Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Infect Dis ; 230(1): 141-151, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052725

ABSTRACT

BACKGROUND: The 2022-2023 United States influenza season had unusually early influenza activity with high hospitalization rates. Vaccine-matched A(H3N2) viruses predominated, with lower levels of A(H1N1)pdm09 activity also observed. METHODS: Using the test-negative design, we evaluated influenza vaccine effectiveness (VE) during the 2022-2023 season against influenza A-associated emergency department/urgent care (ED/UC) visits and hospitalizations from October 2022 to March 2023 among adults (aged ≥18 years) with acute respiratory illness (ARI). VE was estimated by comparing odds of seasonal influenza vaccination among case-patients (influenza A test positive by molecular assay) and controls (influenza test negative), applying inverse-propensity-to-be-vaccinated weights. RESULTS: The analysis included 85 389 ED/UC ARI encounters (17.0% influenza A positive; 37.8% vaccinated overall) and 19 751 hospitalizations (9.5% influenza A positive; 52.8% vaccinated overall). VE against influenza A-associated ED/UC encounters was 44% (95% confidence interval [CI], 40%-47%) overall and 45% and 41% among adults aged 18-64 and ≥65 years, respectively. VE against influenza A-associated hospitalizations was 35% (95% CI, 27%-43%) overall and 23% and 41% among adults aged 18-64 and ≥65 years, respectively. CONCLUSIONS: VE was moderate during the 2022-2023 influenza season, a season characterized with increased burden of influenza and co-circulation with other respiratory viruses. Vaccination is likely to substantially reduce morbidity, mortality, and strain on healthcare resources.


Subject(s)
Emergency Service, Hospital , Hospitalization , Influenza Vaccines , Influenza, Human , Vaccine Efficacy , Humans , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Middle Aged , Hospitalization/statistics & numerical data , Adult , Male , Female , United States/epidemiology , Emergency Service, Hospital/statistics & numerical data , Aged , Young Adult , Adolescent , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H1N1 Subtype/immunology , Ambulatory Care/statistics & numerical data , Vaccination/statistics & numerical data , Seasons
2.
Clin Infect Dis ; 78(3): 746-755, 2024 03 20.
Article in English | MEDLINE | ID: mdl-37972288

ABSTRACT

BACKGROUND: During the 2022-2023 influenza season, the United States experienced the highest influenza-associated pediatric hospitalization rate since 2010-2011. Influenza A/H3N2 infections were predominant. METHODS: We analyzed acute respiratory illness (ARI)-associated emergency department or urgent care (ED/UC) encounters or hospitalizations at 3 health systems among children and adolescents aged 6 months-17 years who had influenza molecular testing during October 2022-March 2023. We estimated influenza A vaccine effectiveness (VE) using a test-negative approach. The odds of vaccination among influenza-A-positive cases and influenza-negative controls were compared after adjusting for confounders and applying inverse-propensity-to-be-vaccinated weights. We developed overall and age-stratified VE models. RESULTS: Overall, 13 547 of 44 787 (30.2%) eligible ED/UC encounters and 263 of 1862 (14.1%) hospitalizations were influenza-A-positive cases. Among ED/UC patients, 15.2% of influenza-positive versus 27.1% of influenza-negative patients were vaccinated; VE was 48% (95% confidence interval [CI], 44-52%) overall, 53% (95% CI, 47-58%) among children aged 6 months-4 years, and 38% (95% CI, 30-45%) among those aged 9-17 years. Among hospitalizations, 17.5% of influenza-positive versus 33.4% of influenza-negative patients were vaccinated; VE was 40% (95% CI, 6-61%) overall, 56% (95% CI, 23-75%) among children ages 6 months-4 years, and 46% (95% CI, 2-70%) among those 5-17 years. CONCLUSIONS: During the 2022-2023 influenza season, vaccination reduced the risk of influenza-associated ED/UC encounters and hospitalizations by almost half (overall VE, 40-48%). Influenza vaccination is a critical tool to prevent moderate-to-severe influenza illness in children and adolescents.


Subject(s)
Influenza Vaccines , Influenza, Human , Adolescent , Child , Humans , United States/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , Hospitalization , Vaccination , Emergency Service, Hospital , Hospitals
3.
Clin Infect Dis ; 78(2): 338-348, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37633258

ABSTRACT

BACKGROUND: The epidemiology of coronavirus disease 2019 (COVID-19) continues to develop with emerging variants, expanding population-level immunity, and advances in clinical care. We describe changes in the clinical epidemiology of COVID-19 hospitalizations and risk factors for critical outcomes over time. METHODS: We included adults aged ≥18 years from 10 states hospitalized with COVID-19 June 2021-March 2023. We evaluated changes in demographics, clinical characteristics, and critical outcomes (intensive care unit admission and/or death) and evaluated critical outcomes risk factors (risk ratios [RRs]), stratified by COVID-19 vaccination status. RESULTS: A total of 60 488 COVID-19-associated hospitalizations were included in the analysis. Among those hospitalized, median age increased from 60 to 75 years, proportion vaccinated increased from 18.2% to 70.1%, and critical outcomes declined from 24.8% to 19.4% (all P < .001) between the Delta (June-December, 2021) and post-BA.4/BA.5 (September 2022-March 2023) periods. Hospitalization events with critical outcomes had a higher proportion of ≥4 categories of medical condition categories assessed (32.8%) compared to all hospitalizations (23.0%). Critical outcome risk factors were similar for unvaccinated and vaccinated populations; presence of ≥4 medical condition categories was most strongly associated with risk of critical outcomes regardless of vaccine status (unvaccinated: adjusted RR, 2.27 [95% confidence interval {CI}, 2.14-2.41]; vaccinated: adjusted RR, 1.73 [95% CI, 1.56-1.92]) across periods. CONCLUSIONS: The proportion of adults hospitalized with COVID-19 who experienced critical outcomes decreased with time, and median patient age increased with time. Multimorbidity was most strongly associated with critical outcomes.


Subject(s)
COVID-19 , Adult , Humans , Adolescent , Middle Aged , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Immunity, Herd , Risk Factors
4.
N Engl J Med ; 385(15): 1355-1371, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34496194

ABSTRACT

BACKGROUND: There are limited data on the effectiveness of the vaccines against symptomatic coronavirus disease 2019 (Covid-19) currently authorized in the United States with respect to hospitalization, admission to an intensive care unit (ICU), or ambulatory care in an emergency department or urgent care clinic. METHODS: We conducted a study involving adults (≥50 years of age) with Covid-19-like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. The patients' vaccination status was documented in electronic health records and immunization registries. We used a test-negative design to estimate vaccine effectiveness by comparing the odds of a positive test for SARS-CoV-2 infection among vaccinated patients with those among unvaccinated patients. Vaccine effectiveness was adjusted with weights based on propensity-for-vaccination scores and according to age, geographic region, calendar time (days from January 1, 2021, to the index date for each medical visit), and local virus circulation. RESULTS: The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit. The effectiveness of full vaccination with respect to a Covid-19-associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults. The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit. CONCLUSIONS: Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
Ambulatory Care/statistics & numerical data , COVID-19 Vaccines , COVID-19/prevention & control , Hospitalization/statistics & numerical data , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19/epidemiology , COVID-19 Vaccines/immunology , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Patient Readmission/statistics & numerical data , United States/epidemiology
5.
Am J Obstet Gynecol ; 230(1): 71.e1-71.e14, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37726057

ABSTRACT

BACKGROUND: There is a growing literature base regarding menstrual changes following COVID-19 vaccination among premenopausal people. However, relatively little is known about uterine bleeding in postmenopausal people following COVID-19 vaccination. OBJECTIVE: This study aimed to examine trends in incident postmenopausal bleeding diagnoses over time before and after COVID-19 vaccine introduction, and to describe cases of new-onset postmenopausal bleeding after COVID-19 vaccination. STUDY DESIGN: For postmenopausal bleeding incidence calculations, monthly population-level cohorts consisted of female Kaiser Permanente Northwest members aged ≥45 years. Those diagnosed with incident postmenopausal bleeding in the electronic medical record were included in monthly numerators. Members with preexisting postmenopausal bleeding or abnormal uterine bleeding, or who were at increased risk of bleeding due to other health conditions, were excluded from monthly calculations. We used segmented regression analysis to estimate changes in the incidence of postmenopausal bleeding diagnoses from 2018 through 2021 in Kaiser Permanente Northwest members meeting the inclusion criteria, stratified by COVID-19 vaccination status in 2021. In addition, we identified all members with ≥1 COVID-19 vaccination between December 14, 2020 and August 14, 2021, who had an incident postmenopausal bleeding diagnosis within 60 days of vaccination. COVID-19 vaccination, diagnostic procedures, and presumed bleeding etiology were assessed through chart review and described. A temporal scan statistic was run on all cases without clear bleeding etiology. RESULTS: In a population of 75,530 to 82,693 individuals per month, there was no statistically significant difference in the rate of incident postmenopausal bleeding diagnoses before and after COVID-19 vaccine introduction (P=.59). A total of 104 individuals had incident postmenopausal bleeding diagnosed within 60 days following COVID-19 vaccination; 76% of cases (79/104) were confirmed as postvaccination postmenopausal bleeding after chart review. Median time from vaccination to bleeding onset was 21 days (range: 2-54 days). Among the 56 postmenopausal bleeding cases with a provider-attributed etiology, the common causes of bleeding were uterine or cervical lesions (50% [28/56]), hormone replacement therapy (13% [7/56]), and proliferative endometrium (13% [7/56]). Among the 23 cases without a clear etiology, there was no statistically significant clustering of postmenopausal bleeding onset following vaccination. CONCLUSION: Within this integrated health system, introduction of COVID-19 vaccines was not associated with an increase in incident postmenopausal bleeding diagnoses. Diagnosis of postmenopausal bleeding in the 60 days following receipt of a COVID-19 vaccination was rare.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Female , COVID-19 Vaccines/adverse effects , Postmenopause , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/complications , Uterine Hemorrhage/epidemiology , Uterine Hemorrhage/etiology , Vaccination/adverse effects
6.
Am J Obstet Gynecol ; 230(5): 540.e1-540.e13, 2024 05.
Article in English | MEDLINE | ID: mdl-38219855

ABSTRACT

BACKGROUND: There is evidence suggesting that COVID-19 vaccination may be associated with small, transitory effects on uterine bleeding, possibly including menstrual timing, flow, and duration, in some individuals. However, changes in health care seeking, diagnosis, and workup for abnormal uterine bleeding in the COVID-19 vaccine era are less clear. OBJECTIVE: This study aimed to assess the impact of COVID-19 vaccination on incident abnormal uterine bleeding diagnosis and diagnostic evaluation in a large integrated health system. STUDY DESIGN: Using segmented regression, we assessed whether the availability of COVID-19 vaccines was associated with changes in monthly, population-based rates of incident abnormal uterine bleeding diagnoses relative to the prepandemic period in health system members aged 16 to 44 years who were not menopausal. We also compared clinical and demographic characteristics of patients diagnosed with incident abnormal uterine bleeding between December 2020 and October 13, 2021 by vaccination status (never vaccinated, vaccinated in the 60 days before diagnosis, vaccinated >60 days before diagnosis). Furthermore, we conducted detailed chart review of patients diagnosed with abnormal uterine bleeding within 1 to 60 days of COVID-19 vaccination in the same time period. RESULTS: In monthly populations ranging from 79,000 to 85,000 female health system members, incidence of abnormal uterine bleeding diagnosis per 100,000 person-days ranged from 8.97 to 19.19. There was no significant change in the level or trend in the incidence of abnormal uterine bleeding diagnoses between the prepandemic (January 2019-January 2020) and post-COVID-19 vaccine (December 2020-December 2021) periods. A comparison of clinical characteristics of 2717 abnormal uterine bleeding cases by vaccination status suggested that abnormal bleeding among recently vaccinated patients was similar or less severe than abnormal bleeding among patients who had never been vaccinated or those vaccinated >60 days before. There were also significant differences in age and race of patients with incident abnormal uterine bleeding diagnoses by vaccination status (Ps<.02). Never-vaccinated patients were the youngest and those vaccinated >60 days before were the oldest. The proportion of patients who were Black/African American was highest among never-vaccinated patients, and the proportion of Asian patients was higher among vaccinated patients. Chart review of 114 confirmed postvaccination abnormal uterine bleeding cases diagnosed from December 2020 through October 13, 2021 found that the most common symptoms reported were changes in timing, duration, and volume of bleeding. Approximately one-third of cases received no diagnostic workup; 57% had no etiology for the bleeding documented in the electronic health record. In 12% of cases, the patient mentioned or asked about a possible link between their bleeding and their recent COVID-19 vaccine. CONCLUSION: The availability of COVID-19 vaccination was not associated with a change in incidence of medically attended abnormal uterine bleeding in our population of over 79,000 female patients of reproductive age. In addition, among 2717 patients with abnormal uterine bleeding diagnoses in the period following COVID-19 vaccine availability, receipt of the vaccine was not associated with greater bleeding severity.


Subject(s)
COVID-19 Vaccines , COVID-19 , Uterine Hemorrhage , Humans , Female , COVID-19 Vaccines/adverse effects , Adult , Uterine Hemorrhage/etiology , Young Adult , COVID-19/prevention & control , COVID-19/complications , Adolescent , Incidence , SARS-CoV-2 , Vaccination/adverse effects , Vaccination/statistics & numerical data
7.
MMWR Morb Mortal Wkly Rep ; 73(12): 271-276, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38547037

ABSTRACT

In September 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination for all persons aged ≥6 months to prevent COVID-19, including severe disease. As with past COVID-19 vaccines, additional doses may be considered for persons with immunocompromising conditions, who are at higher risk for severe COVID-19 and might have decreased response to vaccination. In this analysis, vaccine effectiveness (VE) of an updated COVID-19 vaccine dose against COVID-19-associated hospitalization was evaluated during September 2023-February 2024 using data from the VISION VE network. Among adults aged ≥18 years with immunocompromising conditions, VE against COVID-19-associated hospitalization was 38% in the 7-59 days after receipt of an updated vaccine dose and 34% in the 60-119 days after receipt of an updated dose. Few persons (18%) in this high-risk study population had received updated COVID-19 vaccine. All persons aged ≥6 months should receive updated 2023-2024 COVID-19 vaccination; persons with immunocompromising conditions may get additional updated COVID-19 vaccine doses ≥2 months after the last recommended COVID-19 vaccine.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adult , United States/epidemiology , Humans , Adolescent , Influenza, Human/epidemiology , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Hospitalization
8.
MMWR Morb Mortal Wkly Rep ; 73(8): 180-188, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421945

ABSTRACT

In September 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination for all persons aged ≥6 months to prevent COVID-19, including severe disease. However, few estimates of updated vaccine effectiveness (VE) against medically attended illness are available. This analysis evaluated VE of an updated COVID-19 vaccine dose against COVID-19-associated emergency department (ED) or urgent care (UC) encounters and hospitalization among immunocompetent adults aged ≥18 years during September 2023-January 2024 using a test-negative, case-control design with data from two CDC VE networks. VE against COVID-19-associated ED/UC encounters was 51% (95% CI = 47%-54%) during the first 7-59 days after an updated dose and 39% (95% CI = 33%-45%) during the 60-119 days after an updated dose. VE estimates against COVID-19-associated hospitalization from two CDC VE networks were 52% (95% CI = 47%-57%) and 43% (95% CI = 27%-56%), with a median interval from updated dose of 42 and 47 days, respectively. Updated COVID-19 vaccine provided increased protection against COVID-19-associated ED/UC encounters and hospitalization among immunocompetent adults. These results support CDC recommendations for updated 2023-2024 COVID-19 vaccination. All persons aged ≥6 months should receive updated 2023-2024 COVID-19 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Advisory Committees , Emergency Service, Hospital , Hospitalization
9.
J Infect Dis ; 228(2): 185-195, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36683410

ABSTRACT

BACKGROUND: Following historically low influenza activity during the 2020-2021 season, the United States saw an increase in influenza circulating during the 2021-2022 season. Most viruses belonged to the influenza A(H3N2) 3C.2a1b 2a.2 subclade. METHODS: We conducted a test-negative case-control analysis among adults ≥18 years of age at 3 sites within the VISION Network. Encounters included emergency department/urgent care (ED/UC) visits or hospitalizations with ≥1 acute respiratory illness (ARI) discharge diagnosis codes and molecular testing for influenza. Vaccine effectiveness (VE) was calculated by comparing the odds of influenza vaccination ≥14 days before the encounter date between influenza-positive cases (type A) and influenza-negative and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative controls, applying inverse probability-to-be-vaccinated weights, and adjusting for confounders. RESULTS: In total, 86 732 ED/UC ARI-associated encounters (7696 [9%] cases) and 16 805 hospitalized ARI-associated encounters (649 [4%] cases) were included. VE against influenza-associated ED/UC encounters was 25% (95% confidence interval (CI), 20%-29%) and 25% (95% CI, 11%-37%) against influenza-associated hospitalizations. VE against ED/UC encounters was lower in adults ≥65 years of age (7%; 95% CI, -5% to 17%) or with immunocompromising conditions (4%; 95% CI, -45% to 36%). CONCLUSIONS: During an influenza A(H3N2)-predominant influenza season, modest VE was observed. These findings highlight the need for improved vaccines, particularly for A(H3N2) viruses that are historically associated with lower VE.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Humans , United States/epidemiology , Child, Preschool , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Emergency Service, Hospital , Ambulatory Care , Hospitals , Case-Control Studies
10.
J Infect Dis ; 227(8): 961-969, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36415904

ABSTRACT

BACKGROUND: We assessed coronavirus disease 2019 (COVID-19) vaccination impact on illness severity among adults hospitalized with COVID-19, August 2021-March 2022. METHODS: We evaluated differences in intensive care unit (ICU) admission, in-hospital death, and length of stay among vaccinated (2 or 3 mRNA vaccine doses) versus unvaccinated patients aged ≥18 years hospitalized for ≥24 hours with COVID-19-like illness and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) molecular testing. We calculated odds ratios (ORs) for ICU admission and death and subdistribution hazard ratios (SHR) for time to hospital discharge adjusted for age, geographic region, calendar time, and local virus circulation. RESULTS: We included 27 149 SARS-CoV-2-positive hospitalizations. During both Delta- and Omicron-predominant periods, protection against ICU admission was strongest among 3-dose vaccinees compared with unvaccinated patients (Delta OR, 0.52 [95% CI, .28-.96]; Omicron OR, 0.69 [95% CI, .54-.87]). During both periods, risk of in-hospital death was lower among vaccinated compared with unvaccinated patients but ORs overlapped across vaccination strata. We observed SHR >1 across all vaccination strata in both periods indicating faster discharge for vaccinated patients. CONCLUSIONS: COVID-19 vaccination was associated with lower rates of ICU admission and in-hospital death in both Delta and Omicron periods compared with being unvaccinated.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Hospital Mortality , mRNA Vaccines
11.
J Infect Dis ; 227(12): 1348-1363, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36806690

ABSTRACT

BACKGROUND: Data assessing protection conferred from COVID-19 mRNA vaccination and/or prior SARS-CoV-2 infection during Delta and Omicron predominance periods in the United States are limited. METHODS: This cohort study included persons ≥18 years who had ≥1 health care encounter across 4 health systems and had been tested for SARS-CoV-2 before 26 August 2021. COVID-19 mRNA vaccination and prior SARS-CoV-2 infection defined the exposure. Cox regression estimated hazard ratios (HRs) for the Delta and Omicron periods; protection was calculated as (1-HR)×100%. RESULTS: Compared to unvaccinated and previously uninfected persons, during Delta predominance, protection against COVID-19-associated hospitalizations was high for those 2- or 3-dose vaccinated and previously infected, 3-dose vaccinated alone, and prior infection alone (range, 91%-97%, with overlapping 95% confidence intervals [CIs]); during Omicron predominance, estimates were lower (range, 77%-90%). Protection against COVID-19-associated emergency department/urgent care (ED/UC) encounters during Delta predominance was high for those exposure groups (range, 86%-93%); during Omicron predominance, protection remained high for those 3-dose vaccinated with or without a prior infection (76%; 95% CI = 67%-83% and 71%; 95% CI = 67%-73%, respectively). CONCLUSIONS: COVID-19 mRNA vaccination and/or prior SARS-CoV-2 infection provided protection against COVID-19-associated hospitalizations and ED/UC encounters regardless of variant. Staying up-to-date with COVID-19 vaccination still provides protection against severe COVID-19 disease, regardless of prior infection.


Subject(s)
COVID-19 , Humans , Adult , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19 Vaccines , Cohort Studies , Vaccination , RNA, Messenger/genetics
12.
J Infect Dis ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041853

ABSTRACT

BACKGROUND: The 2022-2023 United States influenza season had unusually early influenza activity with high hospitalization rates. Vaccine-matched A(H3N2) viruses predominated, with lower levels of A(H1N1)pdm09 activity also observed. METHODS: Using the test-negative design, we evaluated influenza vaccine effectiveness (VE) during the 2022-2023 season against influenza-A-associated emergency department/urgent care (ED/UC) visits and hospitalizations from October 2022-March 2023 among adults (age ≥18 years) with acute respiratory illness (ARI). VE was estimated by comparing odds of seasonal influenza vaccination among case-patients (influenza A test-positive by molecular assay) and controls (influenza test-negative), applying inverse-propensity-to-be-vaccinated weights. RESULTS: The analysis included 85,389 ED/UC ARI encounters (17.0% influenza-A-positive; 37.8% vaccinated overall) and 19,751 hospitalizations (9.5% influenza-A-positive; 52.8% vaccinated overall). VE against influenza-A-associated ED/UC encounters was 44% (95% confidence interval [95%CI]: 40-47%) overall and 45% and 41% among adults aged 18-64 and ≥65 years, respectively. VE against influenza-A-associated hospitalizations was 35% (95%CI: 27-43%) overall and 23% and 41% among adults aged 18-64 and ≥65 years, respectively. CONCLUSIONS: VE was moderate during the 2022-2023 influenza season, a season characterized with increased burden of influenza and co-circulation with other respiratory viruses. Vaccination is likely to substantially reduce morbidity, mortality, and strain on healthcare resources.

13.
Clin Infect Dis ; 76(3): e51-e59, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35959949

ABSTRACT

BACKGROUND: Identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections during peripartum hospitalizations is important to guide care, implement prevention measures, and understand infection burden. METHODS: This cross-sectional analysis used electronic health record data from hospitalizations during which pregnancies ended (peripartum hospitalizations) among a cohort of pregnant persons at 3 US integrated healthcare networks (sites 1-3). Maternal demographic, medical encounter, SARS-CoV-2 testing, and pregnancy and neonatal outcome information was extracted for persons with estimated delivery and pregnancy end dates during March 2020-February 2021 and ≥1 antenatal care record. Site-stratified multivariable logistic regression was used to identify factors associated with testing and compare pregnancy and neonatal outcomes among persons tested. RESULTS: Among 17 858 pregnant persons, 10 863 (60.8%) had peripartum SARS-CoV-2 testing; 222/10 683 (2.0%) had positive results. Testing prevalence varied by site and was lower during March-May 2020. Factors associated with higher peripartum SARS-CoV-2 testing odds were Asian race (adjusted odds ratio [aOR]: 1.36; 95% confidence interval [CI]: 1.03-1.79; referent: White) (site 1), Hispanic or Latino ethnicity (aOR: 1.33; 95% CI: 1.08-1.64) (site 2), peripartum Medicaid coverage (aOR: 1.33; 95% CI: 1.06-1.66) (site 1), and preterm hospitalization (aOR: 1.69; 95% CI: 1.19-2.39 [site 1]; aOR: 1.39; 95% CI: 1.03-1.88 [site 2]). CONCLUSIONS: Findings highlight potential disparities in SARS-CoV-2 peripartum testing by demographic and pregnancy characteristics. Testing practice variations should be considered when interpreting studies relying on convenience samples of pregnant persons testing positive for SARS-CoV-2. Efforts to address testing differences between groups could improve equitable testing practices and care for pregnant persons with SARS-CoV-2 infections.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Infant, Newborn , Female , Pregnancy , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Cross-Sectional Studies , Peripartum Period , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Hospitalization
14.
Clin Infect Dis ; 76(9): 1615-1625, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36611252

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) vaccination coverage remains lower in communities with higher social vulnerability. Factors such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure risk and access to healthcare are often correlated with social vulnerability and may therefore contribute to a relationship between vulnerability and observed vaccine effectiveness (VE). Understanding whether these factors impact VE could contribute to our understanding of real-world VE. METHODS: We used electronic health record data from 7 health systems to assess vaccination coverage among patients with medically attended COVID-19-like illness. We then used a test-negative design to assess VE for 2- and 3-dose messenger RNA (mRNA) adult (≥18 years) vaccine recipients across Social Vulnerability Index (SVI) quartiles. SVI rankings were determined by geocoding patient addresses to census tracts; rankings were grouped into quartiles for analysis. RESULTS: In July 2021, primary series vaccination coverage was higher in the least vulnerable quartile than in the most vulnerable quartile (56% vs 36%, respectively). In February 2022, booster dose coverage among persons who had completed a primary series was higher in the least vulnerable quartile than in the most vulnerable quartile (43% vs 30%). VE among 2-dose and 3-dose recipients during the Delta and Omicron BA.1 periods of predominance was similar across SVI quartiles. CONCLUSIONS: COVID-19 vaccination coverage varied substantially by SVI. Differences in VE estimates by SVI were minimal across groups after adjusting for baseline patient factors. However, lower vaccination coverage among more socially vulnerable groups means that the burden of illness is still disproportionately borne by the most socially vulnerable populations.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Social Vulnerability , SARS-CoV-2 , COVID-19 Vaccines , Vaccination Coverage , Vaccine Efficacy
15.
Am J Epidemiol ; 192(8): 1386-1395, 2023 08 04.
Article in English | MEDLINE | ID: mdl-36928091

ABSTRACT

In the Vaccine Safety Datalink (VSD), we previously reported no association between coronavirus disease 2019 (COVID-19) vaccination in early pregnancy and spontaneous abortion (SAB). The present study aims to understand how time since vaccine rollout or other methodological factors could affect results. Using a case-control design and generalized estimating equations, we estimated the odds ratios (ORs) of COVID-19 vaccination in the 28 days before a SAB or last date of the surveillance period (index date) in ongoing pregnancies and occurrence of SAB, across cumulative 4-week periods from December 2020 through June 2021. Using data from a single site, we evaluated alternative methodological approaches: increasing the exposure window to 42 days, modifying the index date from the last day to the midpoint of the surveillance period, and constructing a cohort design with a time-dependent exposure model. A protective effect (OR = 0.78, 95% confidence interval: 0.69, 0.89), observed with 3-cumulative periods ending March 8, 2021, was attenuated when surveillance extended to June 28, 2021 (OR = 1.02, 95% confidence interval: 0.96, 1.08). We observed a lower OR for a 42-day window compared with a 28-day window. The time-dependent model showed no association. Timing of the surveillance appears to be an important factor affecting the observed vaccine-SAB association.


Subject(s)
Abortion, Spontaneous , COVID-19 Vaccines , Female , Humans , Pregnancy , Abortion, Spontaneous/chemically induced , Abortion, Spontaneous/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , United States/epidemiology , Vaccination/adverse effects
16.
MMWR Morb Mortal Wkly Rep ; 72(33): 886-892, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37590187

ABSTRACT

On June 19, 2022, the original monovalent mRNA COVID-19 vaccines were approved as a primary series for children aged 6 months-4 years (Pfizer-BioNTech) and 6 months-5 years (Moderna) based on safety, immunobridging, and limited efficacy data from clinical trials. On December 9, 2022, CDC expanded recommendations for use of updated bivalent vaccines to children aged ≥6 months. mRNA COVID-19 vaccine effectiveness (VE) against emergency department or urgent care (ED/UC) encounters was evaluated within the VISION Network during July 4, 2022-June 17, 2023, among children with COVID-19-like illness aged 6 months-5 years. Among children aged 6 months-5 years who received molecular SARS-CoV-2 testing during August 1, 2022-June 17, 2023, VE of 2 monovalent Moderna doses against ED/UC encounters was 29% (95% CI = 12%-42%) ≥14 days after dose 2 (median = 100 days after dose 2; IQR = 63-155 days). Among children aged 6 months-4 years with a COVID-19-like illness who received molecular testing during September 19, 2022-June 17, 2023, VE of 3 monovalent Pfizer-BioNTech doses was 43% (95% CI = 17%-61%) ≥14 days after dose 3 (median = 75 days after dose 3; IQR = 40-139 days). Effectiveness of ≥1 bivalent dose, comparing children with at least a complete primary series and ≥1 bivalent dose to unvaccinated children, irrespective of vaccine manufacturer, was 80% (95% CI = 42%-96%) among children aged 6 months-5 years a median of 58 days (IQR = 32-83 days) after the dose. All children should stay up to date with recommended COVID-19 vaccines, including initiation of COVID-19 vaccination immediately when they are eligible.


Subject(s)
COVID-19 , United States/epidemiology , Child , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Vaccines, Combined , COVID-19 Testing , SARS-CoV-2/genetics , Emergency Service, Hospital , RNA, Messenger , mRNA Vaccines
17.
MMWR Morb Mortal Wkly Rep ; 72(21): 579-588, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37227984

ABSTRACT

On September 1, 2022, CDC's Advisory Committee on Immunization Practices (ACIP) recommended a single bivalent mRNA COVID-19 booster dose for persons aged ≥12 years who had completed at least a monovalent primary series. Early vaccine effectiveness (VE) estimates among adults aged ≥18 years showed receipt of a bivalent booster dose provided additional protection against COVID-19-associated emergency department and urgent care visits and hospitalizations compared with that in persons who had received only monovalent vaccine doses (1); however, insufficient time had elapsed since bivalent vaccine authorization to assess the durability of this protection. The VISION Network* assessed VE against COVID-19-associated hospitalizations by time since bivalent vaccine receipt during September 13, 2022-April 21, 2023, among adults aged ≥18 years with and without immunocompromising conditions. During the first 7-59 days after vaccination, compared with no vaccination, VE for receipt of a bivalent vaccine dose among adults aged ≥18 years was 62% (95% CI = 57%-67%) among adults without immunocompromising conditions and 28% (95% CI = 10%-42%) among adults with immunocompromising conditions. Among adults without immunocompromising conditions, VE declined to 24% (95% CI = 12%-33%) among those aged ≥18 years by 120-179 days after vaccination. VE was generally lower for adults with immunocompromising conditions. A bivalent booster dose provided the highest protection, and protection was sustained through at least 179 days against critical outcomes, including intensive care unit (ICU) admission or in-hospital death. These data support updated recommendations allowing additional optional bivalent COVID-19 vaccine doses for certain high-risk populations. All eligible persons should stay up to date with recommended COVID-19 vaccines.


Subject(s)
COVID-19 , Critical Illness , Hospitalization , Adolescent , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Hospital Mortality , mRNA Vaccines , Vaccines, Combined
18.
MMWR Morb Mortal Wkly Rep ; 71(53): 1637-1646, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36921274

ABSTRACT

During June-October 2022, the SARS-CoV-2 Omicron BA.5 sublineage accounted for most of the sequenced viral genomes in the United States, with further Omicron sublineage diversification through November 2022.* Bivalent mRNA vaccines contain an ancestral SARS-CoV-2 strain component plus an updated component of the Omicron BA.4/BA.5 sublineages. On September 1, 2022, a single bivalent booster dose was recommended for adults who had completed a primary vaccination series (with or without subsequent booster doses), with the last dose administered ≥2 months earlier (1). During September 13-November 18, the VISION Network evaluated vaccine effectiveness (VE) of a bivalent mRNA booster dose (after 2, 3, or 4 monovalent doses) compared with 1) no previous vaccination and 2) previous receipt of 2, 3, or 4 monovalent-only mRNA vaccine doses, among immunocompetent adults aged ≥18 years with an emergency department/urgent care (ED/UC) encounter or hospitalization for a COVID-19-like illness.† VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated ED/UC encounters was 56% compared with no vaccination, 32% compared with monovalent vaccination only with last dose 2-4 months earlier, and 50% compared with monovalent vaccination only with last dose ≥11 months earlier. VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated hospitalizations was 59% compared with no vaccination, 42% compared with monovalent vaccination only with last dose 5-7 months earlier, and 48% compared with monovalent vaccination only with last dose ≥11 months earlier. Bivalent vaccines administered after 2, 3, or 4 monovalent doses were effective in preventing medically attended COVID-19 compared with no vaccination and provided additional protection compared with past monovalent vaccination only, with relative protection increasing with time since receipt of the last monovalent dose. All eligible persons should stay up to date with recommended COVID-19 vaccinations, including receiving a bivalent booster dose. Persons should also consider taking additional precautions to avoid respiratory illness this winter season, such as masking in public indoor spaces, especially in areas where COVID-19 community levels are high.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccine Efficacy , Emergency Service, Hospital , Hospitalization , RNA, Messenger , Vaccines, Combined
19.
MMWR Morb Mortal Wkly Rep ; 71(1): 26-30, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34990445

ABSTRACT

COVID-19 vaccines are recommended during pregnancy to prevent severe maternal morbidity and adverse birth outcomes; however, vaccination coverage among pregnant women has been low (1). Concerns among pregnant women regarding vaccine safety are a persistent barrier to vaccine acceptance during pregnancy. Previous studies of maternal COVID-19 vaccination and birth outcomes have been limited by small sample size (2) or lack of an unvaccinated comparison group (3). In this retrospective cohort study of live births from eight Vaccine Safety Datalink (VSD) health care organizations, risks for preterm birth (<37 weeks' gestation) and small-for-gestational-age (SGA) at birth (birthweight <10th percentile for gestational age) after COVID-19 vaccination (receipt of ≥1 COVID-19 vaccine doses) during pregnancy were evaluated. Risks for preterm and SGA at birth among vaccinated and unvaccinated pregnant women were compared, accounting for time-dependent vaccine exposures and propensity to be vaccinated. Single-gestation pregnancies with estimated start or last menstrual period during May 17-October 24, 2020, were eligible for inclusion. Among 46,079 pregnant women with live births and gestational age available, 10,064 (21.8%) received ≥1 COVID-19 vaccine doses during pregnancy and during December 15, 2020-July 22, 2021; nearly all (9,892; 98.3%) were vaccinated during the second or third trimester. COVID-19 vaccination during pregnancy was not associated with preterm birth (adjusted hazard ratio [aHR] = 0.91; 95% CI = 0.82-1.01). Among 40,627 live births with birthweight available, COVID-19 vaccination in pregnancy was not associated with SGA at birth (aHR = 0.95; 95% CI = 0.87-1.03). Results consistently showed no increased risk when stratified by mRNA COVID-19 vaccine dose, or by second or third trimester vaccination, compared with risk among unvaccinated pregnant women. Because of the small number of first-trimester exposures, aHRs for first-trimester vaccination could not be calculated. These data add to the evidence supporting the safety of COVID-19 vaccination during pregnancy. To reduce the risk for severe COVID-19-associated illness, CDC recommends COVID-19 vaccination for women who are pregnant, recently pregnant (including those who are lactating), who are trying to become pregnant now, or who might become pregnant in the future (4).


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Infant, Premature , Infant, Small for Gestational Age , Premature Birth/epidemiology , Adolescent , Adult , Cohort Studies , Female , Humans , Middle Aged , Patient Safety , Pregnancy , Prevalence , Retrospective Studies , Risk Assessment , SARS-CoV-2/immunology , United States/epidemiology , Young Adult
20.
MMWR Morb Mortal Wkly Rep ; 71(42): 1335-1342, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36264840

ABSTRACT

Persons with moderate-to-severe immunocompromising conditions might have reduced protection after COVID-19 vaccination, compared with persons without immunocompromising conditions (1-3). On August 13, 2021, the Advisory Committee on Immunization Practices (ACIP) recommended that adults with immunocompromising conditions receive an expanded primary series of 3 doses of an mRNA COVID-19 vaccine. ACIP followed with recommendations on September 23, 2021, for a fourth (booster) dose and on September 1, 2022, for a new bivalent mRNA COVID-19 vaccine booster dose, containing components of the BA.4 and BA.5 sublineages of the Omicron (B.1.1.529) variant (4). Data on vaccine effectiveness (VE) of monovalent COVID-19 vaccines among persons with immunocompromising conditions since the emergence of the Omicron variant in December 2021 are limited. In the multistate VISION Network,§ monovalent 2-, 3-, and 4-dose mRNA VE against COVID-19-related hospitalization were estimated among adults with immunocompromising conditions¶ hospitalized with COVID-19-like illness,** using a test-negative design comparing odds of previous vaccination among persons with a positive or negative molecular test result (case-patients and control-patients) for SARS-CoV-2 (the virus that causes COVID-19). During December 16, 2021-August 20, 2022, among SARS-CoV-2 test-positive case-patients, 1,815 (36.3%), 1,387 (27.7%), 1,552 (31.0%), and 251 (5.0%) received 0, 2, 3, and 4 mRNA COVID-19 vaccine doses, respectively. Among test-negative control-patients during this period, 6,928 (23.7%), 7,411 (25.4%), 12,734 (43.6%), and 2,142 (7.3%) received these respective doses. Overall, VE against COVID-19-related hospitalization among adults with immunocompromising conditions hospitalized for COVID-like illness during Omicron predominance was 36% ≥14 days after dose 2, 69% 7-89 days after dose 3, and 44% ≥90 days after dose 3. Restricting the analysis to later periods when Omicron sublineages BA.2/BA.2.12.1 and BA.4/BA.5 were predominant and 3-dose recipients were eligible to receive a fourth dose, VE was 32% ≥90 days after dose 3 and 43% ≥7 days after dose 4. Protection offered by vaccination among persons with immunocompromising conditions during Omicron predominance was moderate even after a 3-dose monovalent primary series or booster dose. Given the incomplete protection against hospitalization afforded by monovalent COVID-19 vaccines, persons with immunocompromising conditions might benefit from updated bivalent vaccine booster doses that target recently circulating Omicron sublineages, in line with ACIP recommendations. Further, additional protective recommendations for persons with immunocompromising conditions, including the use of prophylactic antibody therapy, early access to and use of antivirals, and enhanced nonpharmaceutical interventions such as well-fitting masks or respirators, should also be considered.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Antiviral Agents , Hospitalization , Vaccines, Combined , RNA, Messenger , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL