis through down-regulation of CHOP expression and inhibition of JNK activation.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Myoblasts/metabolism , Tomatine/analogs & derivatives , Tumor Necrosis Factor-alpha/pharmacology , Activating Transcription Factor 4/metabolism , Animals , Caspase 3/metabolism , Cell Line , Mice , Myoblasts/cytology , Tomatine/pharmacology , Transcription Factor CHOP
13.
Int J Mol Sci ; 19(5)2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29702597

ABSTRACT

Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor), necroptosis inhibitor (necrostatin-1), or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO)). Furthermore, corosolic acid significantly induces reactive oxygen species (ROS) levels, but antioxidants (N-acetyl-l-cysteine (NAC) and trolox) do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498), breast cancer (MDA-MB231), and hepatocellular carcinoma (SK-Hep1 and Huh7) cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Renal Cell/pathology , Cell Death/drug effects , Kidney Neoplasms/pathology , Lipid Peroxidation/drug effects , Reactive Oxygen Species/metabolism , Triterpenes/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Lagerstroemia/chemistry , alpha-Tocopherol/pharmacology
14.
Biochem Biophys Res Commun ; 489(3): 299-304, 2017 07 29.
Article in English | MEDLINE | ID: mdl-28552526

ABSTRACT

Liver receptor homolog-1 (LRH-1) is a nuclear receptor that plays an important role in the regulation of bile acid biosynthesis, cholesterol reverse transport, steroidogenesis, and exocrine pancreatic enzyme production. In the current study, previously published data from a genome wide analysis of LRH-1 binding in the liver were re-analyzed to identify new LRH-1 targets and propose new roles for LRH-1 in the liver. Superoxide dismutase 2 (Sod2) was identified, which contains putative LRH-1 binding sites in the proximal promoter. When hepatocytes were treated with the LRH-1 agonist RJW101, Sod2 expression was dramatically increased and reactive oxygen species (ROS) production, which was induced by a high concentration of palmitate, was significantly reduced. A LRH-1 binding site was mapped to -288/-283 in the Sod2 promoter, which increased Sod2 promoter activity in response to LRH-1 and its agonist. LRH-1 binding to this site was confirmed using a chromatin immunoprecipitation assay. These results suggest that Sod2 is a target gene of LRH-1, and that LRH-1 agonists can mediate a reduction in ROS production and oxidative stress driven by an excess of fatty acids, as exhibited in nonalcoholic fatty liver disease.


Subject(s)
Receptors, Cytoplasmic and Nuclear/metabolism , Superoxide Dismutase/metabolism , Animals , Cells, Cultured , Hepatocytes/metabolism , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/genetics , Superoxide Dismutase/genetics , Transcriptome
15.
Biochem J ; 467(3): 453-60, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25695641

ABSTRACT

Insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2), one of the most abundant circulating IGFBPs, is known to attenuate the biological action of IGF-1. Although the effect of IGFBP-2 in preventing metabolic disorders is well known, its regulatory mechanism remains unclear. In the present study, we demonstrated the transcriptional regulation of the Igfbp-2 gene by peroxisome-proliferator-activated receptor (PPAR) α in the liver. During fasting, both Igfbp-2 and PPARα expression levels were increased. Wy14643, a selective PPARα agonist, significantly induced Igfbp-2 gene expression in primary cultured hepatocytes. However, Igfbp-2 gene expression in Pparα null mice was not affected by fasting or Wy14643. In addition, through transient transfection and chromatin immunoprecipitation assay in fasted livers, we determined that PPARα bound to the putative PPAR-responsive element between -511 bp and -499 bp on the Igfbp-2 gene promoter, indicating that the Igfbp-2 gene transcription is activated directly by PPARα. To explore the role of PPARα in IGF-1 signalling, we treated primary cultured hepatocytes with Wy14643 and observed a decrease in the number of IGF-1 receptors (IGF-1Rs) and in Akt phosphorylation. No inhibition was observed in the hepatocytes isolated from Pparα null mice. These results suggest that PPARα controls IGF-1 signalling through the up-regulation of hepatic Igfbp-2 transcription during fasting and Wy14643 treatment.


Subject(s)
Fasting/metabolism , Insulin-Like Growth Factor Binding Protein 2/genetics , Animals , Cells, Cultured , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Insulin-Like Growth Factor I/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , PPAR alpha/deficiency , PPAR alpha/genetics , PPAR gamma/agonists , Peroxisome Proliferators/pharmacology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rosiglitazone , Signal Transduction , Thiazolidinediones/pharmacology , Up-Regulation/drug effects
16.
Diabetologia ; 58(7): 1542-50, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25813215

ABSTRACT

AIMS/HYPOTHESIS: Orexin A (OXA) is a neuropeptide implicated in the regulation of arousal status and energy metabolism. Orexin receptors are expressed not only in the central nervous system but also in the pancreas and adipose tissue. However, little is known about the physiological function of orexins. This study investigated the role of exogenous OXA in blood glucose control after glucose load in mice. In addition, the effect of OXA on insulin secretion was also identified in mouse pancreatic beta cells. METHODS: Insulin secretion and intracellular Ca(2+) levels were measured in perifused mouse islets. To investigate the effects of exogenous OXA on blood glucose levels in vivo, intraperitoneal glucose tolerance tests were performed after a subcutaneous injection of OXA in normal and high-fat diet-induced diabetic mice. RESULTS: OXA significantly potentiated glucose-stimulated insulin secretion in vitro, which increased intracellular Ca(2+) levels, mainly through adenylate cyclase and ryanodine receptor activation. This Ca(2+)-dependent insulinotropic effect of OXA was blocked in Epac2 (Rapgef4)-deficient beta cells. After a glucose load in mice, exogenous OXA decreased blood glucose levels, compared with the control, by enhancing plasma insulin and decreasing plasma glucagon levels. Additionally, OXA caused a delayed increase in plasma leptin levels, resulting in lower plasma insulin levels when blood glucose levels fell to baseline. CONCLUSIONS/INTERPRETATION: These results suggest that OXA might be a critical regulator of insulin, glucagon and leptin secretion in response to glucose. Thus, exogenous OXA might have therapeutic potential in improving blood glucose control in patients with type 2 diabetes.


Subject(s)
Glucose/pharmacology , Insulin/blood , Leptin/blood , Orexins/pharmacology , Animals , Blood Glucose/metabolism , Calcium/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Glucagon/blood , Glucose Tolerance Test , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/physiology , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Mice , Mice, Inbred C57BL , Orexin Receptors/drug effects
18.
Biochem Biophys Res Commun ; 458(3): 462-469, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25660457

ABSTRACT

The endoplasmic reticulum (ER) stress induces hepatic steatosis and inflammation in the liver. Although melatonin ameliorates ER stress-target genes, it remains unknown whether melatonin protects against hepatic steatosis as well as inflammation through regulation of miRNA. MicroRNAs have been identified as pivotal regulators in the field of gene regulation and their dysfunctions are a common feature in a variety of metabolic diseases. Especially, among miRNAs, miR-23a has been shown to regulate ER stress. Herein, we investigated the crucial roles of melatonin in hepatic steatosis and inflammation in vivo. Tunicamycin challenge caused increase of hepatic triglyceride and intracellular calcium levels through activation of ER stress, whereas these phenomena were partially disrupted by melatonin. We also demonstrated that expression of miR-23a stimulated with tunicamycin was rescued by melatonin treatment, resulting in reduced ER stress in primary hepatocytes. Overall, these results suggest a new function of melatonin that is involved in ameliorating ER stress-induced hepatic steatosis and inflammation by attenuating miR-23a. Melatonin may be useful as a pharmacological agent to protect against hepatic metabolic diseases due to its ability to regulate expression of miR-23a.


Subject(s)
Antioxidants/therapeutic use , Endoplasmic Reticulum Stress/drug effects , Fatty Liver/drug therapy , Fatty Liver/genetics , Melatonin/therapeutic use , MicroRNAs/genetics , Animals , Antioxidants/metabolism , Cell Line , Cells, Cultured , Fatty Liver/chemically induced , Fatty Liver/pathology , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Melatonin/metabolism , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Tunicamycin
19.
J Pineal Res ; 56(2): 143-53, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24168371

ABSTRACT

Prolonged hyperglycemia results in pancreatic ß-cell dysfunction and apoptosis, referred to as glucotoxicity. Although both oxidative and endoplasmic reticulum (ER) stresses have been implicated as major causative mechanisms of ß-cell glucotoxicity, the reciprocal importance between the two remains to be elucidated. The aim of this study was to evaluate the differential effect of oxidative stress and ER stress on ß-cell glucotoxicity, by employing melatonin which has free radical-scavenging and antioxidant properties. As expected, in ß-cells exposed to prolonged high glucose levels, cell viability and glucose-stimulated insulin secretion (GSIS) were significantly impaired. Melatonin treatment markedly attenuated cellular apoptosis by scavenging reactive oxygen species via its plasmalemmal receptor-independent increase in antioxidant enzyme activity. However, treatments with antioxidants alone were insufficient to recover the impaired GSIS. Interestingly, 4-phenylbutyric acid (4-PBA), a chemical chaperone that attenuate ER stress by stabilizing protein structure, alleviated the impaired GSIS, but not apoptosis, suggesting that glucotoxicity induces oxidative and ER stress independently. We found that cotreatment of glucotoxic ß-cells with melatonin and 4-PBA dramatically improved both their survival and insulin secretion. Taken together, these results suggest that ER stress may be the more critical mechanism for prolonged high-glucose-induced GSIS impairment, whereas oxidative stress appears to be more critical for the impaired ß-cell viability. Therefore, combinatorial therapy of melatonin with an ER stress modifier may help recover pancreatic ß-cells under glucotoxic conditions in type 2 diabetes.


Subject(s)
Antioxidants/pharmacology , Endoplasmic Reticulum Stress/drug effects , Glucose/toxicity , Insulin-Secreting Cells/drug effects , Melatonin/pharmacology , Oxidative Stress/drug effects , Animals , Cell Line, Tumor , Cell Survival/drug effects , Endoplasmic Reticulum Stress/physiology , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Male , Oxidative Stress/physiology , Pancreas , Rats , Rats, Sprague-Dawley , Tryptamines/pharmacology
20.
World J Diabetes ; 15(5): 810-813, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38766440

ABSTRACT

In this editorial, we comment on an article by Liao et al published in the current issue of the World Journal of Diabetes. We focus on the clinical significance of tibial transverse transport (TTT) as an effective treatment for patients with diabetic foot ulcers (DFU). TTT has been associated with tissue regeneration, improved blood circulation, reduced amputation rates, and increased expression of early angiogenic factors. Mechanistically, TTT can influence macrophage polarization and growth factor upregulation. Despite this potential, the limitations and conflicting results of existing studies justify the need for further research into its optimal application and development. These clinical implications highlight the efficacy of TTT in recalcitrant DFU and provide lasting stimuli for tissue re-generation, and blood vessel and bone marrow improvement. Immunomodulation via systemic responses contributes to its therapeutic potential. Future studies should investigate the underlying molecular mechanisms to enhance our understanding and the efficacy of TTT. This manuscript emphasizes the potential of TTT in limb preservation and diabetic wound healing and suggests avenues for preventive measures against limb amputation in diabetes and peripheral artery disease. Here, we highlight the clinical significance of the TTT and its importance in healing DFU to promote the use of this technique in tissue regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL