Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Appl Environ Microbiol ; 89(1): e0189522, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36622180

ABSTRACT

A harmful algal bloom occurred in late spring 2019 across multiple, interconnected fjords and bays in northern Norway. The event was caused by the haptophyte Chrysochromulina leadbeateri and led to severe fish mortality at several salmon aquaculture facilities. This study reports on the spatial and temporal succession dynamics of the holistic marine microbiome associated with this bloom by relating all detectable 18S and 16S rRNA gene amplicon sequence variants to the relative abundance of the C. leadbeateri focal taxon. A k-medoid clustering enabled inferences on how the causative focal taxon cobloomed with diverse groups of bacteria and microeukaryotes. These coblooming patterns showed high temporal variability and were distinct between two geographically separated time series stations during the regional harmful algal bloom. The distinct blooming patterns observed with respect to each station were poorly connected to environmental conditions, suggesting that other factors, such as biological interactions, may be at least as important in shaping the dynamics of this type of harmful algal bloom. A deeper understanding of microbiome succession patterns during these rare but destructive events will help guide future efforts to forecast deviations from the natural bloom cycles of the northern Norwegian coastal marine ecosystems that are home to intensive aquaculture activities. IMPORTANCE The 2019 Chrysochromulina leadbeateri bloom in northern Norway had a major impact on the local economy and society through its devastating effect on the aquaculture industry. However, many fail to remember that C. leadbeateri is, in fact, a common member of the seasonal marine microbiome and the same spring phytoplankton blooms that support the marine ecosystem. It is challenging to draw any conclusions about exact causation behind the harmful bloom of 2019, especially since the natural bloom cycles of C. leadbeateri are not well understood. This study begins to fill major knowledge gaps that may lead to future forecasting abilities, by providing a molecular-based investigation of the destructive 2019 bloom that presents new insights into a seasonal marine microbial ecosystem during one of these sporadically reoccurring events.


Subject(s)
Dinoflagellida , Haptophyta , Microbiota , Animals , Ecosystem , RNA, Ribosomal, 16S/genetics , Harmful Algal Bloom , Phytoplankton
2.
Molecules ; 19(10): 16373-80, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25314600

ABSTRACT

During normal sample preparation, storage in freezers and subsequent freeze/thaw cycles are commonly introduced. The effect of freeze/thaw cycles on the metabolic profiling of microalgal extracts using HR-MS was investigated. Methanolic extracts of monocultures of Arctic marine diatoms were analyzed immediately after extraction, after seven days of storage at -78 °C (one freeze/thaw cycle), and after additional seven days at -20 °C (two freeze/thaw cycles). Repeated direct infusion high-resolution mass spectrometry analysis of microalgae extracts of the same sample showed that reproducibility was ca. 90% when a fresh (unfrozen) sample was analyzed. The overall reproducibility decreased further by ca. 10% after the first freeze/thaw-cycle, and after one more freeze/thaw cycle the reproducibility decreased further by ca. 7%. The decrease in reproducibility after freeze-thaw cycles could be attributed to sample degradation and not to instrument variability.


Subject(s)
Diatoms/physiology , Mass Spectrometry/methods , Metabolomics/methods , Acclimatization , Methanol/metabolism , Microalgae/physiology , Reproducibility of Results
3.
Harmful Algae ; 137: 102681, 2024 08.
Article in English | MEDLINE | ID: mdl-39003025

ABSTRACT

In May-June 2019, the microalga Chrysochromulina leadbeateri caused a massive fish-killing event in several fjords in Northern Norway, resulting in the largest direct impact ever on aquaculture in northern Europe due to toxic algae. Motivated by the fact that no algal toxins have previously been described from C. leadbeateri, we set out to investigate the chemical nature and toxicity of secondary metabolites in extracts of two strains (UIO 393, UIO 394) isolated from the 2019 bloom, as well as one older strain (UIO 035) isolated during a bloom in Northern Norway in 1991. Initial LC-DAD-MS/MS-based molecular networking analysis of the crude MeOH extracts of the cultivated strains showed that their profiles of small organic molecules, including a large number of known lipids, were very similar, suggesting that the same class of toxin(s) were likely the causative agents of the two harmful algal bloom (HAB) events. Next, bioassay-guided fractionation using the RTgill-W1 cell line and metabolomics analysis pointed to a major compound affording [M + H]+ ions at m/z 1399.8333 as a possible toxin, corresponding to a compound with the formula C67H127ClO27. Moreover, our study unveiled a series of minor analogues exhibiting distinct patterns of chlorination and sulfation, together defining a new family of compounds, which we propose to name leadbeaterins. Remarkably, these suspected toxins were detected in situ in samples collected during the 2019 bloom close to Tromsø, thereby consistent with a role in fish kills. The elemental compositions of the putative C. leadbeateri ichthyotoxins strongly indicate them to be long linear polyhydroxylated polyketides, structurally similar to sterolysins reported from a number of dinoflagellates.


Subject(s)
Harmful Algal Bloom , Marine Toxins , Norway , Marine Toxins/toxicity , Marine Toxins/chemistry , Marine Toxins/analysis , Estuaries , Animals , Tandem Mass Spectrometry , Haptophyta/chemistry
4.
Mar Drugs ; 11(11): 4232-45, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24177671

ABSTRACT

In this study, we investigate how metabolic fingerprints are related to temperature. Six common northern temperate diatoms (Attheya longicornis, Chaetoceros socialis, Chaetoceros furcellatus, Porosira glacialis, Skeletonema marinoi, and Thalassiosira gravida) were cultivated at two different temperatures, 0.5 and 8.5 °C. To exclude metabolic variations due to differences in growth rates, the growth rates were kept similar by performing the experiments under light limited conditions but in exponential growth phase. Growth rates and maximum quantum yield of photosynthesis were measured and interpreted as physiological variables, and metabolic fingerprints were acquired by high-resolution mass spectrometry. The chemical diversity varied substantially between the two temperatures for the tested species, ranging from 31% similarity for C. furcellatus and P. glacialis to 81% similarity for A. longicornis. The chemical diversity was generally highest at the lowest temperature.


Subject(s)
Diatoms/growth & development , Diatoms/metabolism , Photosynthesis/physiology , Temperature
5.
PLoS One ; 16(7): e0255370, 2021.
Article in English | MEDLINE | ID: mdl-34324572

ABSTRACT

The aim of this study was to evaluate the potential of diatom (microalgae) biomass as a lice-reducing ingredient in salmon feed. The original hypothesis was based on the fact that polyunsaturated aldehydes (PUAs), e.g. 2-trans, 4-trans decadenial (A3) produced by diatoms can function as grazing deterrents and harm copepod development. Salmon lice (Lepeophtheirus salmonis) is a copepod, and we intended to test if inclusion of diatom biomass in the feed could reduce the infestation of lice on salmon. We performed experiments where salmon kept in tanks were offered four different diets, i.e. basic feed with diatoms, fish oil, Calanus sp. oil or rapeseed oil added. After a feeding period of 67 days a statistically representative group of fishes, tagged with diet group origin, were pooled in a 4000L tank and exposed to salmon lice copepodites whereafter lice infestation was enumerated. Salmon from all four diet groups had good growth with SGR values from 1.29 to 1.44% day-1 (increase from ca. 130 g to 350 g). At the termination of the experiment the number of lice on salmon offered diatom feed were statistically significantly lower than on salmon fed the other diets. Mean lice infestation values increased from diatom feed through Calanus and fish oil to standard feed with terrestrial plant ingredients. Analysis of the chemical composition of the different diets (fatty acids, amino acids) failed to explain the differences in lice infestation. The only notable result was that diatom and Calanus feed contained more FFA (free fatty acids) than feed with fish oil and the control feed. None of the potential deleterious targeted polyunsaturated aldehydes could be detected in skin samples of the salmon. What was exclusive for salmon that experienced reduced lice was diatom inclusion in the feed. This therefore still indicates the presence of some lice deterring ingredient, either in the feed, or an ingredient can have triggered production of an deterrent in the fish. An obvious follow up of this will be to perform experiments with different degrees of diatom inclusion in the feeds, i.e. dose response experiments combined with targeted PUA analyses, as well as to perform large scale experiments under natural conditions in aquaculture pens.


Subject(s)
Biomass , Diatoms , Diet , Fish Diseases , Salmon , Animals , Aquaculture , Copepoda
6.
J Appl Phycol ; 28: 939-950, 2016.
Article in English | MEDLINE | ID: mdl-27057087

ABSTRACT

Isolates of five pelagic North Atlantic marine diatoms (Bacillariophyceae): Attheya longicornis, Chaetoceros socialis, Chaetoceros furcellatus, Skeletonema marinoi and Porosira glacialis were cultivated in large photobioreactors at two light and two temperature regimes to test if this affected bioactivity. We screened for bioactivity in assays representing five different therapeutic areas: diabetes II (PTP1b), cancer (melanoma cells, A2058), anti-oxidants (FRAP), immunomodulation (TNFa) and anti-infection (MRSA, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa). All the diatom strains showed activity in two or more assays. We detected differences in bioactivity both between species and within species cultivated with different light and temperature regimes. Our results demonstrate the potential for a more exhaustive exploitation of diatom metabolites that can be obtained by manipulation of the cultivation conditions.

SELECTION OF CITATIONS
SEARCH DETAIL