Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Pediatr Gastroenterol Nutr ; 75(4): 535-542, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35881967

ABSTRACT

OBJECTIVES: To compare the impact of two probiotic supplements on fecal microbiota and metabolites, as well as on gut inflammation in human milk-fed preterm infants. METHODS: In this single-center observational cohort study, we assessed the effects of Bifidobacterium longum subsp. infantis or Lactobacillus reuteri supplementation on the infant gut microbiota by 16S rRNA gene sequencing and fecal metabolome by 1 H nuclear magnetic resonance spectroscopy. Fecal calprotectin was measured as a marker of enteric inflammation. Aliquots of human or donor milk provided to each infant were also assessed to determine human milk oligosaccharide (HMO) content. RESULTS: As expected, each probiotic treatment was associated with increased proportions of the respective bacterial taxon. Fecal HMOs were significantly higher in L. reuteri fed babies despite similar HMO content in the milk consumed. Fecal metabolites associated with bifidobacteria fermentation products were significantly increased in B. infantis supplemented infants. Fecal calprotectin was lower in infants receiving B. infantis relative to L. reuteri ( P < 0.01, Wilcoxon rank-sum test) and was negatively associated with the microbial metabolite indole-3-lactate (ILA). CONCLUSIONS: This study demonstrates that supplementing an HMO-catabolizing Bifidobacterium probiotic results in increased microbial metabolism of milk oligosaccharides and reduced intestinal inflammation relative to a noncatabolizing Lactobacillus probiotic in human milk-fed preterm infants. In this context, Bifidobacterium may provide greater benefit in human milk-fed infants via activation of the microbiota-metabolite-immune axis.


Subject(s)
Microbiota , Probiotics , Bifidobacterium , Bifidobacterium longum subspecies infantis/metabolism , Humans , Infant , Infant, Newborn , Infant, Premature , Inflammation , Leukocyte L1 Antigen Complex/metabolism , Oligosaccharides/metabolism , RNA, Ribosomal, 16S
2.
J Perinatol ; 41(11): 2580-2589, 2021 11.
Article in English | MEDLINE | ID: mdl-34148068

ABSTRACT

Wide fluctuations in partial pressure of carbon dioxide (PaCO2) can potentially be associated with neurological and lung injury in neonates. Blood gas measurement is the gold standard for assessing gas exchange but is intermittent, invasive, and contributes to iatrogenic blood loss. Non-invasive carbon dioxide (CO2) monitoring has become ubiquitous in anesthesia and critical care and is being increasingly used in neonates. Two common methods of non-invasive CO2 monitoring are end-tidal and transcutaneous. A colorimetric CO2 detector (a modified end-tidal CO2 detector) is recommended by the International Liaison Committee on Resuscitation (ILCOR) and the American Academy of Pediatrics to confirm endotracheal tube placement. Continuous CO2 monitoring is helpful in trending PaCO2 in critically ill neonates on respiratory support and can potentially lead to early detection and minimization of fluctuations in PaCO2. This review includes a description of the various types of CO2 monitoring and their applications, benefits, and limitations in neonates.


Subject(s)
Carbon Dioxide , Intubation, Intratracheal , Blood Gas Analysis , Child , Humans , Infant, Newborn , Monitoring, Physiologic , Partial Pressure
SELECTION OF CITATIONS
SEARCH DETAIL