ABSTRACT
Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.
Subject(s)
Chromosome Deletion , Chromosomes, Human, Y/genetics , Genetic Predisposition to Disease/genetics , Genomic Instability/genetics , Leukocytes/pathology , Mosaicism , Adult , Aged , Computational Biology , Databases, Genetic , Female , Genetic Markers/genetics , Humans , Male , Middle Aged , Neoplasms/genetics , United KingdomABSTRACT
Down syndrome (DS) is caused by the triplication of chromosome 21 and is the most common chromosomal disorder in humans. Those individuals with DS who live beyond age 40 y develop a progressive dementia that is similar to Alzheimer's disease (AD). Both DS and AD brains exhibit numerous extracellular amyloid plaques composed of Aß and intracellular neurofibrillary tangles composed of tau. Since AD is a double-prion disorder, we asked if both Aß and tau prions feature in DS. Frozen brains from people with DS, familial AD (fAD), sporadic AD (sAD), and age-matched controls were procured from brain biorepositories. We selectively precipitated Aß and tau prions from DS brain homogenates and measured the number of prions using cellular bioassays. In brain extracts from 28 deceased donors with DS, ranging in age from 19 to 65 y, we found nearly all DS brains had readily measurable levels of Aß and tau prions. In a cross-sectional analysis of DS donor age at death, we found that the levels of Aß and tau prions increased with age. In contrast to DS brains, the levels of Aß and tau prions in the brains of 37 fAD and sAD donors decreased as a function of age at death. Whether DS is an ideal model for assessing the efficacy of putative AD therapeutics remains to be determined.
Subject(s)
Alzheimer Disease , Down Syndrome , Prions , Adult , Humans , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cross-Sectional Studies , Down Syndrome/pathology , Prions/metabolism , tau Proteins/metabolismABSTRACT
Multiple system atrophy (MSA) is characterized by accumulation of phosphorylated α-synuclein (p-syn) as glial cytoplasmic inclusions in the brain and a specific biomarker for this disorder is urgently needed. We aimed at investigating if p-syn can also be detected in skin Remak non-myelinating Schwann cells (RSCs) as Schwann cell cytoplasmic inclusions (SCCi) and may represent a reliable clinical biomarker for MSA. This cross-sectional diagnostic study evaluated skin p-syn in 96 patients: 46 with probable MSA (29 with parkinsonism type MSA and 17 with cerebellar type MSA), 34 with Parkinson's disease (PD) and 16 with dementia with Lewy bodies (DLB). We also included 50 healthy control subjects. Patients were recruited from five different medical centres. P-syn aggregates in skin sections were stained by immunofluorescence, followed by analyses with confocal microscopy and immuno-electron microscopy. All analyses were performed in a blinded fashion. Overall, p-syn aggregates were found in 78% of MSA patients and 100% of patients with PD/DLB, whereas they could not be detected in controls. As for neuronal aggregates 78% of MSA patients were positive for p-syn in somatic neurons, whereas all PD/DLB patients were positive in autonomic neurons. When analysing the presence of p-syn in RSCs, 74% of MSA patients were positive, whereas no such SCCi could be observed in PD/DLB patients. Analyses by immuno-electron microscopy confirmed that SCCi were only found in cases with MSA and thus absent in those with PD/DLB. In conclusion, our findings demonstrate that (i) fibrillar p-syn in RSCs is a pathological hallmark of MSA and may be used as a specific and sensitive disease biomarker; (ii) in Lewy body synucleinopathies (PD/DLB) only neurons contain p-syn deposits; and (iii) the cell-specific deposition of p-syn in the skin thus mirrors that of the brain in many aspects and suggests that non-myelinated glial cells are also involved in the MSA pathogenesis.
Subject(s)
Alzheimer Disease , Lewy Body Disease , Multiple System Atrophy , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Multiple System Atrophy/pathology , Cross-Sectional Studies , Parkinson Disease/pathology , Schwann Cells , Biomarkers , Lewy Body Disease/metabolismABSTRACT
BACKGROUND: Visium Spatial Gene Expression (ST) is a method combining histological spatial information with transcriptomics profiles directly from tissue sections. The use of spatial information has made it possible to discover new modes of gene expression regulations. However, in the ST experiment, the nucleus size of cells may exceed the thickness of a tissue slice. This may, in turn, negatively affect comprehensive capturing the transcriptomics profile in a single slice, especially for tissues having large differences in the size of nuclei. METHODS: Here, we defined the effect of Consecutive Slices Data Integration (CSDI) on unveiling accurate spot clustering and deconvolution of spatial transcriptomic spots in human postmortem brains. By considering the histological information as reference, we assessed the improvement of unsupervised clustering and single nuclei RNA-seq and ST data integration before and after CSDI. RESULTS: Apart from the escalated number of defined clusters representing neuronal layers, the pattern of clusters in consecutive sections was concordant only after CSDI. Besides, the assigned cell labels to spots matches the histological pattern of tissue sections after CSDI. CONCLUSION: CSDI can be applied to investigate consecutive sections studied with ST in the human cerebral cortex, avoiding misinterpretation of spot clustering and annotation, increasing accuracy of cell recognition as well as improvement in uncovering the layers of grey matter in the human brain.
Subject(s)
Gene Expression Profiling , Transcriptome , Humans , Transcriptome/genetics , RNA-Seq , Brain , Cell CommunicationABSTRACT
Growing evidence indicates that the pathological alpha-synuclein (α-syn) aggregation in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) starts at the synapses. Physiologic α-syn is involved in regulating neurotransmitter release by binding to the SNARE complex protein VAMP-2 on synaptic vesicles. However, in which way the SNARE complex formation is affected by α-syn pathology remains unclear. In this study, primary cortical neurons were exposed to either α-syn monomers or preformed fibrils (PFFs) for different time points and the effect on SNARE protein distribution was analyzed with a novel proximity ligation assay (PLA). Short-term exposure to monomers or PFFs for 24 h increased the co-localization of VAMP-2 and syntaxin-1, but reduced the co-localization of SNAP-25 and syntaxin-1, indicating a direct effect of the added α-syn on SNARE protein distribution. Long-term exposure to α-syn PFFs for 7 d reduced VAMP-2 and SNAP-25 co-localization, although there was only a modest induction of ser129 phosphorylated (pS129) α-syn. Similarly, exposure to extracellular vesicles collected from astrocytes treated with α-syn PFFs for 7 d influenced VAMP-2 and SNAP-25 co-localization despite only low levels of pS129 α-syn being formed. Taken together, our results demonstrate that different α-syn proteoforms have the potential to alter the distribution of SNARE proteins at the synapse.
Subject(s)
Vesicle-Associated Membrane Protein 2 , alpha-Synuclein , alpha-Synuclein/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , SNARE Proteins , Neurons/metabolism , Qa-SNARE ProteinsABSTRACT
BACKGROUND: Most dementia disorders have a clear genetic background and a number of disease genes have been identified. Mutations in the tau gene (MAPT) lead to frontotemporal dementia (FTD), whereas mutations in the genes for the amyloid-ß precursor protein (APP) and the presenilins (PSEN1, PSEN2) cause early-onset, dominantly inherited forms of Alzheimer's disease (AD). Even if mutations causing Mendelian forms of these diseases are uncommon, elucidation of the pathogenic effects of such mutations have proven important for understanding the pathogenic processes. Here, we performed a screen to identify novel pathogenic mutations in known disease genes among patients undergoing dementia investigation. RESULTS: Using targeted exome sequencing we have screened all coding exons in eleven known dementia genes (PSEN1, PSEN2, APP, MAPT, APOE, GRN, TARDBP, CHMP2B, TREM2, VCP and FUS) in 102 patients with AD, FTD, other dementia diagnoses or mild cognitive impairment. We found three AD patients with two previously identified pathogenic mutations in PSEN1 (Pro264Leu and Met146Val). In this screen, we also identified the recently reported APP mutation in two siblings with AD. This mutation, named the Uppsala mutation, consists of a six amino acid intra-amyloid ß deletion. In addition, we found several potentially pathogenic mutations in PSEN2, FUS, MAPT, GRN and APOE. Finally, APOE ε4 was prevalent in this patient group with an allele frequency of 54%. CONCLUSIONS: Among the 102 screened patients, we found two disease causing mutations in PSEN1 and one in APP, as well as several potentially pathogenic mutations in other genes related to neurodegenerative disorders. Apart from giving important information to the clinical investigation, the identification of disease mutations can contribute to an increased understanding of disease mechanisms.
Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Alzheimer Disease/genetics , Amyloid beta-Peptides , Frontotemporal Dementia/genetics , Humans , Membrane Glycoproteins , Mutation , Presenilin-1/genetics , Presenilin-2/genetics , Receptors, ImmunologicABSTRACT
With reactive astrogliosis being established as one of the hallmarks of Alzheimer's disease (AD), there is high interest in developing novel positron emission tomography (PET) tracers to detect early astrocyte reactivity. BU99008, a novel astrocytic PET ligand targeting imidazoline-2 binding sites (I2BS) on astrocytes, might be a suitable candidate. Here we demonstrate for the first time that BU99008 could visualise reactive astrogliosis in postmortem AD brains and propose a multiple binding site [Super-high-affinity (SH), High-affinity (HA) and Low-affinity (LA)] model for BU99008, I2BS specific ligands (2-BFI and BU224) and deprenyl in AD and control (CN) brains. The proportion (%) and affinities of these sites varied significantly between the BU99008, 2-BFI, BU224 and deprenyl in AD and CN brains. Regional binding studies demonstrated significantly higher 3H-BU99008 binding in AD brain regions compared to CN. Comparative autoradiography studies reinforced these findings, showing higher specific binding for 3H-BU99008 than 3H-Deprenyl in sporadic AD brain compared to CN, implying that they might have different targets. The data clearly shows that BU99008 could detect I2BS expressing reactive astrocytes with good selectivity and specificity and hence be a potential attractive clinical astrocytic PET tracer for gaining further insight into the role of reactive astrogliosis in AD.
Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Astrocytes , Binding Sites , Brain/diagnostic imaging , Humans , Imidazoles , Indoles , Positron-Emission TomographyABSTRACT
Autosomal-dominant Alzheimer's disease (ADAD) may be associated with atypical amyloid beta deposits in the brain. In vivo amyloid imaging using 11C-Pittsburgh compound B (PiB) tracer has shown differences in binding between brains from ADAD and sporadic Alzheimer's disease (sAD) patients. To gain further insight into the various pathological characteristics of these genetic variants, we performed large frozen hemisphere autoradiography and brain homogenate binding assays with 3H-PiB, 3H-MK6240-3H-THK5117, and 3H-deprenyl for detection of amyloid fibrils, tau depositions, and activated astrocytes, respectively, in two AßPParc mutation carriers, one PSEN1ΔE9 mutation carrier, and three sAD cases. The results were compared with Abeta 40, Abeta 42, AT8, and GFAP immunostaining, respectively, as well as with Congo red and Bielschowsky. PiB showed a very low binding in AßPParc. A high binding was observed in PSEN1ΔE9 and in sAD tissues but with different binding patterns. Comparable 3H-THK5117 and 3H-deprenyl brain homogenate binding was observed for AßPParc, PSEN1ΔE9, and sAD, respectively. Some differences were observed between 3H-MK6240 and 3H-THK5117 in ADAD. A positive correlation between 3H-deprenyl and 3H-THK5117 binding was observed in AßPParc, while no such correlation was found in PSEN1ΔE9 and sAD. Our study demonstrates differences in the properties of the amyloid plaques between two genetic variants of AD and sAD. Despite the lack of measurable amyloid fibrils by PiB in the AßPParc cases, high regional tau and astrocyte binding was observed. The lack of correlation between 3H-deprenyl and 3H-THK5117 binding in PSEN1ΔE9 and sAD in contrast of the positive correlation observed in the AßPParc cases suggest differences in the pathological cascade between variants of AD that warrant further exploration in vivo.
Subject(s)
Alzheimer Disease , Astrocytes , Alzheimer Disease/genetics , Amyloid , Amyloid beta-Peptides/metabolism , Aniline Compounds , Astrocytes/metabolism , Brain/metabolism , Humans , Plaque, Amyloid , Positron-Emission Tomography , Presenilin-1 , tau Proteins/genetics , tau Proteins/metabolismABSTRACT
Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer's disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a "genetic wasteland", and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.
Subject(s)
Alzheimer Disease/genetics , Chromosomes, Human, Y , Mosaicism , Prostatic Neoplasms/genetics , CD4-Positive T-Lymphocytes/metabolism , Gene Expression Regulation , Humans , Killer Cells, Natural/metabolism , Leukocytes/metabolism , MaleABSTRACT
The positron emission tomography (PET) radioligand [11C]UCB-J binds to synaptic vesicle protein 2A (SV2A) and is used to investigate synaptic density in the living brain. Clinical studies have indicated reduced [11C]UCB-J binding in Alzheimer's disease (AD) and Parkinson's disease (PD) brains compared to healthy controls. Still, it is unknown whether [11C]UCB-J PET can visualise synaptic loss in mouse models of these disorders. Such models are essential for understanding disease pathology and for evaluating the effects of novel disease-modifying drug candidates. In the present study, synaptic density in transgenic models of AD (ArcSwe) and PD (L61) was studied using [11C]UCB-J PET. Data were acquired during 60 min after injection, and time-activity curves (TACs) in different brain regions and the left ventricle of the heart were generated based on the dynamic PET images. The [11C]UCB-J brain concentrations were expressed as standardised uptake value (SUV) over time. The area under the SUV curve (AUC), the ratio of AUC in the brain to that in the heart (AUCbrain/blood), and the volume of distribution (VT) obtained by kinetic modelling using the heart TAC as input were compared between transgenic and age-matched wild type (WT) mice. The L61 mice displayed 11-13% lower AUCbrain/blood ratio and brain VT generated by kinetic modeling compared to the control WT mice. In general, also transgenic ArcSwe mice tended to show lower [11C]UCB-J brain exposure than age-matched WT controls, but variation within the different animal groups was high. Older WT mice (18-20 months) showed lower [11C]UCB-J brain exposure than younger WT mice (8-9 months). Together, these data imply that [11C]UCB-J PET reflects synaptic density in mouse models of neurodegeneration and that inter-subject variation is large. In addition, the study suggested that model-independent AUCbrain/blood ratio can be used to evaluate [11C]UCB-J binding as an alternative to full pharmacokinetic modelling.
Subject(s)
Amyloid beta-Peptides/analysis , Brain/diagnostic imaging , Carbon Radioisotopes/pharmacokinetics , Disease Models, Animal , Membrane Glycoproteins/analysis , Nerve Tissue Proteins/analysis , Peptide Fragments/analysis , Positron-Emission Tomography/methods , Pyridines/pharmacokinetics , Pyrrolidinones/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Synaptic Vesicles/ultrastructure , Synucleinopathies/diagnostic imaging , Aging , Alzheimer Disease , Amyloid beta-Peptides/genetics , Animals , Area Under Curve , Brain/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity , Parkinson Disease , Peptide Fragments/geneticsABSTRACT
A growing body of evidence suggests that aggregated α-synuclein, the major constituent of Lewy bodies, plays a key role in the pathogenesis of Parkinson's disease and related α-synucleinopathies. Immunotherapies, both active and passive, against α-synuclein have been developed and are promising novel treatment strategies for such disorders. Here, we report on the humanization and pharmacological characteristics of ABBV-0805, a monoclonal antibody that exhibits a high selectivity for human aggregated α-synuclein and very low affinity for monomers. ABBV-0805 binds to a broad spectrum of soluble aggregated α-synuclein, including small and large aggregates of different conformations. Binding of ABBV-0805 to pathological α-synuclein was demonstrated in Lewy body-positive post mortem brains of Parkinson's disease patients. The functional potency of ABBV-0805 was demonstrated in several cellular assays, including Fcγ-receptor mediated uptake of soluble aggregated α-synuclein in microglia and inhibition of neurotoxicity in primary neurons. In vivo, the murine version of ABBV-0805 (mAb47) displayed significant dose-dependent decrease of α-synuclein aggregates in brain in several mouse models, both in prophylactic and therapeutic settings. In addition, mAb47 treatment of α-synuclein transgenic mice resulted in a significantly prolonged survival. ABBV-0805 selectively targets soluble toxic α-synuclein aggregates with a picomolar affinity and demonstrates excellent in vivo efficacy. Based on the strong preclinical findings described herein, ABBV-0805 has been progressed into clinical development as a potential disease-modifying treatment for Parkinson's disease.
Subject(s)
Antibodies, Monoclonal , Parkinson Disease , Synucleinopathies , Animals , Antibodies, Monoclonal/therapeutic use , Humans , Longevity , Mice , Mice, Transgenic , Parkinson Disease/metabolism , Parkinson Disease/therapy , Synucleinopathies/therapy , alpha-Synuclein/metabolismABSTRACT
BACKGROUND: Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by brain accumulation of aggregated amyloid-beta (Aß) and alpha-synuclein (αSYN), respectively. In order to develop effective therapies, it is crucial to understand how the Aß/αSYN aggregates can be cleared. Compelling data indicate that neuroinflammatory cells, including astrocytes and microglia, play a central role in the pathogenesis of AD and PD. However, how the interplay between the two cell types affects their clearing capacity and consequently the disease progression remains unclear. METHODS: The aim of the present study was to investigate in which way glial crosstalk influences αSYN and Aß pathology, focusing on accumulation and degradation. For this purpose, human-induced pluripotent cell (hiPSC)-derived astrocytes and microglia were exposed to sonicated fibrils of αSYN or Aß and analyzed over time. The capacity of the two cell types to clear extracellular and intracellular protein aggregates when either cultured separately or in co-culture was studied using immunocytochemistry and ELISA. Moreover, the capacity of cells to interact with and process protein aggregates was tracked using time-lapse microscopy and a customized "close-culture" chamber, in which the apical surfaces of astrocyte and microglia monocultures were separated by a <1 mm space. RESULTS: Our data show that intracellular deposits of αSYN and Aß are significantly reduced in co-cultures of astrocytes and microglia, compared to monocultures of either cell type. Analysis of conditioned medium and imaging data from the "close-culture" chamber experiments indicate that astrocytes secrete a high proportion of their internalized protein aggregates, while microglia do not. Moreover, co-cultured astrocytes and microglia are in constant contact with each other via tunneling nanotubes and other membrane structures. Notably, our live cell imaging data demonstrate that microglia, when attached to the cell membrane of an astrocyte, can attract and clear intracellular protein deposits from the astrocyte. CONCLUSIONS: Taken together, our data demonstrate the importance of astrocyte and microglia interactions in Aß/αSYN clearance, highlighting the relevance of glial cellular crosstalk in the progression of AD- and PD-related brain pathology.
Subject(s)
Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Microglia/metabolism , Microglia/pathology , Protein Aggregates , Protein Aggregation, Pathological , alpha-Synuclein/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Cell Membrane Structures/physiology , Cells, Cultured , Coculture Techniques , Humans , Induced Pluripotent Stem Cells , Microscopy, Confocal , Nanotubes , Parkinson Disease/metabolism , Parkinson Disease/pathology , ProteolysisABSTRACT
Aggregation of alpha-synuclein (α-syn) into Lewy bodies and Lewy neurites is a pathological hallmark in the Parkinson´s disease (PD) brain. The formation of α-syn oligomers is believed to be an early pathogenic event and the A30P mutation in the gene encoding α-syn, causing familial PD, has been shown to cause an accelerated oligomerization. Due to the problem of preserving antigen conformation on tissue surfaces, α-syn oligomers are difficult to detect ex vivo using conventional immunohistochemistry with oligomer-selective antibodies. Herein, we have instead employed the previously reported α-syn oligomer proximity ligation assay (ASO-PLA), along with a wide variety of biochemical assays, to discern the pathological progression of α-syn oligomers and their impact on the dopaminergic system in male and female (Thy-1)-h[A30P]α-syn transgenic (A30P-tg) mice. Our results reveal a previously undetected abundance of α-syn oligomers in midbrain of young mice, whereas phosphorylated (pS129) and proteinase k-resistant α-syn species were observed to a larger extent in aged mice. Although we did not detect loss of dopaminergic neurons in A30P-tg mice, a dysregulation in the monoaminergic system was recorded in older mice. Taken together, ASO-PLA should be a useful method for the detection of early changes in α-syn aggregation on brain tissue, from experimental mouse models in addition to post mortem PD cases.
Subject(s)
Brain/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Parkinson Disease/metabolism , Thy-1 Antigens/metabolism , alpha-Synuclein/metabolism , Animals , Brain/pathology , Dopamine/genetics , Dopaminergic Neurons/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parkinson Disease/genetics , Parkinson Disease/pathology , Thy-1 Antigens/genetics , alpha-Synuclein/geneticsABSTRACT
Reminiscent of the human prion diseases, there is considerable clinical and pathological variability in Alzheimer's disease, the most common human neurodegenerative condition. As in prion disorders, protein misfolding and aggregation is a hallmark feature of Alzheimer's disease, where the initiating event is thought to be the self-assembly of Aß peptide into aggregates that deposit in the central nervous system. Emerging evidence suggests that Aß, similar to the prion protein, can polymerize into a conformationally diverse spectrum of aggregate strains both in vitro and within the brain. Moreover, certain types of Aß aggregates exhibit key hallmarks of prion strains including divergent biochemical attributes and the ability to induce distinct pathological phenotypes when intracerebrally injected into mouse models. In this review, we discuss the evidence demonstrating that Aß can assemble into distinct strains of aggregates and how such strains may be primary drivers of the phenotypic heterogeneity in Alzheimer's disease.
Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Alzheimer Disease/psychology , Animals , Humans , Phenotype , Prion Diseases , Prion Proteins/geneticsABSTRACT
Point mutations in the amyloid-ß (Aß) coding region produce a combination of mutant and WT Aß isoforms that yield unique clinicopathologies in familial Alzheimer's disease (fAD) and cerebral amyloid angiopathy (fCAA) patients. Here, we report a method to investigate the structural variability of amyloid deposits found in fAD, fCAA, and sporadic AD (sAD). Using this approach, we demonstrate that mutant Aß determines WT Aß conformation through prion template-directed misfolding. Using principal component analysis of multiple structure-sensitive fluorescent amyloid-binding dyes, we assessed the conformational variability of Aß deposits in fAD, fCAA, and sAD patients. Comparing many deposits from a given patient with the overall population, we found that intrapatient variability is much lower than interpatient variability for both disease types. In a given brain, we observed one or two structurally distinct forms. When two forms coexist, they segregate between the parenchyma and cerebrovasculature, particularly in fAD patients. Compared with sAD samples, deposits from fAD patients show less intersubject variability, and little overlap exists between fAD and sAD deposits. Finally, we examined whether E22G (Arctic) or E22Q (Dutch) mutants direct the misfolding of WT Aß, leading to fAD-like plaques in vivo. Intracerebrally injecting mutant Aß40 fibrils into transgenic mice expressing only WT Aß induced the deposition of plaques with many biochemical hallmarks of fAD. Thus, mutant Aß40 prions induce a conformation of WT Aß similar to that found in fAD deposits. These findings indicate that diverse AD phenotypes likely arise from one or more initial Aß prion conformations, which kinetically dominate the spread of prions in the brain.
Subject(s)
Alzheimer Disease/etiology , Amyloid beta-Peptides/metabolism , Protein Conformation , Protein Folding , Amyloid beta-Peptides/genetics , Animals , Mice, Transgenic , Point MutationABSTRACT
BACKGROUND: Discrimination between early-stage dementia and other cognitive impairment diagnoses is central to enable appropriate interventions. Previous studies indicate that dual-task testing may be useful in such differentiation. The objective of this study was to investigate whether dual-task test outcomes discriminate between groups of individuals with dementia disorder, mild cognitive impairment, subjective cognitive impairment, and healthy controls. METHODS: A total of 464 individuals (mean age 71 years, 47% women) were included in the study, of which 298 were patients undergoing memory assessment and 166 were cognitively healthy controls. Patients were grouped according to the diagnosis received: dementia disorder, mild cognitive impairment, or subjective cognitive impairment. Data collection included participants' demographic characteristics. The patients' cognitive test results and diagnoses were collected from their medical records. Healthy controls underwent the same cognitive tests as the patients. The mobility test Timed Up-and-Go (TUG single-task) and two dual-task tests including TUG (TUGdt) were carried out: TUGdt naming animals and TUGdt months backwards. The outcomes registered were: time scores for TUG single-task and both TUGdt tests, TUGdt costs (relative time difference between TUG single-task and TUGdt), number of different animals named, number of months recited in correct order, number of animals per 10 s, and number of months per 10 s. Logistic regression models examined associations between TUG outcomes pairwise between groups. RESULTS: The TUGdt outcomes "animals/10 s" and "months/10 s" discriminated significantly (p < 0.001) between individuals with an early-stage dementia diagnosis, mild cognitive impairment, subjective cognitive impairment, and healthy controls. The TUGdt outcome "animals/10 s" showed an odds ratio of 3.3 (95% confidence interval 2.0-5.4) for the groups dementia disorders vs. mild cognitive impairment. TUGdt cost outcomes, however, did not discriminate between any of the groups. CONCLUSIONS: The novel TUGdt outcomes "words per time unit", i.e. "animals/10 s" and "months/10 s", demonstrate high levels of discrimination between all investigated groups. Thus, the TUGdt tests in the current study could be useful as complementary tools in diagnostic assessments. Future studies will be focused on the predictive value of TUGdt outcomes concerning dementia risk for individuals with mild cognitive impairment or subjective cognitive impairment.
Subject(s)
Cognitive Dysfunction , Dementia , Aged , Cognition , Cognitive Dysfunction/diagnosis , Cohort Studies , Cross-Sectional Studies , Dementia/diagnosis , Female , Humans , MaleABSTRACT
Synucleinopathies including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are characterized by the abnormal accumulation and propagation of α-synuclein (α-syn) pathology in the central and peripheral nervous system as Lewy bodies or glial cytoplasmic inclusions. Several antibodies against α-syn have been developed since it was first detected as the major component of Lewy bodies and glial cytoplasmic inclusions. Over the years, researchers have generated specific antibodies that alleviate the accumulation of intracellular aggregated α-syn and associated pathology in cellular and preclinical models of synucleinopathies. So far, antibodies have been the first choice as tools for research and diagnosis and currently, a wide variety of antibody fragments have been developed as an alternative to full-length antibodies for increasing its therapeutic usefulness. Recently, conformation specific antibody-based approaches have been found to be promising as therapeutic strategies, both to block α-syn aggregation and ameliorate the resultant cytotoxicity, and as diagnostic tools. In this review, we summarize different α-syn specific antibodies and provide their usefulness in tackling synucleinopathies. This article is part of the Special Issue "Synuclein".
Subject(s)
Antibodies/immunology , Synucleinopathies/therapy , alpha-Synuclein/immunology , Antibodies/therapeutic use , Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibody Specificity , Biomarkers , Delayed Diagnosis , Epitopes/immunology , Humans , Immunoglobulin Fragments/immunology , Immunologic Tests/methods , Parkinson Disease/diagnosis , Parkinson Disease/immunology , Parkinson Disease/therapy , Protein Aggregation, Pathological/immunology , Protein Aggregation, Pathological/prevention & control , Protein Conformation , Protein Engineering , Recombinant Proteins/immunology , Single-Domain Antibodies/immunology , Synucleinopathies/diagnosis , Synucleinopathies/immunology , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/chemistryABSTRACT
Men have a shorter life expectancy compared with women but the underlying factor(s) are not clear. Late-onset, sporadic Alzheimer disease (AD) is a common and lethal neurodegenerative disorder and many germline inherited variants have been found to influence the risk of developing AD. Our previous results show that a fundamentally different genetic variant, i.e., lifetime-acquired loss of chromosome Y (LOY) in blood cells, is associated with all-cause mortality and an increased risk of non-hematological tumors and that LOY could be induced by tobacco smoking. We tested here a hypothesis that men with LOY are more susceptible to AD and show that LOY is associated with AD in three independent studies of different types. In a case-control study, males with AD diagnosis had higher degree of LOY mosaicism (adjusted odds ratio = 2.80, p = 0.0184, AD events = 606). Furthermore, in two prospective studies, men with LOY at blood sampling had greater risk for incident AD diagnosis during follow-up time (hazard ratio [HR] = 6.80, 95% confidence interval [95% CI] = 2.16-21.43, AD events = 140, p = 0.0011). Thus, LOY in blood is associated with risks of both AD and cancer, suggesting a role of LOY in blood cells on disease processes in other tissues, possibly via defective immunosurveillance. As a male-specific risk factor, LOY might explain why males on average live shorter lives than females.
Subject(s)
Alzheimer Disease/genetics , Chromosomes, Human, Y/genetics , Mosaicism , Polymorphism, Single Nucleotide/genetics , Aged , Aged, 80 and over , Alzheimer Disease/blood , Case-Control Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Prognosis , Prospective Studies , Risk FactorsABSTRACT
The intercellular transfer of alpha-synuclein (α-syn) has been implicated in the progression of Parkinson's disease (PD) and multiple system atrophy (MSA). The cellular mechanisms underlying this process are now beginning to be elucidated. In this study, we demonstrate that the gap junction protein connexin-32 (Cx32) is centrally involved in the preferential uptake of α-syn oligomeric assemblies (oα-syn) in neurons and oligodendrocytes. In vitro, we demonstrate a clear correlation between Cx32 expression and oα-syn uptake. Pharmacological and genetic strategies targeting Cx32 successfully blocked oα-syn uptake. In cellular and transgenic mice modeling PD and MSA, we observed significant upregulation of Cx32 which correlates with α-syn accumulation. Notably, we could also demonstrate a direct interaction between α-syn and Cx32 in two out of four human PD cases that was absent in all four age-matched controls. These data are suggestive of a link between Cx32 and PD pathophysiology. Collectively, our results provide compelling evidence for Cx32 as a novel target for therapeutic intervention in PD and related α-synucleinopathies.
Subject(s)
Connexins/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , alpha-Synuclein/metabolism , Animals , Brain/metabolism , Mice , Multiple System Atrophy/metabolism , Parkinson Disease/metabolism , Gap Junction beta-1 ProteinABSTRACT
An important motivation for the construction of biobanks is to discover biomarkers that identify diseases at early, potentially curable stages. This will require biobanks from large numbers of individuals, preferably sampled repeatedly, where the samples are collected and stored under conditions that preserve potential biomarkers. Dried blood samples are attractive for biobanking because of the ease and low cost of collection and storage. Here we have investigated their suitability for protein measurements. Ninety-two proteins with relevance for oncology were analyzed using multiplex proximity extension assays (PEA) in dried blood spots collected on paper and stored for up to 30 years at either +4 °C or -24 °C.Our main findings were that (1) the act of drying only slightly influenced detection of blood proteins (average correlation of 0.970), and in a reproducible manner (correlation of 0.999), (2) detection of some proteins was not significantly affected by storage over the full range of three decades (34 and 76% of the analyzed proteins at +4 °C and -24 °C, respectively), whereas levels of others decreased slowly during storage with half-lives in the range of 10 to 50 years, and (3) detectability of proteins was less affected in dried samples stored at -24 °C compared with at +4 °C, as the median protein abundance had decreased to 80 and 93% of starting levels after 10 years of storage at +4 °C or -24 °C, respectively. The results of our study are encouraging as they suggest an inexpensive means to collect large numbers of blood samples, even by the donors themselves, and to transport, and store biobanked samples as spots of whole blood dried on paper. Combined with emerging means to measure hundreds or thousands of protein, such biobanks could prove of great medical value by greatly enhancing discovery as well as routine analysis of blood biomarkers.