Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Pak J Pharm Sci ; 37(2): 337-347, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767101

ABSTRACT

Heart failure is a condition in which the heart's one or both ventricles are unable to either receive an adequate amount of blood or eject an adequate amount of blood. Diabetes is considered one of the major risk factors for cardiovascular diseases. The current research is designed to evaluate the cardioprotective effects of dapagliflozin in streptozotocin and isoproterenol-induced comorbid rats. The COX-2, TNF-α, NF-КB, NLRP3, PPAR-γ, CKMB, TROP-I, AR, GP and SGLT were docked against dapagliflozin, propranolol and metformin. Dapagliflozin restored adequate blood flow and halted myofibril damage. Moreover, it's evident from this study that dapagliflozin significantly decreased serum concentration of various blood markers, decreased relative growth rate and QT interval prolongation, as compared to the negative control group. However, it improved the ventricular ejection fraction in rats of the treatment group. The GST, GSH and CAT levels were increased, as compared to normal. On the contrary, a decrease in LPO concentrations was observed. Evaluation of the coronal section of heart tissues showed the anti-inflammatory expressions evaluated through H & E staining and immunohistochemical techniques and with ELISA and PCR. In a nutshell, dapagliflozin reverses myocardial necrosis and apoptosis.


Subject(s)
Benzhydryl Compounds , Glucosides , Heart Failure , Isoproterenol , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Signal Transduction , Streptozocin , Animals , Glucosides/pharmacology , Isoproterenol/toxicity , Heart Failure/chemically induced , Heart Failure/drug therapy , Heart Failure/metabolism , Benzhydryl Compounds/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PPAR gamma/metabolism , Rats , Signal Transduction/drug effects , Male , Rats, Wistar , Diabetes Mellitus, Experimental/drug therapy , Cardiotonic Agents/pharmacology , Apoptosis/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Myocardium/metabolism , Myocardium/pathology
2.
Int J Neurosci ; : 1-17, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36259511

ABSTRACT

Backgound: Alzheimer disease (AD) is a disastrous disease characterized by accretion of amyloid-beta plaques, neurofibrillary tangles inducing oxidative stress, loss of neuronal functions and continuous progression of cognitive impairment leading to severe dementia.Material and Methods: The newly synthesized benzimidazole derivative 4-chloro-3-(2-phenyl-1H-benzimidazole-1-sulfonyl) benzoic acid (CB) was evaluated for its anti-Alzheimer activity using in silico, in vivo, in vitro and molecular techniques (ELISA, WB & IHC).Results: In-silico studies revealed that CB has atomic contact energy values of -3.9 to -8.9 kcal/mol against selected targets. In vitro assay showed that CB caused acetylcholinesterase (AChE) and diphenyl-1-picrylhydrazyl inhibition. In-vivo findings revealed improvement in dementia as observed in the morris water maze test and Ymaze test. Amyloid-beta disaggregation, increased level of anti-oxidants, decreased expressions of inflammatory markers and enhanced cellular architecture were found in the cortex and hippocampus of treated rats in the histopathological examination, immunohistochemistry analysis, enzyme-linked immunosorbent assay and western blot analysis.Conclusions: This study revealed that CB possess different binding affinities with the Alzheimer-related targets and it possess anti-Alzheimer activity, mediated via AChE and amyloid-beta inhibition, anti-oxidant and anti-inflammatory pathways.

3.
Pak J Pharm Sci ; 35(6): 1513-1522, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36789810

ABSTRACT

Pyrimidine 2, 4, 6-trione derivatives are known to have L-type calcium channel blockade activity due to which they are quite effective in cardiovascular diseases along with cancer, epilepsy and inflammatory disorders. The chemoinformatics prediction for test compounds: 5-(3-Hydroxybenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-5), 5-(4-Hydroxybenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-8), 5-(3-Chlorobenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-9) and 5-(4-Chlorobenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-10) was investigated. The drug likeliness and pharmacokinetic properties (PKs) of test compounds calculated using Molinspiration & Swiss ADME online servers. These test drugs subjected to molecular docking analysis and molecular dynamic (MD) simulation to calculate their binding energies with hypertensive and platelet aggregatory proteinaceous targets and their stability against calcium channel. The druggability and PKs of selected compounds exhibited that these compounds could be represented as potential candidates for further development into antihypertensive-like agents. The docking results indicated that binding energies ranged between -5 and -8.8 kcal/mol. Compounds showed good binding energies against calcium channels (CC) and subjected to molecular dynamic simulation to assess the stability of protein-ligand complex. The results showed that all the ligands form stable complexes with the CC, though SR-9 and SR-10 had enhanced stability when compared to SR-5 and SR-8.


Subject(s)
Antihypertensive Agents , Calcium Channels , Antihypertensive Agents/pharmacology , Molecular Docking Simulation , Blood Pressure , Pyrimidines/pharmacology
4.
Pak J Pharm Sci ; 28(1): 167-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25553693

ABSTRACT

In present study hypoglycaemic effects of the crude powdered C. decussata and its methanolic extract (ME) in alloxan diabetic rabbits were evaluated. The hypoglycaemic effect was measured by blood glucose, insulin level, HbA1c and his to pathology of pancreas. Glucose lowering effect of the ME was studied in diabetic rabbits. The effects of extract on blood glucose, body weight, food in take, fluid intake, OGTT were also evaluated. The results showed that 0.5,1 and 2g/kg of the powder significantly decreased blood glucose levels in normal rabbits and diabetic rabbits at the intervals checked. Oral intake of pioglitazone also reduced the levels in these rabbits. Synergistic hypoglycaemic effect of 600mg/kg of ME with different doses of insulin (2 & 3unit/kg, s/c) further reduced blood glucose levels of treated alloxan-diabetic rabbits. The oral glucose tolerance test revealed lowered area under curve values in ME treated rabbits. Treatment with ME (400 and 600 mg/kg) for 30 days showed highly significant decrease in blood glucose level by augmenting insulin secretion, HbA1cand significant increase in body weight, serum insulin levels in treated diabetic rabbits. Histopathology study showed regeneration of ß-cells. These studies have, therefore, supported the traditional use of this herb in diabetic patients.


Subject(s)
Alloxan , Diabetes Mellitus, Experimental/drug therapy , Gentianaceae , Hypoglycemic Agents/pharmacology , Methanol/chemistry , Plant Extracts/pharmacology , Solvents/chemistry , Animals , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Drinking/drug effects , Eating/drug effects , Female , Gentianaceae/chemistry , Glucose Tolerance Test , Glycated Hemoglobin/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Insulin/blood , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Male , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plants, Medicinal , Rabbits , Time Factors
5.
BMC Pharmacol Toxicol ; 25(1): 68, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334457

ABSTRACT

BACKGROUND: Nephrotoxicity, the rapid impairment of kidney function caused by harmful drugs and chemicals, affects about 20% of cases and is projected to become a leading cause of death by reactive oxygen species (ROS). Gentamicin (GM), an aminoglycoside antibiotic is one of the well know drugs/chemicals to cause nephrotoxicity both in humans and animals. METHODS: A study on the effects of a synthetic phenolic compound, called 5-a, on GM-induced nephrotoxicity in male Wistar albino rats was conducted. The rats were grouped into five groups: normal control (NC), GM control (GM), positive control (GM + Dexa), treatment I (GM + 5-a 5 mg/kg) and treatment II (GM + 5-a 10 mg/kg). Throughout the experiment, the rats' weights were monitored, and at its conclusion, their serum and kidney tissues were analyzed for renal function indicators and inflammatory markers. The study also included histopathological evaluations, molecular docking studies, blood and urine analyses for electrolyte changes, and behavioural assessments for central nervous system impact. RESULTS: 2-{5-[(2-hydroxyethyl)-sulfanyl]-1,3,4-oxadiazol-2-yl} phenol (5-a) significantly protected against renal damage by reducing inflammatory markers, improving antioxidant defences, and decreasing kidney injury, particularly at higher doses. The findings suggest that compound 5-a, due to its anti-inflammatory and antioxidant properties, could be a promising therapeutic option for reducing gentamicin-induced nephrotoxicity and potentially for other kidney disorders in the future. CONCLUSION: These findings highlight the therapeutic effects of compound 5-a in alleviating gentamicin-induced nephrotoxicity.


Subject(s)
Anti-Bacterial Agents , Gentamicins , Kidney , Rats, Wistar , Gentamicins/toxicity , Animals , Male , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Anti-Bacterial Agents/toxicity , Rats , Molecular Docking Simulation , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Oxidative Stress/drug effects , Protective Agents/pharmacology , Protective Agents/therapeutic use
6.
Article in English | MEDLINE | ID: mdl-39352536

ABSTRACT

1,3,4-Oxadiazole is a fascinating heterocyclic compound with a unique five-membered ring structure containing nitrogen and oxygen atoms. It has garnered significant attention for its interactions and activities within biological systems. This versatility has led to the production of several ligands using this compound as a pharmacophore. This study evaluates the acute toxicity of three oxadiazole derivatives (1,3,4-Bromo, Chloro, and Iodo) followed by a 28 days sub-acute study involving four different doses of each derivative. The study followed the guideline, the Organization for Economic Cooperation and Development (OECD) outlined, specifically OECD Guidelines 425 for the acute toxicity study and OECD Guidelines 407 for the sub-acute study. In the acute toxicity study, a high dose of 2000 mg/kg was administered to male and female rats to establish lethal dose 50 (LD50) values, and the rats were closely monitored for 14 days. The subsequent sub-acute study involved the administration of four different doses (1.25, 2.5, 5, and 10 mg/kg) of each derivative to male and female rats for 28 days. Throughout both studies, careful monitoring for signs of toxicity and comprehensive hematological, biochemical, and histological analysis were carried out thoroughly. The results of the acute toxicity study indicated that all three derivatives had LD50 values exceeding 2000 mg/kg, and the rats did not display significant signs of toxicity. Similarly, no organ or systemic toxicity was observed in the repeated dose sub-acute study for any of the three derivatives. In conclusion, based on the findings of these studies, it was determined that the derivatives are safe for further investigation of their pharmacological activity.

7.
Naunyn Schmiedebergs Arch Pharmacol ; 396(6): 1309-1324, 2023 06.
Article in English | MEDLINE | ID: mdl-36723608

ABSTRACT

Migraine is a devitalizing neurovascular disorder that affects millions of people worldwide. This study was directed against the determination of the effectiveness of carvacrol against migraine. In silico results revealed that carvacrol possesses specific scoring values of - 4.4 to - 6 against selected targets. In vivo studies showed that carvacrol (25-50 mg/Kg) decreased migraine pain by reversing thermal allodynia, mechanical allodynia, number of head-scratching, and light phobicity in rats. Levels of glutathione, glutathione-s-transferase, and catalase enhanced in the cortex and trigeminal nucleus caudalis of the animal's brain tissues, i.e., cortex and trigeminal nucleus caudalis with the use of carvacrol, while a significant decrease in lipid peroxide level was seen. Histopathological evaluation showed improvement in cellular architecture and a decrease in expression of certain inflammatory markers such as tumor necrosis factor-alpha, nuclear factor kappa B, interleukin-18, and prostaglandin E2 validated by enzyme-linked immune sorbent assay, immunohistochemistry, and western blot analysis. This study indicates that carvacrol exhibits binding affinities against different targets involved in migraine pathology and possesses anti-migraine action, mediated through anti-inflammatory and anti-oxidant pathways.


Subject(s)
Migraine Disorders , Rats , Animals , Cymenes , Migraine Disorders/drug therapy , Hyperalgesia , Glutathione
8.
Front Pharmacol ; 14: 1084181, 2023.
Article in English | MEDLINE | ID: mdl-36923352

ABSTRACT

Multidrug resistance and infectious disease have enormous spread despite drug discovery and development advancements. 1, 2, 4 -triazoles have been extensively studied, playing an imperative role in many pathologic conditions. A series of Schiff base triazoles; derived from Indole -3- acetic acid with substituted Benzaldehydes (5a-5g) were designed, synthesized, and evaluated through various Spectroanalytical techniques. SwissADME was used to assess physicochemical properties and pharmacokinetic drug-likeliness behavior. (5a-5g) were evaluated for their varied biological potential through antioxidant, antimicrobial, enzyme inhibition, and cytotoxic evaluation. Schiff bases express drug-like nature as they follow Lipinski's rule of five. 5b showed good antioxidant potential in total antioxidant capacity (TAC) and total reducing power (TRP) assays and was most active in the library in % free radical scavenging assay (%FRSA), showing 32% inhibition at 50 µg/mL concentration. Compounds showed antibacterial activity against various tested strains. 5e and 5f showed a minimum inhibitory concentration (MIC) value of 3.12 µg/mL for P.aeruginosa and K.pneumoniae, respectively. In the antifungal assay, only 5e inhibited one strain with a zone of inhibition >6 mm. These synthetic molecules possess good cytotoxic potential in the Brine Shrimp Lethality screening; 5c, 5d, and 5f exhibited LC50 =5.7 µg/mL. In the protein kinase inhibition assay, 5a, 5b, and 5g demonstrated inhibitory potential, showcasing the zone of inhibition as 7.5-10.5 mm for the bald one and 6-7.5 for the clear zone. These findings suggest that the compounds have antibacterial and cytotoxic potential, and there is a chance for further research and development in this area.

9.
J Ethnopharmacol ; 304: 115993, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36509257

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: People of all ages experience injuries, whether mild or severe. The most available option to treat wounds as an alternative to allopathic care in both urban and rural populations is traditional medicine, which is mostly target inflammation. Bergenia ciliata (Haw.) Sternb rhizome and leaf powder are used in Ayurveda and local communities for various ailments including healing of wounds and burns. Owing to this property it is traditionally known as "Zakham-e-hayat" (wound healer). AIM OF THE STUDY: In the present study, we compared biological activity and wound healing potential of B. ciliata rhizome (R) extract and bergenin, a glycoside isolated from B. ciliata. MATERIALS AND METHODS: Reverse-phase high performance liquid chromatography (RP-HPLC) was performed to analyze polyphenols and bergenin in B. ciliata R extract. Samples were subjected to in vitro antioxidant assays including free radical scavenging, ferric chloride reducing power and total antioxidant capacity. Micro-broth dilution method, brine shrimp lethality assay and isolated RBC hemolysis assay were conducted to assess in vitro antibacterial and cytotoxic activities. Moreover, in vivo wound healing potential was determined by an excision wound model in mice. RESULTS: RP-HPLC showed significant content of polyphenols and bergenin (6.05 ± 0.12 µg/mg) in B. ciliata R extract. Crude extract possesses higher overall antioxidant and antibacterial capacities than bergenin due to presence of multiple phytoconstituents in extract. Both samples showed low hemolytic activity indicating their safe profile. Furthermore, mice treated with B. ciliata R extract depicted substantial decrease in wound area (99.3%; p < 0.05) as compared to bergenin, which showed 88.8% of wound closure after 12 days of treatment. Additionally, both treatments reduced epithelization duration by 1.6- and 1.4-fold in B. ciliata R extract (12.0 ± 0.6 days) and bergenin (14.2 ± 0.8 days) treated mice, respectively. This was supported by histopathological examination that showed greater epithelization, fibroblast proliferation, collagen synthesis, and revascularization in mice treated with B. ciliata R. CONCLUSION: Concisely, it is evident that B. ciliata R contains phytoconstituents in addition to bergenin, which potentiated wound healing activity of the extract. Hence, B. ciliata R is good source of compounds for treating wounds.


Subject(s)
Antioxidants , Saxifragaceae , Mice , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Saxifragaceae/chemistry , Polyphenols , Anti-Bacterial Agents/pharmacology
10.
Front Chem ; 11: 1325578, 2023.
Article in English | MEDLINE | ID: mdl-38362004

ABSTRACT

Ajuga bracteosa (family: Lamiaceae), commonly known as kauri booti, is an important ethnomedicinal plant. The current research was conducted to appraise and compare the in vitro antioxidant and antibacterial profiles as well as in vivo wound healing potentials of Ajugarin I and A. bracteosa extract. Ajugarin I and polyphenols in A. bracteosa were enumerated by reversed-phase high-performance liquid chromatography analysis that confirmed significant amounts of Ajugarin I (2.2 ± 0.02 µg/mg DW) and other phenolic compounds (14 out of 17 standards). A. bracteosa (374.4 ± 0.20 µg AAE/mg of DW, 201.9 ± 0.20 µg AAE/mg of DW, 87 ± 0.30%) showed a higher antioxidant profile compared to Ajugarin I (221.8 ± 0.50 µg AAE/mg of DW, 51.8 ± 0.40 µg AAE/mg of DW, 27.65 ± 0.80%) with 1.86-, 3.89-, and 3.15-fold greater activity in ferric reducing antioxidant power, total antioxidant capacity, and free radical scavenging assays, respectively. Likewise, A. bracteosa showed antibacterial activity against 3/5 strains (MIC 25-200 µg/ml) than Ajugarin I (2/5 strains; MIC 50-200 µg/ml). Hemolytic (<2% hemolysis) and dermal toxicity tests rendered both samples non-toxic. Additionally, A. bracteosa (100 ± 2.34% at day 12; 9.33 ± 0.47 days) demonstrated 1.11- and 1.24-fold higher percent wound contraction and epithelization time, respectively, than Ajugarin I (95.6 ± 1.52% at day 12; 11.6 ± 0.47 days) as assessed by an excision wound model in mice. Histopathological examination further reinforced the better wound healing potential of A. bracteosa with good epithelization, collagen synthesis, fibroblast proliferation, and revascularization. Briefly, we endorse the significant comparative antioxidant, antibacterial, and wound healing activities of A. bracteosa and Ajugarin I and present these as prospective candidates for wound healing drugs.

11.
Oxid Med Cell Longev ; 2023: 5648837, 2023.
Article in English | MEDLINE | ID: mdl-37151604

ABSTRACT

Materials and Methods: The extract library (n-hexane (NH), ethyl acetate (EA), methanol (M), distilled water (DW), and combined extract (CE)) was standardized using in vitro phytochemical, antioxidant, and α-amylase inhibition assays, after which the protective effect of selected "hit," i.e., CE against metabolic syndrome, was determined in vivo, using rats fed a high-fat diet supplemented with additional cholesterol administration. CE was administered to Sprague Dawley rats in high dose as 100 mg/kg in carboxymethyl cellulose (CMC) (1 ml; 0.75% in DW) and low-dose group as 50 mg/kg in CMC (0.5 ml; 0.75% in DW). After 10 weeks, the effects of CE on insulin resistance, lipid metabolism, nonalcoholic fatty liver disease (NAFLD), oxidative stress, and genotoxicity were assessed through histological, biochemical, and hematological investigations. Results: Phytochemical analysis including RP-HPLC analysis of the extracts showed that flavonoids and phenolics (myricetin, kaempferol, and apigenin), previously known to be effective against obesity and diabetes, are present in the extracts. Antioxidant studies revealed that the plant possesses a highly significant (p < 0.05) concentration of antioxidants. Satisfactory α-amylase inhibitory activity was also observed in in vitro experiments. In vivo studies showed that CE-administered animals had significantly (p < 0.05) lower weight gain and smaller adipocytes than the control group. Moreover, CE resisted any significant (p < 0.05) change in the organ weights. Analogous to findings from its traditional use, the plant extract had a positive modulatory effect on insulin resistance and hyperglycemia. The study also indicated that CE resisted high-fat diet-induced disturbance in lipid profile and countered any pathological changes in liver enzymes caused by fat-infused diet. Furthermore, a study on endogenous antioxidant levels indicated that CE was effective in maintaining catalase and peroxidase levels within the normal range and resisted the effects of lipid peroxidation of thiobarbituric acid reactive substances. Conclusion: In principle, the current study's findings scientifically validate the implication of T. linearis in metabolic syndrome and recommend further studies on molecular insights of the observed therapeutic activity.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Rats , Animals , Antioxidants/metabolism , Rats, Sprague-Dawley , Metabolic Syndrome/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Oxidative Stress , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/metabolism , alpha-Amylases/metabolism , Liver/metabolism
12.
BMC Pharmacol Toxicol ; 23(1): 58, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906691

ABSTRACT

The present study aims to investigate the newly synthesized organotin (IV) complex (2E, 2'E) dibutylstannanediyl bis (4-(4-nitrophenyl) amino)-4-oxobut-2-enoate (DTN) for its anti-ulcer potential. Characterization performed by carbon nuclear magnetic resonance spectroscopy proved that all values are in the expected ranges of the new compound. Gastroprotective activity of DTN was evaluated through in-silico, anti-H. pylori, in-vitro, in-vivo, and ex-vivo proteomic analysis. In-silico analysis shows that DTN possess stable binding with protein targets involved in gastric ulcer pathophysiology. DTN exhibited an inhibitory effect against 2,2-diphenyl-1-picrylhydrazyl, H. pylori and hydrogen potassium ATPase (H+/K+-ATPase). The antiulcer activity was performed using an ethanol-induced gastric ulcer model in rats. Anti-oxidant profile of DTN showed a significant increase in glutathione-S-transferase, glutathione and catalase levels whereas lipid peroxidation levels were reduced. Histopathological findings confirmed that DTN protected the gastric mucosa of rats. Inflammatory markers tumor necrosis factor-alpha, nuclear factor kappa B, cyclooxygenase-2, interleukin 6 and interleukin-1ß were reduced and prostaglandin-E2 restored expression of these cytokines in DTN pretreated animals when analyzed by using immunohistochemistry, enzyme-linked immunosorbent assay and western blot techniques. In real-time polymerase chain reaction technique, the expression of H+/K+-ATPase was downregulated in DTN pretreated group. DTN did not cause any mortality up to 400 mg/Kg. This study indicates that the newly synthesized compound DTN, possess stable binding against selected targets. DTN exhibits a gastro-protective effect, mediated via anti-H. pylori, H+/K+-ATPase inhibition, anti-oxidant and anti-inflammatory pathways, exploring its therapeutic potential in gastric ulcer management.


Subject(s)
Anti-Ulcer Agents , Helicobacter pylori , Stomach Ulcer , Animals , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Antioxidants/pharmacology , H(+)-K(+)-Exchanging ATPase/metabolism , Helicobacter pylori/metabolism , Proteomics , Proton Pump Inhibitors/pharmacology , Proton Pump Inhibitors/therapeutic use , Rats , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology
13.
Front Pharmacol ; 13: 1067697, 2022.
Article in English | MEDLINE | ID: mdl-36506532

ABSTRACT

Introduction: This study aims at the biological profiling of Allium sativum, Zingiber officinale, Nigella sativa, Curcuma longa, Mentha piperita, Withania somnifera, Azadirachta indica, and Lawsonia inermis as alternatives against onychomycosis to combat the treatment challenges. Methods: An extract library of aqueous (DW), ethyl acetate (EA), and methanol (M) extracts was subjected to phytochemical and antioxidant colorimetric assays to gauge the ameliorating role of extracts against oxidative stress. RP-HPLC quantified therapeutically significant polyphenols. Antifungal potential (disc diffusion and broth dilution) against filamentous (dermatophytes and non-dermatophytes) and non-filamentous fungi (yeasts; Candida albicans), synergistic interactions (checkerboard method) with terbinafine and amphotericin-B against resistant clinical isolates of dermatophytes (Trichophyton rubrum and Trichophyton tonsurans) and non-dermatophytes (Aspergillus spp., Fusarium dimerum, and Rhizopus arrhizus), time-kill kinetics, and protein estimation (Bradford method) were performed to evaluate the potential of extracts against onychomycosis. Results: The highest total phenolic and flavonoid content along with noteworthy antioxidant capacity, reducing power, and a substantial radical scavenging activity was recorded for the extracts of Z. officinale. Significant polyphenolics quantified by RP-HPLC included rutin (35.71 ± 0.23 µg/mgE), gallic acid (50.17 ± 0.22 µg/mgE), catechin (93.04 ± 0.43 µg/mgE), syringic acid (55.63 ± 0.35 µg/mgE), emodin (246.32 ± 0.44 µg/mgE), luteolin (78.43 ± 0.18 µg/mgE), myricetin (29.44 ± 0.13 µg/mgE), and quercetin (97.45 ± 0.22 µg/mgE). Extracts presented prominent antifungal activity against dermatophytes and non-dermatophytes (MIC-31.25 µg/ml). The checkerboard method showed synergism with 4- and 8-fold reductions in the MICs of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa extracts and doses of amphotericin-B (Amp-B) and terbinafine (against non-dermatophytes and dermatophytes, respectively). Furthermore, the synergistic therapy showed a time-dependent decrease in fungal growth even after 9 and 12 h of treatment. The inhibition of fungal proteins was also observed to be higher with the treatment of synergistic combinations than with the extracts alone, along with the cell membrane damage caused by terbinafine and amp-B, thus making the resistant fungi incapable of subsisting. Conclusion: The extracts of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa have proven to be promising alternatives to combat oxidative stress, resistance, and other treatment challenges of onychomycosis.

14.
Biomed Pharmacother ; 139: 111567, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33848773

ABSTRACT

This study was designed to determine the effectiveness of 5-(3-Hydroxybenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-5), 5-(4-Hydroxybenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-8), 5-(3-Chlorobenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-9) and 5-(4-Chlorobenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-10) against hypertension. In deoxycorticosterone acetate-salt rats, SR-5, SR-8, SR-9, and SR-10 reduced blood pressure and normalized renal functions. In isolated rat aortic rings, SR-5, SR-8, SR-9, and SR-10 relaxed phenylephrine (PE) and K+-induced contractions. The vasodilator effect was endothelium-independent. Test compounds caused a rightward shift of Ca++ and PE concentration-response curves with a reduction of maximum response. SR-5, SR-8, SR-9, and SR-10 inhibited PE peak contractions in a Ca++ free medium. In guinea-pig atria, SR5, SR-8, SR-9, and SR-10 caused a mild-to-moderate inhibition of force and rate of contractions. In the aorta and heart tissues, the test compounds enhanced glutathione-s-transferase, reduced glutathione and catalase levels, improved cellular architecture, and decreased lipid peroxidation and expression of inflammatory markers: cyclooxygenase 2, tumor necrosis factor alpha, phosphorylated c-Jun N-terminal kinase, and phosphorylated-nuclear factor kappa B, evidenced in the immunohistochemistry, enzyme-linked immunosorbent assay, western blot molecular investigations and a decreased mRNA expression of calcium channel in RT-PCR analysis. SR-5, SR-8, SR-9, and SR-10 increased the urinary output in rats and inhibited the human platelet aggregation. This study revealed that SR-5, SR-8, SR-9, and SR-10 possess BP lowering, reno-protective, vasodilatory (mediated via Ca++ antagonist, antioxidant and anti-inflammatory pathways), partial cardio-suppressant, diuretic, and antiplatelet effects, demonstrating their therapeutic potential in hypertension management.


Subject(s)
Antihypertensive Agents/pharmacology , Hypertension/drug therapy , Pyrimidines/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antihypertensive Agents/therapeutic use , Antioxidants/pharmacology , Aorta/drug effects , Calcium/pharmacology , Desoxycorticosterone , Female , Guinea Pigs , Humans , Hypertension/chemically induced , Kidney Function Tests , Male , Mice , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Myocardial Contraction/drug effects , Phenylephrine/pharmacology , Platelet Aggregation/drug effects , Pyrimidines/therapeutic use , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Vasodilator Agents/pharmacology
15.
Fundam Clin Pharmacol ; 35(6): 1119-1132, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33872413

ABSTRACT

Hyperlipidemia is worth-mentioning risk factor in quickly expanding atherosclerosis, myocardial infarction, and stroke. This study attempted to determine effectiveness of selected pyrimidine derivatives: 5-(3-Hydroxybenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-5), 5-(4-Hydroxybenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-8), 5-(3-Chlorobenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-9), and 5-(4-Chlorobenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-10) against hyperlipidemia. In silico results revealed that SR-5, SR-8, SR-9, and SR-10 exhibited high affinity with 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) possessing binding energy values of -8.2, -8.4, -8.6, and -9.5 Kcal/mol, respectively, and moderate (<-8 Kcal/mol) against other selected targets. In vivo findings showed that test drugs (25 and 50 mg/Kg) significantly decreased HFD rat total cholesterol, triglycerides, low-density lipoprotein, very-low-density lipoprotein, atherogenic index, coronary risk index, alkaline phosphatase, aspartate transaminase, alanine transaminase, and bilirubin and increased high-density lipoprotein (p < 0.05, p < 0.01, p < 0.001 vs HFD group). In animal liver tissues, SR-5, SR-8, SR-9, and SR-10 inhibited HMGCoA reductase enzyme, enhanced glutathione-s-transferase, reduced glutathione, catalase levels, improved cellular architecture in histopathological examination, and decreased expression of inflammatory markers: cyclo-oxygenase 2, tumor necrosis factor alpha, phosphorylated c-Jun N-terminal kinase, and phosphorylated-nuclear factor kappa B, evidenced in immunohistochemistry and enzyme-linked immunosorbent assay molecular investigations. This study indicates that SR-5, SR-8, SR-9, and SR-10 exhibit antihyperlipidemic action, mediated possibly through HMGCoA inhibition, hepatoprotection, antioxidant, and anti-inflammatory pathways.


Subject(s)
Antihypertensive Agents , Hypolipidemic Agents , Animals , Antioxidants , Hypolipidemic Agents/pharmacology , Liver , Pyrimidines/pharmacology , Rats , Triglycerides
16.
Psychopharmacology (Berl) ; 237(8): 2327-2343, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32399631

ABSTRACT

RATIONALE: The c-Jun N-terminal kinase (JNK) pathway and neurotrophic factor dysregulation play a critical role in the pathogenesis of neurobehavioral disorders (anxiety and depression). Targeting the JNK pathway and BDNF/VEGF signaling may signify a new avenue for the treatment of neurobehavioral disorders. OBJECTIVES: The present study investigated the effect of matrine (Mat) against anxiety- and depressive-like emotional status in an acute mouse model of burn injury and explores its underlying mechanism. METHODS: In the mouse model of thermal injury, anxiety- and depression-related behaviors were evaluated using the elevated plus-maze test, the light-dark box test, the open-field test, the forced swimming test, and the tail suspension test. The JNK/caspase-3 and BDNF/VEGF proteins were determined by immunohistochemistry. Additionally, proinflammatory cytokine, antioxidant, nitric oxide, and corticosterone levels were also measured. RESULTS: The results showed that treatment with Mat significantly improves anxiety- and depressive-like behaviors. It remarkably reduced the levels of proinflammatory cytokines, malondialdehyde, and nitric oxide in the hippocampus and prefrontal cortex of a mouse brain. It considerably improved burn-induced alteration in the antioxidant status, corticosterone, and BDNF/VEGF. It also inhibited burn-induced apoptotic signaling by downregulating the expression of JNK/caspase-3. Similarly, it prevented DNA damage and histopathological changes in the dentate gyrus of the hippocampus. Furthermore, molecular docking results showed that Mat possess better binding affinity for JNK/caspase-3 and BDNF/VEGF proteins. CONCLUSIONS: These findings provide convincing evidence that Mat improves anxiety- and depressive-like emotional status through modulation of JNK-mediated inflammatory, oxidative stress, apoptotic, and BDNF/VEGF signaling in an acute mouse model of burn injury.


Subject(s)
Alkaloids/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Burns/metabolism , Caspase 3/metabolism , MAP Kinase Signaling System/physiology , Quinolizines/metabolism , Vascular Endothelial Growth Factor A/metabolism , Alkaloids/pharmacology , Alkaloids/therapeutic use , Animals , Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/metabolism , Brain-Derived Neurotrophic Factor/antagonists & inhibitors , Burns/drug therapy , Disease Models, Animal , Dose-Response Relationship, Drug , MAP Kinase Signaling System/drug effects , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Molecular Docking Simulation/methods , Oxidative Stress/drug effects , Oxidative Stress/physiology , Quinolizines/pharmacology , Quinolizines/therapeutic use , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Matrines
17.
BMC Pharmacol Toxicol ; 21(1): 81, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239093

ABSTRACT

BACKGROUND: Acute lung injury (ALI) together with acute respiratory distress syndrome (ARDS) are associated with high rate of mortality and morbidity in patients. In the current study, the anti-inflammatory effects of continentalic acid (CNT) in LPS-induced acute lung injury model was explored. METHODS: The acute lung injury model was established by administering LPS (5 mg/kg) intraperitonealy. Following LPS administration, the survival rate, temperature changes and lung Wet/Dry ratio were assessed. The antioxidants (GSH, GST, Catalase and SOD) and oxidative stress markers (MDA, NO, MPO) were evaluated in all the treated groups. Similarly, the cytokines such as IL-1ß, IL-6 and TNF-α were analyzed using ELISA assay. The histological changes were determined using H and E staining, while Nrf2 and iNOS level were determined using immunohistochemistry analysis. The molecular docking analysis was performed to assess the pharmacokinetics parameters and interaction of the CNT with various protein targets. RESULTS: The results showed that CNT dose dependently (10, 50 and 100 mg/kg) reduced mortality rate, body temperature and lungs Wet/Dry ratio. CNT post-treatment significantly inhibited LPS-induced production of pro-inflammatory cytokines such as IL-1ß, IL-6 and TNF-α. The CNT post-treatment markedly improved the hematological parameters, while significantly reduced the MPO (indicator of the neutrophilic infiltration) activity compared to the LPS treated group. Furthermore, the CNT (100 mg/kg) post-administration remarkably inhibited the lung Wet/Dry ratio. The CNT (100 mg/kg) treated group showed marked reduction in the oxidative stress markers such as malonaldehyde (MDA) and Nitric oxide (NO) concentration, while induced the level of the anti-oxidant enzymes such as GST, GSH, Catalase and SOD. Similarly, the CNT markedly reduced the iNOS expression level, while induced the Nrf2 protein expression. Additionally, the molecular docking study showed significant binding interaction with the Nrf2, p65, Keap1, HO-1, IL-1ß, IL-6, TNF-α and COX-2, while exhibited excellent physicochemical properties. CONCLUSION: The CNT showed marked protection against the LPS-induced lung injury and improved the behavioral, biochemical and histological parameters. Furthermore, the CNT showed significant interaction with several protein targets and exhibited better physicochemical properties.


Subject(s)
Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Diterpenes/therapeutic use , Inflammation Mediators/antagonists & inhibitors , Lipopolysaccharides/toxicity , NF-E2-Related Factor 2/biosynthesis , Acute Lung Injury/metabolism , Animals , Diterpenes/pharmacology , Dose-Response Relationship, Drug , Gene Expression , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , NF-E2-Related Factor 2/genetics , Rodentia
18.
Drug Des Devel Ther ; 13: 2715-2727, 2019.
Article in English | MEDLINE | ID: mdl-31447548

ABSTRACT

PURPOSE: Melatonin and celecoxib are antioxidants and anti-inflammatory agents that exert protective effects in different experimental models. In this study, the neuroprotective effects of melatonin and celecoxib were demonstrated against ethanol-induced neuronal injury by in silico, morphological, and biochemical approaches. METHODS: For the in silico study, 3-D structures were constructed and docking analysis performed. For in vivo studies, rats were treated with ethanol, melatonin, and celecoxib. Brain samples were collected for biochemical and morphological analysis. RESULTS: Homology modeling was performed to build 3-D structures for IL1ß), TNFα, TLR4, and inducible nitric oxide synthase. Structural refinement was achieved via molecular dynamic simulation and processed for docking and postdocking analysis. Further in vivo experiments showed that ethanol induced marked neuronal injury characterized by downregulated glutathione, glutathione S-transferase, and upregulated inducible nitric oxide synthase. Additionally, ethanol increased the expression of TNFα and IL1ß. Finally, neuronal apoptosis was demonstrated in ethanol-intoxicated animals using caspase 3 and activated JNK staining. On the other hand, melatonin and celecoxib treatment ameliorated the biochemical and immunohistochemical alterations induced by ethanol. CONCLUSION: These results demonstrated that ethanol induced neurodegeneration by activating inflammatory and apoptotic proteins in rat brain, while melatonin and celecoxib may protect rat brain by downregulating inflammatory and apoptotic markers.


Subject(s)
Celecoxib/pharmacology , Ethanol/adverse effects , Melatonin/pharmacology , Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/pharmacology , Animals , Celecoxib/administration & dosage , Celecoxib/chemistry , Computational Biology , Disease Models, Animal , Ethanol/administration & dosage , Injections, Intraperitoneal , Male , Melatonin/administration & dosage , Melatonin/chemistry , Molecular Docking Simulation , Neurodegenerative Diseases/chemically induced , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL