ABSTRACT
BACKGROUND: There are concerns that resistance to artemisinin-based combination therapy might emerge in Kenya and sub-Saharan Africa (SSA) in the same pattern as was with chloroquine and sulfadoxine-pyrimethamine. Single nucleotide polymorphisms (SNPs) in critical alleles of pfmdr1 gene have been associated with resistance to artemisinin and its partner drugs. Microsatellite analysis of loci flanking genes associated with anti-malarial drug resistance has been used in defining the geographic origins, dissemination of resistant parasites and identifying regions in the genome that have been under selection. METHODS: This study set out to investigate evidence of selective sweep and genetic lineages in pfmdr1 genotypes associated with the use of artemether-lumefantrine (AL), as the first-line treatment in Kenya. Parasites (n = 252) from different regions in Kenya were assayed for SNPs at codons 86, 184 and 1246 and typed for 7 neutral microsatellites and 13 microsatellites loci flanking (± 99 kb) pfmdr1 in Plasmodium falciparum infections. RESULTS: The data showed differential site and region specific prevalence of SNPs associated with drug resistance in the pfmdr1 gene. The prevalence of pfmdr1 N86, 184F, and D1246 in western Kenya (Kisumu, Kericho and Kisii) compared to the coast of Kenya (Malindi) was 92.9% vs. 66.7%, 53.5% vs. to 24.2% and 96% vs. to 87.9%, respectively. The NFD haplotype which is consistent with AL selection was at 51% in western Kenya compared to 25% in coastal Kenya. CONCLUSION: Selection pressures were observed to be different in different regions of Kenya, especially the western region compared to the coastal region. The data showed independent genetic lineages for all the pfmdr1 alleles. The evidence of soft sweeps in pfmdr1 observed varied in direction from one region to another. This is challenging for malaria control programs in SSA which clearly indicate effective malaria control policies should be based on the region and not at a country wide level.
Subject(s)
Antimalarials/pharmacology , Artemether, Lumefantrine Drug Combination/pharmacology , Drug Resistance , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Selection, Genetic , Kenya , Malaria, Falciparum/transmission , Plasmodium falciparum/drug effectsABSTRACT
The prevalence of a genetic polymorphism(s) at codon 268 in the cytochrome b gene, which is associated with failure of atovaquone-proguanil treatment, was analyzed in 227 Plasmodium falciparum parasites from western Kenya. The prevalence of the wild-type allele was 63%, and that of the Y268S (denoting a Y-to-S change at position 268) mutant allele was 2%. There were no pure Y268C or Y268N mutant alleles, only mixtures of a mutant allele(s) with the wild type. There was a correlation between parasite 50% inhibitory concentration (IC50) and parasite genetic polymorphism; mutant alleles had higher IC50s than the wild type.
Subject(s)
Antimalarials/pharmacology , Atovaquone/pharmacology , Cytochromes b/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Alleles , Codon/genetics , DNA, Protozoan/genetics , Drug Combinations , Kenya , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Microbial Sensitivity Tests/methods , Mutation/genetics , Polymorphism, Genetic/genetics , Proguanil/pharmacology , Protozoan Proteins/geneticsABSTRACT
In combination with antibiotics, quinine is recommended as the second-line treatment for uncomplicated malaria, an alternative first-line treatment for severe malaria, and for treatment of malaria in the first trimester of pregnancy. Quinine has been shown to have frequent clinical failures, and yet the mechanisms of action and resistance have not been fully elucidated. However, resistance is linked to polymorphisms in multiple genes, including multidrug resistance 1 (Pfmdr1), the chloroquine resistance transporter (Pfcrt), and the sodium/hydrogen exchanger gene (Pfnhe1). Here, we investigated the association between in vitro quinine susceptibility and genetic polymorphisms in Pfmdr1codons 86 and 184, Pfcrt codon 76, and Pfnhe1 ms4760 in 88 field isolates from western Kenya. In vitro activity was assessed based on the drug concentration that inhibited 50% of parasite growth (the IC50), and parasite genetic polymorphisms were determined from DNA sequencing. Data revealed there were significant associations between polymorphism in Pfmdr1-86Y, Pfmdr1-184F, or Pfcrt-76T and quinine susceptibility (P < 0.0001 for all three associations). Eighty-two percent of parasites resistant to quinine carried mutant alleles at these codons (Pfmdr1-86Y, Pfmdr1-184F, and Pfcrt-76T), whereas 74% of parasites susceptible to quinine carried the wild-type allele (Pfmdr1-N86, Pfmdr1-Y184, and Pfcrt-K76, respectively). In addition, quinine IC50 values for parasites with Pfnhe1 ms4760 3 DNNND repeats were significantly higher than for those with 1 or 2 repeats (P = 0.033 and P = 0.0043, respectively). Clinical efficacy studies are now required to confirm the validity of these markers and the importance of parasite genetic background.
Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Genes, Protozoan/genetics , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Quinine/pharmacology , Sodium-Hydrogen Exchangers/genetics , Alleles , Animals , DNA, Protozoan/genetics , Genes, Protozoan/physiology , Genotype , Humans , Kenya , Malaria, Falciparum/parasitology , Membrane Transport Proteins/physiology , Microsatellite Repeats , Molecular Sequence Data , Multidrug Resistance-Associated Proteins/physiology , Parasitic Sensitivity Tests , Polymorphism, Genetic/genetics , Protozoan Proteins/physiology , Sodium-Hydrogen Exchangers/physiologyABSTRACT
The impact of pre-existing immunity on the efficacy of artemisinin combination therapy is largely unknown. We performed in-depth profiling of serological responses in a therapeutic efficacy study [comparing artesunate-mefloquine (ASMQ) and artemether-lumefantrine (AL)] using a proteomic microarray. Responses to over 200 Plasmodium antigens were significantly associated with ASMQ treatment outcome but not AL. We used machine learning to develop predictive models of treatment outcome based on the immunoprofile data. The models predict treatment outcome for ASMQ with high (72-85%) accuracy, but could not predict treatment outcome for AL. This divergent treatment outcome suggests that humoral immunity may synergize with the longer mefloquine half-life to provide a prophylactic effect at 28-42 days post-treatment, which was further supported by simulated pharmacokinetic profiling. Our computational approach and modeling revealed the synergistic effect of pre-existing immunity in patients with drug combination that has an extended efficacy on providing long term treatment efficacy of ASMQ.
ABSTRACT
BACKGROUND: The epidemiology and severity of non-falciparum malaria in endemic settings has garnered little attention. We aimed to characterise the prevalence, interaction, clinical risk factors, and temporal trends of non-falciparum Plasmodium species among symptomatic individuals presenting at health-care facilities in endemic settings of Kenya. METHODS: We diagnosed and analysed infecting malaria species (Plasmodium falciparum, Plasmodium ovale curtisi, Plasmodium ovale wallikeri, and Plasmodium malariae) via PCR in clinical samples collected between March 1, 2008, and Dec 31, 2016, from six hospitals located in different regions of Kenya. We recruited patients aged 6 months or older who presented at outpatient departments with symptoms of malaria or tested positive for uncomplicated malaria by malaria rapid diagnostic test. Descriptive statistics were used to describe the prevalence and distribution of Plasmodium species. A statistical model was designed and used for estimating the frequency of Plasmodium species and assessing interspecies interactions. Mixed-effect linear regression models with random slopes for each location were used to test for change in prevalence over time. FINDINGS: Samples from 2027 symptomatic participants presenting at care facilities were successfully analysed for all Plasmodium species. 1469 (72·5%) of the samples were P falciparum single-species infections, 523 (25·8%) were mixed infections, and only 35 (1·7%) were single non-falciparum species infections. 452 (22·3%) were mixed infections containing P ovale spp. A likelihood-based model calculation of the population frequency of each species estimated a significant within-host interference between P falciparum and P ovale curtisi. Mixed-effect logistic regression models identified a significant increase in P ovale wallikeri (2·1% per year; p=0·043) and P ovale curtisi (0·7% per year; p=0·0002) species over time, with a reciprocal decrease in P falciparum single-species infections (2·5% per year; p=0·0065). The frequency of P malariae infections did not significantly change over time. Risk of P falciparum infections presenting with fever was lower if co-infected with P malariae (adjusted odds ratio 0·43, 95% CI 0·25-0·74; p=0·0023). INTERPRETATION: Our results show a prevalence of non-falciparum species infections of 27·5% among symptomatic individuals presenting at care facilities, which is higher than expected from previous cross-sectional surveys. The proportion of infections with P ovale wallikeri and P ovale curtisi was observed to significantly increase over the period of study, which could be due to attenuated responsiveness of these species to malaria drug treatment. The increase in frequency of P ovale spp could threaten the malaria control efforts in Kenya and pose increased risk of malaria to travellers. FUNDING: Armed Forces Health Surveillance Branch and its Global Emerging Infections Surveillance Section.
Subject(s)
Coinfection , Malaria, Falciparum , Malaria , Plasmodium ovale , Cross-Sectional Studies , Humans , Likelihood Functions , Malaria/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Plasmodium malariae , PrevalenceABSTRACT
The development of artemisinin (ART)-resistant parasites in Southeast Asia (SEA) threatens malaria control globally. Mutations in the Kelch 13 (K13)-propeller domain have been useful in identifying ART resistance in SEA. ART combination therapy (ACT) remains highly efficacious in the treatment of uncomplicated malaria in Sub-Saharan Africa (SSA). However, it is crucial that the efficacy of ACT is closely monitored. Toward this effort, this study profiled the prevalence of K13 nonsynonymous mutations in different malaria ecological zones of Kenya and in different time periods, before (pre) and after (post) the introduction of ACT as the first-line treatment of malaria. Nineteen nonsynonymous mutations were present in the pre-ACT samples (N = 64) compared with 22 in the post-ACT samples (N = 251). Eight of these mutations were present in both pre- and post-ACT parasites. Interestingly, seven of the shared single-nucleotide polymorphisms were at higher frequencies in the pre-ACT than the post-ACT parasites. The A578S mutation reported in SSA and the V568G mutation reported in SEA were found in both pre- and post-ACT parasites, with their frequencies declining post-ACT. D584Y and R539K mutations were found only in post-ACT parasites; changes in these codons have also been reported in SEA with different amino acids. The N585K mutation described for the first time in this study was present only in post-ACT parasites, and it was the most prevalent mutation at a frequency of 5.2%. This study showed the type, prevalence, and frequency of K13 mutations that varied based on the malaria ecological zones and also between the pre- and post-ACT time periods.
Subject(s)
Genotype , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Adolescent , Adult , Aged , Antimalarials/therapeutic use , Child , Child, Preschool , Drug Resistance/genetics , Humans , Infant , Kenya/epidemiology , Malaria, Falciparum/epidemiology , Middle Aged , Mutation , Young AdultABSTRACT
Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya.
Subject(s)
Genetic Variation , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Cluster Analysis , Genotype , Geography, Medical , Haplotypes , Humans , Incidence , Kenya/epidemiology , Linkage Disequilibrium , Microsatellite Repeats , Multilocus Sequence Typing , Plasmodium falciparum/classificationABSTRACT
The Plasmodium falciparum in vitro culture system is critical for genotypic and phenotypic analyses of the parasites. For genotypic analysis, the genomic DNA can be obtained directly from the patient blood sample or from culture adapted parasites whereas for phenotypic analysis, immediate ex vivo or in vitro culture adapted parasites are used. However, parasite biology studies have not investigated whether culture adaptation process affects genotypic and/or phenotypic characteristics of the parasites in short- or long-term cultures. Here, we set out to study the dynamics and stability of parasite genetic and phenotypic profiles as field isolate parasites were adapted in continuous cultures. Parasites collected from three different patients presenting with uncomplicated malaria were adapted and maintained in drug-free continuous cultures. Aliquots from the continuous cultures were collected every 24-48 hours for analyses. Each aliquot was treated as a separate parasite sample. For genetic analysis, microsatellite (MS) typing and single nucleotide polymorphism (SNP) analyses of 23 drug resistance markers were done. The 50% inhibitory concentrations (IC50) for some of the samples were also established for four antimalarial drugs. Samples from each patient (parasite-line) were compared as they were passed through the continuous culture. Data revealed genotypic and phenotypic profiles for the three parasite-lines fluctuated from one generation to the next with no specific pattern or periodicity. With few exceptions, multilocus analysis revealed samples from each parasite-line had high genetic diversity with unique haplotypes. Interestingly, changes in MS and SNP profiles occurred simultaneously. The difference in the IC50s of samples in each parasite-line reached statistical significance. However, phenotypic changes did not correspond or correlate to genotypic changes. Our study revealed parasite genetic and phenotypic characteristics fluctuates in short- and long-term cultures, which indicates parasite genetic information obtained even in short cultures is likely to be different from the natural infection parasites.
Subject(s)
DNA, Protozoan/genetics , Genome, Protozoan , Genomic Instability , Genotype , Phenotype , Plasmodium falciparum/genetics , Alleles , Antimalarials/pharmacology , Drug Resistance , Erythrocytes/drug effects , Erythrocytes/parasitology , Gene Frequency , Humans , Inhibitory Concentration 50 , Kenya , Microsatellite Repeats , Multilocus Sequence Typing , Phylogeny , Plasmodium falciparum/classification , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide , Primary Cell CultureABSTRACT
Genetically determined artemisinin resistance in Plasmodium falciparum has been described in Southeast Asia. The relevance of recently described Kelch 13-propeller mutations for artemisinin resistance in Sub-Saharan Africa parasites is still unknown. Southeast Asia parasites have low genetic diversity compared to Sub-Saharan Africa, where parasites are highly genetically diverse. This study attempted to elucidate whether genetics provides a basis for discovering molecular markers in response to artemisinin drug treatment in P. falciparum in Kenya. The genetic diversity of parasites collected pre- and post- introduction of artemisinin combination therapy (ACT) in western Kenya was determined. A panel of 12 microsatellites and 91 single nucleotide polymorphisms (SNPs) distributed across the P. falciparum genome were genotyped. Parasite clearance rates were obtained for the post-ACT parasites. The 12 microsatellites were highly polymorphic with post-ACT parasites being significantly more diverse compared to pre-ACT (p < 0.0001). The median clearance half-life was 2.55 hours for the post-ACT parasites. Based on SNP analysis, 15 of 90 post-ACT parasites were single-clone infections. Analysis revealed 3 SNPs that might have some causal association with parasite clearance rates. Further, genetic analysis using Bayesian tree revealed parasites with similar clearance phenotypes were more closely genetically related. With further studies, SNPs described here and genetically determined response to artemisinin treatment might be useful in tracking artemisinin resistance in Kenya.
Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Plasmodium falciparum/genetics , Bayes Theorem , Genetic Variation/genetics , Genotype , Humans , Kenya , Microsatellite Repeats/genetics , Phylogeny , Plasmodium falciparum/classification , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolismABSTRACT
Artemether-lumefantrine (AL) became the first-line treatment for uncomplicated malaria in Kenya in 2006. Studies have shown AL selects for SNPs in pfcrt and pfmdr1 genes in recurring parasites compared to the baseline infections. The genotypes associated with AL selection are K76 in pfcrt and N86, 184F and D1246 in pfmdr1. To assess the temporal change of these genotypes in western Kenya, 47 parasite isolates collected before (pre-ACT; 1995-2003) and 745 after (post-ACT; 2008-2014) introduction of AL were analyzed. In addition, the associations of parasite haplotype against the IC50 of artemether and lumefantrine, and clearance rates were determined. Parasite genomic DNA collected between 1995 and 2014 was analyzed by sequencing or PCR-based single-base extension on Sequenom MassARRAY. IC50s were determined for a subset of the samples. One hundred eighteen samples from 2013 to 2014 were from an efficacy trial of which 68 had clearance half-lives. Data revealed there were significant differences between pre-ACT and post-ACT genotypes at the four codons (chi-square analysis; p < 0.0001). The prevalence of pfcrt K76 and N86 increased from 6.4% in 1995-1996 to 93.2% in 2014 and 0.0% in 2002-2003 to 92.4% in 2014 respectively. Analysis of parasites carrying pure alleles of K + NFD or T + YYY haplotypes revealed that 100.0% of the pre-ACT parasites carried T + YYY and 99.3% of post-ACT parasites carried K + NFD. There was significant correlation (p = 0.04) between lumefantrine IC50 and polymorphism at pfmdr1 codon 184. There was no difference in parasite clearance half-lives based on genetic haplotype profiles. This study shows there is a significant change in parasite genotype, with key molecular determinants of AL selection almost reaching saturation. The implications of these findings are not clear since AL remains highly efficacious. However, there is need to closely monitor parasite genotypic, phenotypic and clinical dynamics in response to continued use of AL in western Kenya.