Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 41(1): e105026, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34791698

ABSTRACT

Intronic GGGGCC (G4C2) hexanucleotide repeat expansion within the human C9orf72 gene represents the most common cause of familial forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of repeat-containing C9orf72 RNA results in the production of neurotoxic dipeptide-repeat proteins (DPRs). Here, we developed a high-throughput drug screen for the identification of positive and negative modulators of DPR levels. We found that HSP90 inhibitor geldanamycin and aldosterone antagonist spironolactone reduced DPR levels by promoting protein degradation via the proteasome and autophagy pathways respectively. Surprisingly, cAMP-elevating compounds boosting protein kinase A (PKA) activity increased DPR levels. Inhibition of PKA activity, by both pharmacological and genetic approaches, reduced DPR levels in cells and rescued pathological phenotypes in a Drosophila model of C9ALS/FTD. Moreover, knockdown of PKA-catalytic subunits correlated with reduced translation efficiency of DPRs, while the PKA inhibitor H89 reduced endogenous DPR levels in C9ALS/FTD patient-derived iPSC motor neurons. Together, our results suggest new and druggable pathways modulating DPR levels in C9ALS/FTD.


Subject(s)
C9orf72 Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Dipeptides/metabolism , Proteolysis , Small Molecule Libraries/pharmacology , Animals , Cell Line , Codon, Initiator/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Repeat Expansion/genetics , Disease Models, Animal , Drosophila/drug effects , Frontotemporal Dementia/pathology , HEK293 Cells , High-Throughput Screening Assays , Humans , Induced Pluripotent Stem Cells/pathology , Isoquinolines/pharmacology , Longevity/drug effects , Motor Neurons/drug effects , Motor Neurons/pathology , Protein Biosynthesis/drug effects , Proteolysis/drug effects , RNA Interference , Sulfonamides/pharmacology
2.
PLoS Genet ; 19(9): e1010893, 2023 09.
Article in English | MEDLINE | ID: mdl-37733679

ABSTRACT

Brains are highly metabolically active organs, consuming 20% of a person's energy at resting state. A decline in glucose metabolism is a common feature across a number of neurodegenerative diseases. Another common feature is the progressive accumulation of insoluble protein deposits, it's unclear if the two are linked. Glucose metabolism in the brain is highly coupled between neurons and glia, with glucose taken up by glia and metabolised to lactate, which is then shuttled via transporters to neurons, where it is converted back to pyruvate and fed into the TCA cycle for ATP production. Monocarboxylates are also involved in signalling, and play broad ranging roles in brain homeostasis and metabolic reprogramming. However, the role of monocarboxylates in dementia has not been tested. Here, we find that increasing pyruvate import in Drosophila neurons by over-expression of the transporter bumpel, leads to a rescue of lifespan and behavioural phenotypes in fly models of both frontotemporal dementia and Alzheimer's disease. The rescue is linked to a clearance of late stage autolysosomes, leading to degradation of toxic peptides associated with disease. We propose upregulation of pyruvate import into neurons as potentially a broad-scope therapeutic approach to increase neuronal autophagy, which could be beneficial for multiple dementias.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Animals , Frontotemporal Dementia/genetics , Alzheimer Disease/genetics , Neuroglia , Pyruvic Acid , Drosophila , Glucose
3.
Biochemistry ; 63(17): 2141-2152, 2024 09 03.
Article in English | MEDLINE | ID: mdl-39146246

ABSTRACT

Dipeptide repeat proteins (DPRs) are aberrant protein species found in C9orf72-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative diseases characterized by the cytoplasmic mislocalization and aggregation of RNA-binding proteins (RBPs). In particular, arginine (R)-rich DPRs (poly-GR and poly-PR) have been suggested to promiscuously interact with multiple cellular proteins and thereby exert high cytotoxicity. Components of the protein arginine methylation machinery have been identified as modulators of DPR toxicity and/or potential cellular interactors of R-rich DPRs; however, the molecular details and consequences of such an interaction are currently not well understood. Here, we demonstrate that several members of the family of protein arginine methyltransferases (PRMTs) can directly interact with R-rich DPRs in vitro and in the cytosol. In vitro, R-rich DPRs reduce solubility and promote phase separation of PRMT1, the main enzyme responsible for asymmetric arginine-dimethylation (ADMA) in mammalian cells, in a concentration- and length-dependent manner. Moreover, we demonstrate that poly-GR interferes more efficiently than poly-PR with PRMT1-mediated arginine methylation of RBPs such as hnRNPA3. We additionally show by two alternative approaches that poly-GR itself is a substrate for PRMT1-mediated arginine dimethylation. We propose that poly-GR may act as a direct competitor for arginine methylation of cellular PRMT1 targets, such as disease-linked RBPs.


Subject(s)
Arginine , Protein-Arginine N-Methyltransferases , RNA-Binding Proteins , Repressor Proteins , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Arginine/metabolism , Methylation , Repressor Proteins/metabolism , Repressor Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/genetics , C9orf72 Protein/metabolism , C9orf72 Protein/genetics , HEK293 Cells
4.
J Neurochem ; 160(3): 412-425, 2022 02.
Article in English | MEDLINE | ID: mdl-34855215

ABSTRACT

Mutations in the ESCRT-III subunit CHMP2B cause frontotemporal dementia (FTD) and lead to impaired endolysosomal trafficking and lysosomal storage pathology in neurons. We investigated the effect of mutant CHMP2B on synaptic pathology, as ESCRT function was recently implicated in the degradation of synaptic vesicle (SV) proteins. We report here that expression of C-terminally truncated mutant CHMP2B results in a novel synaptopathy. This unique synaptic pathology is characterised by selective retention of presynaptic SV trafficking proteins in aged mutant CHMP2B transgenic mice, despite significant loss of postsynaptic proteins. Furthermore, ultrastructural analysis of primary cortical cultures from transgenic CHMP2B mice revealed a significant increase in the number of presynaptic endosomes, while neurons expressing mutant CHMP2B display defective SV recycling and alterations to functional SV pools. Therefore, we reveal how mutations in CHMP2B affect specific presynaptic proteins and SV recycling, identifying CHMP2B FTD as a novel synaptopathy. This novel synaptopathic mechanism of impaired SV physiology may be a key early event in multiple forms of FTD, since proteins that mediate the most common genetic forms of FTD all localise at the presynapse.


Subject(s)
Endosomal Sorting Complexes Required for Transport/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Nerve Tissue Proteins/genetics , Synapses/pathology , Synaptic Vesicles/metabolism , Synaptic Vesicles/pathology , Aging/metabolism , Aging/pathology , Animals , Cerebral Cortex/pathology , Disease Models, Animal , Frontotemporal Dementia/pathology , Mice , Mice, Knockout , Primary Cell Culture , Receptors, Presynaptic/metabolism
5.
EMBO J ; 37(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29764981

ABSTRACT

TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , RNA-Binding Proteins/genetics , Alternative Splicing/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Exons/genetics , Humans , Mice , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation , RNA Splicing/genetics
6.
J Neurol Neurosurg Psychiatry ; 93(7): 761-771, 2022 07.
Article in English | MEDLINE | ID: mdl-35379698

ABSTRACT

OBJECTIVE: A GGGGCC repeat expansion in the C9orf72 gene is the most common cause of genetic frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). As potential therapies targeting the repeat expansion are now entering clinical trials, sensitive biomarker assays of target engagement are urgently required. Our objective was to develop such an assay. METHODS: We used the single molecule array (Simoa) platform to develop an immunoassay for measuring poly(GP) dipeptide repeat proteins (DPRs) generated by the C9orf72 repeat expansion in cerebrospinal fluid (CSF) of people with C9orf72-associated FTD/ALS. RESULTS AND CONCLUSIONS: We show the assay to be highly sensitive and robust, passing extensive qualification criteria including low intraplate and interplate variability, a high precision and accuracy in measuring both calibrators and samples, dilutional parallelism, tolerance to sample and standard freeze-thaw and no haemoglobin interference. We used this assay to measure poly(GP) in CSF samples collected through the Genetic FTD Initiative (N=40 C9orf72 and 15 controls). We found it had 100% specificity and 100% sensitivity and a large window for detecting target engagement, as the C9orf72 CSF sample with the lowest poly(GP) signal had eightfold higher signal than controls and on average values from C9orf72 samples were 38-fold higher than controls, which all fell below the lower limit of quantification of the assay. These data indicate that a Simoa-based poly(GP) DPR assay is suitable for use in clinical trials to determine target engagement of therapeutics aimed at reducing C9orf72 repeat-containing transcripts.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Biomarkers/cerebrospinal fluid , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans
7.
EMBO Rep ; 21(10): e51668, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32985120

ABSTRACT

Mutations in GRN, which encodes progranulin, are a common cause of familial frontotemporal dementia (FTD). FTD is a devastating disease characterised by neuronal loss in the frontal and temporal lobes that leads to changes in personality, behaviour and language. There are no effective treatments for this complex condition. TMEM106B is a well-recognised risk factor for FTD caused by GRN mutation. While the specific relationship between progranulin and TMEM106B is unclear, it is well established that they are both required for correct lysosome function and trafficking. Elegant experiments have suggested that increased risk for FTD is due to elevated levels of TMEM106B (Nicholson et al, 2013; Gallagher et al, 2017). Therefore, recent work has explored the therapeutic potential of reducing TMEM106B levels, with initial results looking encouraging, as crossing a Grn-deficient mouse to a Tmem106b knockout showed a rescue in FTD-related behavioural defects and specific aspects of lysosome dysfunction (Klein et al, 2017). However, three independent studies in this issue report that completely removing Tmem106b from Grn knockout mice leads to clear exacerbation of phenotypes, causing severe motor deficits, neurodegeneration and enhanced lysosome abnormalities and gliosis. Remarkably, the double knockout mice also develop TDP-43 pathology-a hallmark of FTD patients with GRN mutations that have not been consistently observed in either of the single knockouts. These concurrent publications that all reach the same surprising but definitive conclusion are a cautionary tale in the control of TMEM106B levels as a potential therapeutic for FTD. They also re-ignite the debate as to whether loss or gain of TMEM106B function is critical for altering FTD risk.


Subject(s)
Frontotemporal Dementia , Intercellular Signaling Peptides and Proteins , Animals , Frontotemporal Dementia/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Mutation , Nerve Tissue Proteins/genetics , Phenotype , Progranulins/genetics
8.
Acta Neurol Scand ; 145(5): 529-540, 2022 May.
Article in English | MEDLINE | ID: mdl-34997757

ABSTRACT

OBJECTIVES: Chromosome 3-linked frontotemporal dementia (FTD-3) is caused by a c.532-1G > C mutation in the CHMP2B gene. It is extensively studied in a Danish family comprising one of the largest families with an autosomal dominantly inherited frontotemporal dementia (FTD). This retrospective cohort study utilizes demographics to identify risk factors for onset, progression, life expectancy, and death in CHMP2B-mediated FTD. The pedigree of 528 individuals in six generations is provided, and clinical descriptions are presented. Choices of genetic testing are evaluated. MATERIALS AND METHODS: Demographic and lifestyle factors were assessed in survival analysis in all identified CHMP2B mutation carriers (44 clinically affected FTD-3 patients and 16 presymptomatic CHMP2B mutation carriers). Predictors of onset and progression included sex, parental disease course, education, and vascular risk factors. Life expectancy was established by matching CHMP2B mutation carriers with average life expectancies in Denmark. RESULTS: Disease course was not correlated to parental disease course and seemed unmodified by lifestyle factors. Diagnosis was recognized at an earlier age in members with higher levels of education, probably reflecting an early dysexecutive syndrome, unmasked earlier in people with higher work-related requirements. Carriers of the CHMP2B mutation had a significant reduction in life expectancy of 13 years. Predictive genetic testing was chosen by 20% of at-risk family members. CONCLUSIONS: CHMP2B-mediated FTD is substantiated as an autosomal dominantly inherited disease of complete penetrance. The clinical phenotype is a behavioral variant FTD. The disease course is unpredictable, and life expectancy is reduced. The findings may be applicable to other genetic FTD subtypes.


Subject(s)
Frontotemporal Dementia , Cohort Studies , Endosomal Sorting Complexes Required for Transport/genetics , Frontotemporal Dementia/genetics , Humans , Mutation/genetics , Nerve Tissue Proteins/genetics , Retrospective Studies
9.
Methods ; 191: 15-22, 2021 07.
Article in English | MEDLINE | ID: mdl-32721467

ABSTRACT

Aberrant microsatellite repeat-expansions at specific loci within the human genome cause several distinct, heritable, and predominantly neurological, disorders. Creating models for these diseases poses a challenge, due to the instability of such repeats in bacterial vectors, especially with large repeat expansions. Designing constructs for more precise genome engineering projects, such as engineering knock-in mice, proves a greater challenge still, since these unstable repeats require numerous cloning steps in order to introduce homology arms or selection cassettes. Here, we report our efforts to clone a large hexanucleotide repeat in the C9orf72 gene, originating from within a BAC construct, derived from a C9orf72-ALS patient. We provide detailed methods for efficient repeat sizing and growth conditions in bacteria to facilitate repeat retention during growth and sub-culturing. We report that sub-cloning into a linear vector dramatically improves stability, but is dependent on the relative orientation of DNA replication through the repeat, consistent with previous studies. We envisage the findings presented here provide a relatively straightforward route to maintaining large-range microsatellite repeat-expansions, for efficient cloning into vectors.


Subject(s)
DNA Repeat Expansion , Amyotrophic Lateral Sclerosis/genetics , Animals , C9orf72 Protein/genetics , Cloning, Molecular , Gene Targeting , Humans , Mice
10.
Nucleic Acids Res ; 48(12): 6889-6905, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32479602

ABSTRACT

Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a widespread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Homeostasis/genetics , RNA-Binding Protein FUS/genetics , Animals , Cytoplasm/genetics , DNA-Binding Proteins/genetics , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Introns/genetics , Loss of Function Mutation , Mice , Mice, Knockout , Mutation/genetics , RNA Splicing/genetics , Superoxide Dismutase-1/genetics , Valosin Containing Protein/genetics
12.
Hum Mol Genet ; 26(R2): R105-R113, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28977441

ABSTRACT

Like many other neurodegenerative diseases, age is a major risk factor in the development of ALS/FTD. But why is this the case? Recent genetic advances have highlighted some of pathways involved in the development of disease, and, strikingly, they appear to substantially overlap with those known to directly modulate the ageing process. Many ALS/FTD linked genes play a direct role in autophagy/lysosomal degradation, one of the most important pathways linked to ageing. However, systemic processes such as inflammation, as well as cellular maintenance pathways, including RNA splicing and nuclear-cytoplasmic transport have been increasingly linked both to disease and ageing. We highlight some of the shared mechanisms between the ageing process itself and emerging pathogenic mechanisms in ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Active Transport, Cell Nucleus/genetics , Aging/genetics , Aging/physiology , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/physiopathology , Autophagy/genetics , DNA-Binding Proteins/genetics , Humans , Inflammation/metabolism , Lysosomes/metabolism , Mutation , RNA Splicing/genetics , Risk Factors
13.
Hum Mol Genet ; 26(5): 873-887, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28093491

ABSTRACT

Frontotemporal dementia (FTD)-causing mutations in the CHMP2B gene lead to the generation of mutant C-terminally truncated CHMP2B. We report that transgenic mice expressing endogenous levels of mutant CHMP2B developed late-onset brain volume loss associated with frank neuronal loss and FTD-like changes in social behaviour. These data are the first to show neurodegeneration in mice expressing mutant CHMP2B and indicate that our mouse model is able to recapitulate neurodegenerative changes observed in FTD. Neuroinflammation has been increasingly implicated in neurodegeneration, including FTD. Therefore, we investigated neuroinflammation in our CHMP2B mutant mice. We observed very early microglial proliferation that develops into a clear pro-inflammatory phenotype at late stages. Importantly, we also observed a similar inflammatory profile in CHMP2B patient frontal cortex. Aberrant microglial function has also been implicated in FTD caused by GRN, MAPT and C9orf72 mutations. The presence of early microglial changes in our CHMP2B mutant mice indicates neuroinflammation may be a contributing factor to the neurodegeneration observed in FTD.


Subject(s)
Endosomal Sorting Complexes Required for Transport/genetics , Nerve Tissue Proteins/genetics , Neurons/pathology , Tongue Diseases/genetics , Tongue Diseases/metabolism , Animals , Dementia/genetics , Disease Models, Animal , Endosomal Sorting Complexes Required for Transport/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/immunology , Frontotemporal Dementia/pathology , Humans , Mice , Mice, Transgenic , Mutation , Nerve Tissue Proteins/metabolism , Neurons/physiology , Tongue Diseases/pathology
14.
Acta Neuropathol ; 137(3): 487-500, 2019 03.
Article in English | MEDLINE | ID: mdl-30604225

ABSTRACT

A GGGGCC hexanucleotide repeat expansion within the C9orf72 gene is the most common genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia. Sense and antisense repeat-containing transcripts undergo repeat-associated non-AUG-initiated translation to produce five dipeptide proteins (DPRs). The polyGR and polyPR DPRs are extremely toxic when expressed in Drosophila neurons. To determine the mechanism that mediates this toxicity, we purified DPRs from the Drosophila brain and used mass spectrometry to identify the in vivo neuronal DPR interactome. PolyGR and polyPR interact with ribosomal proteins, and inhibit translation in both human iPSC-derived motor neurons, and adult Drosophila neurons. We next performed a screen of 81 translation-associated proteins in GGGGCC repeat-expressing Drosophila to determine whether this translational repression can be overcome and if this impacts neurodegeneration. Expression of the translation initiation factor eIF1A uniquely rescued DPR-induced toxicity in vivo, indicating that restoring translation is a potential therapeutic strategy. These data directly implicate translational repression in C9orf72 repeat-induced neurodegeneration and identify eIF1A as a novel modifier of C9orf72 repeat toxicity.


Subject(s)
C9orf72 Protein/metabolism , Eukaryotic Initiation Factor-1/metabolism , Neurons/metabolism , Protein Biosynthesis/physiology , Amyotrophic Lateral Sclerosis/genetics , Animals , Animals, Genetically Modified , Brain/metabolism , C9orf72 Protein/genetics , DNA Repeat Expansion , Dipeptides/metabolism , Drosophila , Frontotemporal Dementia/genetics , Humans
15.
Brain ; 141(12): 3428-3442, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30496365

ABSTRACT

Mutations in the endosome-associated protein CHMP2B cause frontotemporal dementia and lead to lysosomal storage pathology in neurons. We here report that physiological levels of mutant CHMP2B causes reduced numbers and significantly impaired trafficking of endolysosomes within neuronal dendrites, accompanied by increased dendritic branching. Mechanistically, this is due to the stable incorporation of mutant CHMP2B onto neuronal endolysosomes, which we show renders them unable to traffic within dendrites. This defect is due to the inability of mutant CHMP2B to recruit the ATPase VPS4, which is required for release of CHMP2B from endosomal membranes. Strikingly, both impaired trafficking and the increased dendritic branching were rescued by treatment with antisense oligonucleotides targeting the well validated frontotemporal dementia risk factor TMEM106B, which encodes an endolysosomal protein. This indicates that reducing TMEM106B levels can restore endosomal health in frontotemporal dementia. As TMEM106B is a risk factor for frontotemporal dementia caused by both C9orf72 and progranulin mutations, and antisense oligonucleotides are showing promise as therapeutics for neurodegenerative diseases, our data suggests a potential new strategy for treating the wide range of frontotemporal dementias associated with endolysosomal dysfunction.


Subject(s)
Dendrites/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Frontotemporal Dementia/metabolism , Lysosomes/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/metabolism , Animals , Brain/metabolism , Cells, Cultured , Female , Gene Knockdown Techniques , Male , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neuronal Plasticity
16.
Acta Neuropathol ; 135(3): 445-457, 2018 03.
Article in English | MEDLINE | ID: mdl-29380049

ABSTRACT

A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Neurodegeneration may occur via transcription of the repeats into inherently toxic repetitive sense and antisense RNA species, or via repeat-associated non-ATG initiated translation (RANT) of sense and antisense RNA into toxic dipeptide repeat proteins. We have previously demonstrated that regular interspersion of repeat RNA with stop codons prevents RANT (RNA-only models), allowing us to study the role of repeat RNA in isolation. Here we have created novel RNA-only Drosophila models, including the first models of antisense repeat toxicity, and flies expressing extremely large repeats, within the range observed in patients. We generated flies expressing ~ 100 repeat sense or antisense RNA either as part of a processed polyadenylated transcript or intronic sequence. We additionally created Drosophila expressing > 1000 RNA-only repeats in the sense direction. When expressed in adult Drosophila neurons polyadenylated repeat RNA is largely cytoplasmic in localisation, whilst intronic repeat RNA forms intranuclear RNA foci, as does > 1000 repeat RNA, thus allowing us to investigate both nuclear and cytoplasmic RNA toxicity. We confirmed that these RNA foci are capable of sequestering endogenous Drosophila RNA-binding proteins, and that the production of dipeptide proteins (poly-glycine-proline, and poly-glycine-arginine) is suppressed in our models. We find that neither cytoplasmic nor nuclear sense or antisense RNA are toxic when expressed in adult Drosophila neurons, suggesting they have a limited role in disease pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/metabolism , Frontotemporal Dementia/metabolism , RNA/metabolism , Animals , Animals, Genetically Modified , C9orf72 Protein/genetics , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cytoplasm/metabolism , Cytoplasm/pathology , DNA Repeat Expansion , Disease Models, Animal , Drosophila , Female , Frontotemporal Dementia/pathology , Introns , Male , Neurons/metabolism , Neurons/pathology
17.
Acta Neuropathol ; 135(3): 427-443, 2018 03.
Article in English | MEDLINE | ID: mdl-29302778

ABSTRACT

The exact mechanism underlying amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) associated with the GGGGCC repeat expansion in C9orf72 is still unclear. Two gain-of-function mechanisms are possible: repeat RNA toxicity and dipeptide repeat protein (DPR) toxicity. We here dissected both possibilities using a zebrafish model for ALS. Expression of two DPRs, glycine-arginine and proline-arginine, induced a motor axonopathy. Similarly, expanded sense and antisense repeat RNA also induced a motor axonopathy and formed mainly cytoplasmic RNA foci. However, DPRs were not detected in these conditions. Moreover, stop codon-interrupted repeat RNA still induced a motor axonopathy and a synergistic role of low levels of DPRs was excluded. Altogether, these results show that repeat RNA toxicity is independent of DPR formation. This RNA toxicity, but not the DPR toxicity, was attenuated by the RNA-binding protein Pur-alpha and the autophagy-related protein p62. Our findings demonstrate that RNA toxicity, independent of DPR toxicity, can contribute to the pathogenesis of C9orf72-associated ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/metabolism , RNA/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Axons/metabolism , Axons/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion , Disease Models, Animal , Escherichia coli , Gene Transfer Techniques , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Zebrafish
18.
Brain ; 140(11): 2797-2805, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29053787

ABSTRACT

Mutations in FUS are causative for amyotrophic lateral sclerosis with a dominant mode of inheritance. In trying to model FUS-amyotrophic lateral sclerosis (ALS) in mouse it is clear that FUS is dosage-sensitive and effects arise from overexpression per se in transgenic strains. Novel models are required that maintain physiological levels of FUS expression and that recapitulate the human disease-with progressive loss of motor neurons in heterozygous animals. Here, we describe a new humanized FUS-ALS mouse with a frameshift mutation, which fulfils both criteria: the FUS Delta14 mouse. Heterozygous animals express mutant humanized FUS protein at physiological levels and have adult onset progressive motor neuron loss and denervation of neuromuscular junctions. Additionally, we generated a novel antibody to the unique human frameshift peptide epitope, allowing specific identification of mutant FUS only. Using our new FUSDelta14 ALS mouse-antibody system we show that neurodegeneration occurs in the absence of FUS protein aggregation. FUS mislocalization increases as disease progresses, and mutant FUS accumulates at the rough endoplasmic reticulum. Further, transcriptomic analyses show progressive changes in ribosomal protein levels and mitochondrial function as early disease stages are initiated. Thus, our new physiological mouse model has provided novel insight into the early pathogenesis of FUS-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Disease Models, Animal , Frameshift Mutation , Mice , Protein Aggregation, Pathological/genetics , RNA-Binding Protein FUS/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Endoplasmic Reticulum, Rough/metabolism , Gene Dosage , Gene Expression Profiling , Gene Knock-In Techniques , Heterozygote , Humans , Mitochondria/metabolism , Motor Neurons/metabolism , Neuromuscular Junction/metabolism , Protein Aggregation, Pathological/metabolism , RNA-Binding Protein FUS/metabolism , Ribosomal Proteins/genetics
19.
J Neurosci ; 35(7): 3155-73, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25698751

ABSTRACT

The charged multivesicular body proteins (Chmp1-7) are an evolutionarily conserved family of cytosolic proteins that transiently assembles into helical polymers that change the curvature of cellular membrane domains. Mutations in human CHMP2B cause frontotemporal dementia, suggesting that this protein may normally control some neuron-specific process. Here, we examined the function, localization, and interactions of neuronal Chmp2b. The protein was highly expressed in mouse brain and could be readily detected in neuronal dendrites and spines. Depletion of endogenous Chmp2b reduced dendritic branching of cultured hippocampal neurons, decreased excitatory synapse density in vitro and in vivo, and abolished activity-induced spine enlargement and synaptic potentiation. To understand the synaptic effects of Chmp2b, we determined its ultrastructural distribution by quantitative immuno-electron microscopy and its biochemical interactions by coimmunoprecipitation and mass spectrometry. In the hippocampus in situ, a subset of neuronal Chmp2b was shown to concentrate beneath the perisynaptic membrane of dendritic spines. In synaptoneurosome lysates, Chmp2b was stably bound to a large complex containing other members of the Chmp family, as well as postsynaptic scaffolds. The supramolecular Chmp assembly detected here corresponds to a stable form of the endosomal sorting complex required for transport-III (ESCRT-III), a ubiquitous cytoplasmic protein complex known to play a central role in remodeling of lipid membranes. We conclude that Chmp2b-containing ESCRT-III complexes are also present at dendritic spines, where they regulate synaptic plasticity. We propose that synaptic ESCRT-III filaments may function as a novel element of the submembrane cytoskeleton of spines.


Subject(s)
Endosomal Sorting Complexes Required for Transport/deficiency , Nerve Tissue Proteins/deficiency , Synapses/physiology , Animals , Cells, Cultured , Computer Simulation , Dendrites/metabolism , Dendrites/ultrastructure , Endosomal Sorting Complexes Required for Transport/genetics , Excitatory Amino Acid Agonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Female , Hippocampus/cytology , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Microscopy, Immunoelectron , Mutation/genetics , N-Methylaspartate/pharmacology , Nerve Tissue Proteins/genetics , Neurons/cytology , Neurons/ultrastructure , Post-Synaptic Density/metabolism , Post-Synaptic Density/ultrastructure , Rats , Rats, Sprague-Dawley , Synapses/ultrastructure , Red Fluorescent Protein
20.
J Biol Chem ; 290(2): 1049-65, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25406315

ABSTRACT

Intracellular Tau inclusions are a pathological hallmark of several neurodegenerative diseases, collectively known as the tauopathies. They include Alzheimer disease, tangle-only dementia, Pick disease, argyrophilic grain disease, chronic traumatic encephalopathy, progressive supranuclear palsy, and corticobasal degeneration. Tau pathology appears to spread through intercellular propagation, requiring the formation of assembled "prion-like" species. Several cell and animal models have been described that recapitulate aspects of this phenomenon. However, the molecular characteristics of seed-competent Tau remain unclear. Here, we have used a cell model to understand the relationships between Tau structure/phosphorylation and seeding by aggregated Tau species from the brains of mice transgenic for human mutant P301S Tau and full-length aggregated recombinant P301S Tau. Deletion of motifs (275)VQIINK(280) and (306)VQIVYK(311) abolished the seeding activity of recombinant full-length Tau, suggesting that its aggregation was necessary for seeding. We describe conformational differences between native and synthetic Tau aggregates that may account for the higher seeding activity of native assembled Tau. When added to aggregated Tau seeds from the brains of mice transgenic for P301S Tau, soluble recombinant Tau aggregated and acquired the molecular properties of aggregated Tau from transgenic mouse brain. We show that seeding is conferred by aggregated Tau that enters cells through macropinocytosis and seeds the assembly of endogenous Tau into filaments.


Subject(s)
Protein Aggregates , Protein Aggregation, Pathological/metabolism , Tauopathies/metabolism , tau Proteins/chemistry , Animals , Brain/metabolism , Brain/pathology , Cytoskeleton/metabolism , Cytoskeleton/pathology , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Transgenic , Phosphorylation , Protein Conformation , Tauopathies/pathology , tau Proteins/biosynthesis , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL