Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Epidemiol Infect ; 151: e24, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36775822

ABSTRACT

Data on coronavirus disease 2019 (COVID-19) prevalence in the Democratic Republic of Congo are scarce. We conducted a cross-sectional study to determine the seroprevalence of antibodies against anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the slum of Kadutu, city of Bukavu, between June and September 2021. The survey participants were all unvaccinated against SARS-CoV-2. The crude seroprevalence rate was adjusted to the known characteristics of the assay. Participants aged 15-49 years old made up 80% of the population enrolled in the study (n = 507; 319 women and 188 men). The overall crude and adjusted seroprevalence rates of antibodies for COVID-19 were 59.7% (95% CI 55.4-63.9%) and 84.0% (95% CI 76.2-92.4%), respectively. This seroprevalence rate indicates widespread dissemination of SARS-CoV-2 in these communities. COVID-19 symptoms were either absent or mild in more than half of the participants with antibodies for COVID-19 and none of the participants with antibodies for COVID-19 required hospitalisation. These results suggest that SARS-CoV-2 spread did not appear to be associated with severe symptoms in the population of these settlements and that many cases went unreported in these densely populated locations. The relevance of vaccination in these communities should be thoroughly investigated.


Subject(s)
COVID-19 , Male , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , COVID-19/epidemiology , SARS-CoV-2 , Cross-Sectional Studies , Democratic Republic of the Congo/epidemiology , Seroepidemiologic Studies , Antibodies , Antibodies, Viral
2.
Epidemiol Infect ; 151: e167, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37724000

ABSTRACT

The Democratic Republic of the Congo (DRC) officially reports low coronavirus disease 19 (COVID-19) prevalence. This cross-sectional study, conducted between September and November 2021, assessed the COVID-19 seroprevalence in people attending Goma's two largest markets, Kituku and Virunga. A similar study in a slum of Bukavu overlapped for 1 month using identical methods. COVID-19-unvaccinated participants (n = 796 including 454 vendors and 342 customers, 60% of whom were women) were surveyed. The median age of vendors and customers was 34.2 and 30.1 years, respectively. The crude and adjusted anti-SARS-CoV-2 antibody seroprevalence rates were 70.2% (95% CI 66.9-73.4%) and 98.8% (95% CI 94.1-100%), respectively, with no difference between vendors and customers. COVID-19 symptoms reported by survey participants in the previous 6 months were mild or absent in 58.9% and 41.1% of participants with anti-SARS-CoV-2 antibodies, respectively. No COVID-19-seropositive participants reported hospitalisation in the last 6 months. These findings are consistent with those reported in Bukavu. They confirm that SARS-CoV-2 spread without causing severe symptoms in densely populated settlements and markets and suggest that many COVID-19 cases went unreported. Based on these results, the relevance of an untargeted hypothetical vaccination programme in these communities should be questioned.


Subject(s)
COVID-19 , Humans , Female , Male , Prevalence , Democratic Republic of the Congo/epidemiology , Cross-Sectional Studies , Seroepidemiologic Studies , COVID-19/epidemiology , SARS-CoV-2 , Antibodies, Viral
3.
BMC Infect Dis ; 19(1): 137, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30744567

ABSTRACT

BACKGROUND: Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli are responsible for severe infections worldwide. Whereas their genotypic and pathogenic characteristics are not documented in Democratic Republic of Congo (DRC), recent studies conducted at the Bukavu General Hospital in the South Kivu province highlighted their high prevalence in extra-intestinal infections. Here we provide data on molecular characterization of ESBL producing-Escherichia coli isolates from patients with extra-intestinal infections at this provincial hospital. METHODS: Whole-genome sequencing was carried out on 21 of these ESBL-producing Extra-intestinal Pathogenic Escherichia coli (ExPEC) for analysis of phylogenomic evolution, virulence factor and antimicrobial resistance (AMR) genes. Data were compared to phylogenetically close genomes using Multi-Locus Sequence Typing and Single Nucleotide Polymorphism-based phylogenetic approaches. RESULTS: The distribution of E. coli sequence types (ST) was as follows: ST 131 (n = 7), ST405 (n = 4), ST410 (n = 2), and other STs (ST10, ST58, ST95, ST393, ST443, S617, ST648, and ST2450). All ST131 belonged to the O25b-ST131 pandemic clone. Unexpectedly, they harbored more virulence genes than their GenBank counterparts. IncF plasmid replicons included novel FIB 69, FII 105 and FII 107 alleles. ESBL-genes included the plasmid-mediated CTX-M-15 in all isolates, and the SHV-12 allele. Other AMR genes included blaOXA-1, blaTEM-1, as well as genes encoding resistance against aminoglycosides, quinolones, chloramphenicol, rifampicin, tetracyclines, sulfonamides and trimethoprim. CONCLUSION: Current data confirm the clonal spread of ESBL-producing ST131 and ST405 clones in patients from South Kivu, and the acquisition of resistance and virulence genes. A closer survey of AMR and virulence should therefore be prompted in this high-risk area.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/microbiology , Extraintestinal Pathogenic Escherichia coli/genetics , Whole Genome Sequencing , Anti-Bacterial Agents/pharmacology , Democratic Republic of the Congo , Escherichia coli Infections/epidemiology , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/enzymology , Genotype , Humans , Multilocus Sequence Typing , Phylogeny , Plasmids , Virulence/genetics , Virulence Factors/genetics , beta-Lactamases/genetics
4.
Clin Chem Lab Med ; 55(12): 1881-1890, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-28306518

ABSTRACT

BACKGROUND: During the West Africa Ebola virus disease (EVD) outbreak, a Belgian laboratory was deployed for supporting the Ebola treatment unit (ETU) of N'Zerekore, Guinea. Besides diagnosis of EVD and malaria, biochemical parameters were tested and used to guide supportive treatment of EVD. METHODS: To preserve analytes stability, lithium-heparin blood samples were analyzed using the i-STAT® point-of-care testing (POCT) handheld device without the viral inactivation step. To mitigate the risk of Ebola virus transmission, assays were performed inside a portable glovebox with strict biosafety procedures. RESULTS: Providing the medical staff with real-time biochemical data modified their therapeutic attitude, shifting from empiric to a semi-intensive laboratory-guided treatment of hydro-electrolytic disturbances, metabolic acidosis and/or impaired kidney function. As illustrated with representative EVD cases (n=8), optimized supportive treatment with intravenous fluid therapy and electrolyte replacement often helped correct these abnormalities. However, the harsh operating conditions, especially the use of bleach decontamination inside the glovebox, caused several technical failures and the final breakdown of the POCT device. CONCLUSIONS: POCT availability resulted in a paradigm shift in laboratory practice and care delivery at the N'Zerekore ETU. We conclude that there is urgent need for novel well-designed and validated POCT devices usable by non-expert operators in high ambient temperature and limited space. These devices should withstand regular and thorough decontamination by the personnel working on-site with life-threatening pathogens and be compatible with high biosafety level procedures. Such specific users' requirements need a European validation and standardization process of proposed solutions led by the EU Standardization Committee (CEN).


Subject(s)
Clinical Laboratory Techniques , Critical Care , Hemorrhagic Fever, Ebola/blood , Point-of-Care Systems , Adolescent , Adult , Ebolavirus/drug effects , Ebolavirus/metabolism , Female , Guinea , Hemorrhagic Fever, Ebola/drug therapy , Humans , Male , Middle Aged , Young Adult
6.
PLoS Med ; 13(3): e1001967, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26930627

ABSTRACT

BACKGROUND: Ebola virus disease (EVD) is a highly lethal condition for which no specific treatment has proven efficacy. In September 2014, while the Ebola outbreak was at its peak, the World Health Organization released a short list of drugs suitable for EVD research. Favipiravir, an antiviral developed for the treatment of severe influenza, was one of these. In late 2014, the conditions for starting a randomized Ebola trial were not fulfilled for two reasons. One was the perception that, given the high number of patients presenting simultaneously and the very high mortality rate of the disease, it was ethically unacceptable to allocate patients from within the same family or village to receive or not receive an experimental drug, using a randomization process impossible to understand by very sick patients. The other was that, in the context of rumors and distrust of Ebola treatment centers, using a randomized design at the outset might lead even more patients to refuse to seek care. Therefore, we chose to conduct a multicenter non-randomized trial, in which all patients would receive favipiravir along with standardized care. The objectives of the trial were to test the feasibility and acceptability of an emergency trial in the context of a large Ebola outbreak, and to collect data on the safety and effectiveness of favipiravir in reducing mortality and viral load in patients with EVD. The trial was not aimed at directly informing future guidelines on Ebola treatment but at quickly gathering standardized preliminary data to optimize the design of future studies. METHODS AND FINDINGS: Inclusion criteria were positive Ebola virus reverse transcription PCR (RT-PCR) test, age ≥ 1 y, weight ≥ 10 kg, ability to take oral drugs, and informed consent. All participants received oral favipiravir (day 0: 6,000 mg; day 1 to day 9: 2,400 mg/d). Semi-quantitative Ebola virus RT-PCR (results expressed in "cycle threshold" [Ct]) and biochemistry tests were performed at day 0, day 2, day 4, end of symptoms, day 14, and day 30. Frozen samples were shipped to a reference biosafety level 4 laboratory for RNA viral load measurement using a quantitative reference technique (genome copies/milliliter). Outcomes were mortality, viral load evolution, and adverse events. The analysis was stratified by age and Ct value. A "target value" of mortality was defined a priori for each stratum, to guide the interpretation of interim and final analysis. Between 17 December 2014 and 8 April 2015, 126 patients were included, of whom 111 were analyzed (adults and adolescents, ≥13 y, n = 99; young children, ≤6 y, n = 12). Here we present the results obtained in the 99 adults and adolescents. Of these, 55 had a baseline Ct value ≥ 20 (Group A Ct ≥ 20), and 44 had a baseline Ct value < 20 (Group A Ct < 20). Ct values and RNA viral loads were well correlated, with Ct = 20 corresponding to RNA viral load = 7.7 log10 genome copies/ml. Mortality was 20% (95% CI 11.6%-32.4%) in Group A Ct ≥ 20 and 91% (95% CI 78.8%-91.1%) in Group A Ct < 20. Both mortality 95% CIs included the predefined target value (30% and 85%, respectively). Baseline serum creatinine was ≥110 µmol/l in 48% of patients in Group A Ct ≥ 20 (≥300 µmol/l in 14%) and in 90% of patients in Group A Ct < 20 (≥300 µmol/l in 44%). In Group A Ct ≥ 20, 17% of patients with baseline creatinine ≥110 µmol/l died, versus 97% in Group A Ct < 20. In patients who survived, the mean decrease in viral load was 0.33 log10 copies/ml per day of follow-up. RNA viral load values and mortality were not significantly different between adults starting favipiravir within <72 h of symptoms compared to others. Favipiravir was well tolerated. CONCLUSIONS: In the context of an outbreak at its peak, with crowded care centers, randomizing patients to receive either standard care or standard care plus an experimental drug was not felt to be appropriate. We did a non-randomized trial. This trial reaches nuanced conclusions. On the one hand, we do not conclude on the efficacy of the drug, and our conclusions on tolerance, although encouraging, are not as firm as they could have been if we had used randomization. On the other hand, we learned about how to quickly set up and run an Ebola trial, in close relationship with the community and non-governmental organizations; we integrated research into care so that it improved care; and we generated knowledge on EVD that is useful to further research. Our data illustrate the frequency of renal dysfunction and the powerful prognostic value of low Ct values. They suggest that drug trials in EVD should systematically stratify analyses by baseline Ct value, as a surrogate of viral load. They also suggest that favipiravir monotherapy merits further study in patients with medium to high viremia, but not in those with very high viremia. TRIAL REGISTRATION: ClinicalTrials.gov NCT02329054.


Subject(s)
Amides/therapeutic use , Antiviral Agents/therapeutic use , Hemorrhagic Fever, Ebola/drug therapy , Pyrazines/therapeutic use , Adolescent , Adult , Child , Child, Preschool , Ebolavirus/genetics , Feasibility Studies , Female , Guinea , Hemorrhagic Fever, Ebola/diagnosis , Historically Controlled Study , Humans , Infant , Male , RNA, Viral/blood , Reverse Transcriptase Polymerase Chain Reaction , Therapies, Investigational , Treatment Outcome , Viral Load , Young Adult
7.
Bioinformatics ; 30(24): 3590-7, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25173420

ABSTRACT

MOTIVATION: Pyrosequencing is a cost-effective DNA sequencing technology that has many applications, including rapid genotyping of a broad spectrum of bacteria. When molecular typing requires to genotype multiple DNA stretches, several pyrosequencing primers could be used simultaneously but this would create overlapping primer-specific signals, which are visually uninterpretable. Accordingly, the objective was to develop a new method for signal processing (AdvISER-M-PYRO) to automatically analyze and interpret multiplex pyrosequencing signals. In parallel, the nucleotide dispensation order was improved by developing the SENATOR ('SElecting the Nucleotide dispensATion Order') algorithm. RESULTS: In this proof-of-concept study, quintuplex pyrosequencing was applied on eight bacterial DNA and targeted genetic alterations underlying resistance to ß-lactam antibiotics. Using SENATOR-driven dispensation order, all genetic variants (31 of 31; 100%) were correctly identified with AdvISER-M-PYRO. Among nine expected negative results, there was only one false positive that was tagged with an 'unsafe' label.


Subject(s)
DNA, Bacterial/chemistry , Drug Resistance, Bacterial/genetics , Genotyping Techniques/methods , Sequence Analysis, DNA/methods , Algorithms , DNA Primers , Genome, Bacterial , Nucleotides/analysis , Software
8.
Bioinformatics ; 29(16): 1963-9, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23772051

ABSTRACT

MOTIVATION: Converting a pyrosequencing signal into a nucleotide sequence appears highly challenging when signal intensities are low (unitary peak heights ) or when complex signals are produced by several target amplicons. In these cases, the pyrosequencing software fails to provide correct nucleotide sequences. Accordingly, the objective was to develop the AdvISER-PYRO algorithm, performing an automated, fast and reliable analysis of pyrosequencing signals that circumvents those limitations. RESULTS: In the current mycobacterial amplicon genotyping application, AdvISER-PYRO performed much better than the pyrosequencing software in the following two situations: when converting Single Amplicon Sample (SAS) signals into a correct single sequence (97.2% versus 56.5%), and when translating Multiple Amplicon Sample (MAS) signals into the correct sequence pair (74.5%). AVAILABILITY: AdvISER-PYRO is implemented in an R package (http://sites.uclouvain.be/md-ctma/index.php/softwares) and can be used in broad range of clinical applications including multiplex pyrosequencing and oncogene re-sequencing in heterogeneous tumor cell samples.


Subject(s)
Algorithms , Sequence Analysis, DNA/methods , Genotyping Techniques , Mycobacterium/genetics , Software
9.
Microorganisms ; 11(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36838490

ABSTRACT

Multidrug-resistant (MDR) and extended spectrum ß-lactamase (ESBL)-producing extra-intestinal K. pneumoniae are associated with increased morbidity and mortality. This study aimed to characterize the resistance and virulence profiles of extra-intestinal MDR ESBL-producing K. pneumoniae associated with infections at a tertiary hospital in South-Kivu province, DRC. Whole-genome sequencing (WGS) was carried out on 37 K. pneumoniae isolates displaying MDR and ESBL-producing phenotype. The assembled genomes were analysed for phylogeny, virulence factors and antimicrobial resistance genes (ARG) determinants. These isolates were compared to sub-Saharan counterparts. K. pneumoniae isolates displayed a high genetic variability with up to 16 sequence types (ST). AMR was widespread against ß-lactamases (including third and fourth-generation cephalosporins, but not carbapenems), aminoglycosides, ciprofloxacin, tetracycline, erythromycin, nitrofurantoin, and cotrimoxazole. The blaCTX-M-15 gene was the most common ß-lactamase gene among K. pneumoniae isolates. No carbapenemase gene was found. ARG for aminoglycosides, quinolones, phenicols, tetracyclines, sulfonamides, nitrofurantoin were widely distributed among the isolates. Nine isolates had the colistin-resistant R256G substitution in the pmrB efflux pump gene without displaying reduced susceptibility to colistin. Despite carrying virulence genes, none had hypervirulence genes. Our results highlight the genetic diversity of MDR ESBL-producing K. pneumoniae isolates and underscore the importance of monitoring simultaneously the evolution of phenotypic and genotypic AMR in Bukavu and DRC, while calling for caution in administering colistin and carbapenem to patients.

10.
Appl Microbiol Biotechnol ; 93(4): 1411-22, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22262227

ABSTRACT

Bacillus anthracis is a Gram-positive, spore-forming bacterium, which causes anthrax, an often lethal disease of animals and humans. Although the disease has been well studied since the nineteenth century, it has witnessed a renewed interest during the past decade, due to its use as a bioterrorist agent in the fall of 2001 in the USA. A number of techniques aimed at rapidly detecting B. anthracis, in environmental samples as well as in point-of-care settings for humans suspected of exposure to the pathogen, are now available. These technologies range from culture-based methods to portable DNA amplification devices. Despite recent developments, specific identification of B. anthracis still remains difficult because of its phenotypic and genotypic similarities with other Bacillus species. Accordingly, many efforts are being made to improve the specificity of B. anthracis identification. This mini-review discusses the current challenges around B. anthracis identification, not only in reach-back laboratories but also in the field (in operational conditions).


Subject(s)
Bacillus anthracis/isolation & purification , Bacteriological Techniques/methods , Biological Warfare Agents , Environmental Microbiology , Point-of-Care Systems , Molecular Diagnostic Techniques/methods
11.
Parasit Vectors ; 14(1): 426, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34446077

ABSTRACT

BACKGROUND: Toxocara canis and Toxocara cati are globally distributed roundworms and causative agents of human toxocariasis, via ingestion of Toxocara eggs. Control of Toxocara infections is constrained by a lack of sensitive methods for screening of animal faeces and environmental samples potentially contaminated by Toxocara eggs. In this work, a pre-analytical method for efficient extraction of DNA from Toxocara eggs in environmental samples was set up using our previously validated T. canis- and T. cati-specific quantitative real-time polymerase chain reaction (qPCR). For this purpose, the influence of different methods for egg lysis, DNA extraction and purification for removal of PCR inhibitors were assessed on environmental samples. METHODS: To select the best egg disruption method, six protocols were compared on pure T. canis egg suspensions, including enzymatic lysis and thermal or mechanical disruption. Based on the selected best method, an analytical workflow was set up to compare two DNA extraction methods (FastDNA™ SPIN Kit for Soil versus DNeasy® PowerMax® Soil Kit) with an optional dilution and/or clean-up (Agencourt® AMPure®) step. This workflow was evaluated on 10-g soil and 10-g sand samples spiked with egg suspensions of T. canis (tenfold dilutions of 104 eggs in triplicate). The capacity of the different methods, used alone or in combination, to increase the ratio of positive tests was assessed. The resulting optimal workflow for processing spiked soil samples was then tested on environmental soil samples and compared with the conventional flotation-centrifugation and microscopic examination of Toxocara eggs. RESULTS: The most effective DNA extraction method for Toxocara eggs in soil samples consisted in the combination of mechanical lysis of eggs using beads, followed by DNA extraction with the DNeasy® PowerMax® Soil Kit, and completed with an additional DNA clean-up step with AMPure® beads and a sample DNA dilution (1:10). This workflow exhibited a limit of detection of 4 and 46 T. canis eggs in 10-g sand and 10-g soil samples, respectively. CONCLUSIONS: The pre-analytical flow process developed here combined with qPCR represents an improved, potentially automatable, and cost-effective method for the surveillance of Toxocara contamination in the environment.


Subject(s)
DNA, Helminth/genetics , Ovum , Parasite Egg Count/methods , Sand/parasitology , Soil/parasitology , Toxocara canis/genetics , Animals , Real-Time Polymerase Chain Reaction , Species Specificity
12.
J Glob Antimicrob Resist ; 26: 335-341, 2021 09.
Article in English | MEDLINE | ID: mdl-34303856

ABSTRACT

OBJECTIVES: Extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli are an increasingly significant cause of hospital- and community-acquired infections worldwide. Whereas several reports have highlighted their increased prevalence also in North African countries, genomic data on isolates associated with these infections are still scarce. This study aimed to provide data on ESBL-producing E. coli isolates from patients with extraintestinal infections at the Military Teaching Hospital Mohamed V of Rabat, Morocco. METHODS: Whole-genome sequencing was carried out on 18 ESBL-producing extraintestinal pathogenic E. coli (ExPEC) isolates for analysis of phylogenomic evolution, virulence factors and antimicrobial resistance genes. Data were compared with ExPEC lineages from several surrounding countries using multilocus sequence typing (MLST) and single nucleotide polymorphism-based phylogenetic approaches. RESULTS: The majority of E. coli isolates were ST131 (n = 15), followed by ST617 (n = 2) and a novel sequence type (ST10703) that is closely related to the pandemic ST405 clone. All ST131 isolates belonged to the O25b-ST131 pandemic clone. They harboured more virulence genes than their non-ST131 counterparts. IncF plasmid replicons and the blaCTX-M-15 ß-lactamase gene were identified in all isolates. No ESBL-producing E. coli isolates carried any known carbapenemase gene. CONCLUSION: Our findings underscore the pre-eminence of ST131 as the major factor driving the expansion of ExPEC in the Rabat region while highlighting the potential links with isolates circulating in other neighbouring countries.


Subject(s)
Escherichia coli Infections , Escherichia coli , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Genomics , Humans , Morocco/epidemiology , Multilocus Sequence Typing , Phylogeny , beta-Lactamases/genetics
13.
Appl Microbiol Biotechnol ; 88(5): 1179-92, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20827474

ABSTRACT

A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.


Subject(s)
Bacillus anthracis/classification , Bacillus anthracis/isolation & purification , Bacterial Typing Techniques , Polymerase Chain Reaction/methods , Adenylosuccinate Synthase/genetics , Bacillus/genetics , Bacillus anthracis/genetics , Bacillus anthracis/pathogenicity , Bacteriological Techniques , Base Sequence , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Genes, Bacterial , Nucleotides/genetics , Phosphotransferases/genetics , Phylogeny , Plasmids , Polymorphism, Single Nucleotide , Ribose/analogs & derivatives , Ribose/genetics , Sensitivity and Specificity , Sequence Alignment , Sequence Analysis, DNA , Virulence/genetics
14.
Microbiol Resour Announc ; 9(47)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33214297

ABSTRACT

We report here the complete genome sequence of a Bacillus cereus isolate identified in a soil sample from Namibia. This isolate is closely related to the B. anthracis clade. While the plasmids (500 and 12 kb) carry no detectable B. anthracis virulence gene, the large plasmid shares a 50-kb continuous region similar to plasmid pXO1.

15.
PLoS Negl Trop Dis ; 14(4): e0007642, 2020 04.
Article in English | MEDLINE | ID: mdl-32310947

ABSTRACT

BACKGROUND: Over the past recent years, Vibrio cholerae has been associated with outbreaks in sub-Saharan Africa, notably in Democratic Republic of the Congo (DRC). This study aimed to determine the genetic relatedness of isolates responsible for cholera outbreaks in eastern DRC between 2014 and 2017, and their potential spread to bordering countries. METHODS/PRINCIPAL FINDINGS: Phenotypic analysis and whole genome sequencing (WGS) were carried out on 78 clinical isolates of V. cholerae associated with cholera in eastern provinces of DRC between 2014 and 2017. SNP-based phylogenomic data show that most isolates (73/78) were V. cholerae O1 biotype El Tor with CTX-3 type prophage. They fell within the third transmission wave of the current seventh pandemic El Tor (7PET) lineage and were contained in the introduction event (T)10 in East Africa. These isolates clustered in two sub-clades corresponding to Multiple Locus Sequence Types (MLST) profiles ST69 and the newly assigned ST515, the latter displaying a higher genetic diversity. Both sub-clades showed a distinct geographic clustering, with ST69 isolates mostly restricted to Lake Tanganyika basin and phylogenetically related to V. cholerae isolates associated with cholera outbreaks in western Tanzania, whereas ST515 isolates were disseminated along the Albertine Rift and closely related to isolates in South Sudan, Uganda, Tanzania and Zambia. Other V. cholerae isolates (5/78) were non-O1/non-O139 without any CTX prophage and no phylogenetic relationship with already characterized non-O1/non-O139 isolates. CONCLUSIONS/SIGNIFICANCE: Current data confirm the association of both DRC O1 7PET (T)10 sub-clades ST69 and ST515 with recurrent outbreaks in eastern DRC and at regional level over the past 10 years. Interestingly, while ST69 is predominantly a locally endemic sequence type, ST515 became adaptable enough to expand across DRC neighboring countries.


Subject(s)
Cholera/microbiology , Genotype , Vibrio cholerae/classification , Vibrio cholerae/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cholera/epidemiology , Cluster Analysis , DNA, Bacterial/genetics , Democratic Republic of the Congo/epidemiology , Female , Humans , Infant , Male , Middle Aged , Molecular Epidemiology , Phylogeny , Prophages/genetics , Vibrio cholerae/isolation & purification , Whole Genome Sequencing , Young Adult
16.
Microbiol Resour Announc ; 9(26)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32586863

ABSTRACT

We report here a complete genome sequence of a Vibrio cholerae O1 El Tor (Inaba; sequence type 515 [ST515]) strain isolated from a cholera patient in North Kivu Province, Democratic Republic of the Congo (DRC), which showed a complete deletion (∼80 kb) of the Vibrio pathogenicity island 1.

17.
Vet Microbiol ; 136(1-2): 166-72, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-19095382

ABSTRACT

A triplex real-time (TRT-PCR) assay was developed to ensure a rapid and reliable detection of Mycobacterium avium subsp. paratuberculosis (Map) in faecal samples and to allow routine detection of Map in farmed livestock and wildlife species. The TRT-PCR assay was designed using IS900, ISMAP02 and f57 molecular targets. Specificity of TRT-PCR was first confirmed on a panel of control mycobacterial Map and non-Map strains and on faecal samples from Map-negative cows (n=35) and from Map-positive cows (n=20). The TRT-PCR assay was compared to direct examination after Ziehl-Neelsen (ZN) staining and to culture on 197 faecal samples collected serially from five calves experimentally exposed to Map over a 3-year period during the sub-clinical phase of the disease. The data showed a good agreement between culture and TRT-PCR (kappa score=0.63), with the TRT-PCR limit of detection of 2.5 x 10(2)microorganisms/g of faeces spiked with Map. ZN agreement with TRT-PCR was not good (kappa=0.02). Sequence analysis of IS900 amplicons from three single IS900 positive samples confirmed the true Map positivity of the samples. Highly specific IS900 amplification suggests therefore that each single IS900 positive sample from experimentally exposed animals was a true Map-positive specimen. In this controlled experimental setting, the TRT-PCT was rapid, specific and displayed a very high sensitivity for Map detection in faecal samples compared to conventional methods.


Subject(s)
Cattle Diseases/microbiology , Enteritis/veterinary , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Paratuberculosis/microbiology , Polymerase Chain Reaction/veterinary , Animals , Cattle , Cattle Diseases/diagnosis , DNA Transposable Elements/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Enteritis/diagnosis , Enteritis/microbiology , Feces/microbiology , Female , Mycobacterium avium subsp. paratuberculosis/genetics , Paratuberculosis/diagnosis , Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity
18.
PLoS One ; 14(12): e0225848, 2019.
Article in English | MEDLINE | ID: mdl-31825986

ABSTRACT

BACKGROUND: Multiple-Locus Variable Number of Tandem Repeats (VNTR) Analysis (MLVA) is widely used by laboratory-based surveillance networks for subtyping pathogens causing foodborne and water-borne disease outbreaks. However, Whole Genome Sequencing (WGS) has recently emerged as the new more powerful reference for pathogen subtyping, making a data conversion method necessary which enables the users to compare the MLVA identified by either method. The MLVAType shiny application was designed to extract MLVA profiles of Vibrio cholerae isolates from WGS data while ensuring backward compatibility with traditional MLVA typing methods. METHODS: To test and validate the MLVAType algorithm, WGS-derived MLVA profiles of nineteen Vibrio cholerae isolates from Democratic Republic of the Congo (n = 9) and Uganda (n = 10) were compared to MLVA profiles generated by an in silico PCR approach and Sanger sequencing, the latter being used as the reference method. RESULTS: Results obtained by Sanger sequencing and MLVAType were totally concordant. However, the latter were affected by censored estimations whose percentage was inversely proportional to the k-mer parameter used during genome assembly. With a k-mer of 127, less than 15% estimation of V. cholerae VNTR was censored. Preventing censored estimation was only achievable when using a longer k-mer size (i.e. 175), which is not proposed in the SPAdes v.3.13.0 software. CONCLUSION: As NGS read lengths and qualities tend to increase with time, one may expect the increase of k-mer size in a near future. Using MLVAType application with a longer k-mer size will then efficiently retrieve MLVA profiles from WGS data while avoiding censored estimation.


Subject(s)
Minisatellite Repeats/genetics , Vibrio cholerae O1/genetics , Whole Genome Sequencing , Algorithms , Genetic Loci , Genome, Bacterial , Uganda
19.
J Mol Diagn ; 10(6): 537-43, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18832459

ABSTRACT

Microbiological cultures are moderately sensitive for diagnosing prosthetic joint infection (PJI). This study was conducted to determine whether amplification-based DNA methods applied on intraoperative samples could enhance PJI diagnosis compared with culture alone in routine surgical practice. Revision arthroplasty was performed for suspected PJI (n = 41) and osteoarthrosis control (n = 28) patients, and a diagnosis of PJI was confirmed in 34 patients. Amplification by polymerase chain reaction was performed on both 16S ribosomal DNA universal target genes and femA Staphylococcus-specific target genes. Species identification was achieved through amplicon sequencing. Amplification of the femA gene led to subsequent testing for methicillin resistance by amplification of the mecA gene. Microbiological and molecular assays identified a causative organism in 22 of 34 patients (64.7%) and in 31 of 34 patients (91.2%), respectively. In 18 of the 22 culture-positive patients, molecular and microbiological results were concordant for bacterial genus, species, and/or methicillin resistance. Bacterial agents were identified only by molecular methods in nine PJI patients, including seven who were receiving antibiotics at the time of surgery and one with recent but not concomitant antibiotherapy. DNA-based methods were found to effectively complement microbiological methods, without interfering with existing procedures for sample collection, for the identification of causative pathogens from intraoperative PJI samples, especially in patients with recent or concomitant antibiotherapy.


Subject(s)
Bacterial Typing Techniques/methods , Nucleic Acid Amplification Techniques , Prosthesis-Related Infections/diagnosis , Adult , Aged , Aged, 80 and over , Animals , Bacterial Proteins/genetics , DNA, Bacterial/analysis , Female , Humans , Male , Methicillin Resistance/genetics , Middle Aged , Penicillin-Binding Proteins , Prosthesis-Related Infections/microbiology , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity , Synovial Fluid/microbiology
20.
PLoS One ; 12(5): e0177350, 2017.
Article in English | MEDLINE | ID: mdl-28493945

ABSTRACT

OBJECTIVE: Health care workers (HCWs) in contact with patients with Ebola virus disease (EVD) are exposed to a risk of viral contamination. Fomites contaminated with the patient's blood or body fluids represents this risk. Our study aims to detect Ebola virus (EBOV) RNA within the high- and low-risk areas of an Ebola treatment unit (ETU) located in inland Guinea during the 2014-2015 West African Ebola epidemics. For samples from patients' immediate vicinity, we aim to seek an association between viral RNA detectability and level of plasma viral load of patients (intermediate to high, or very high). METHODS: Swabbing was performed on immediate vicinity of Ebola patients, on surfaces of an ETU, and on personal protective equipment (PPE) of HCWs after patient care and prior to doffing. All samples were assessed by quantitative reverse-transcribed PCR (RT-qPCR). RESULTS: 32% (22/68) of swabs from high-risk areas were tested positive for EBOV RNA, including 42% (18/43) from patients' immediate vicinity, and 16% (4/25) from HCWs PPE. None of specimens from low-risk areas were tested positive (0/19). Swabs were much more often viral RNA positive in the vicinity of patients with a very high plasma viral load (OR 6.7, 95% CI [1.7-23.4]). CONCLUSION: Our findings show the persistence of EBOV RNA in the environment of Ebola patients and of HCWs, in a Guinean ETU, despite strict infection prevention and control measures. This detection raises the possibility that patients' environment could be a potential source of contamination with the virus.


Subject(s)
Ebolavirus/physiology , Fomites/virology , Hemorrhagic Fever, Ebola/virology , RNA, Viral/analysis , Guinea , Humans , Personal Protective Equipment/virology , Risk Factors , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL