Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Invest New Drugs ; 38(4): 1145-1155, 2020 08.
Article in English | MEDLINE | ID: mdl-31707688

ABSTRACT

Purpose The primary objective was to determine the recommended Phase 2 dose (RP2D) of checkpoint kinase 1 inhibitor, prexasertib, in combination with the p38 mitogen-activated protein kinase inhibitor, ralimetinib, which may be safely administered to patients with advanced cancer. Methods This Phase 1, nonrandomized, open-label, dose-escalation study of prexasertib+ralimetinib included patients with advanced and/or metastatic cancer, followed by a planned cohort expansion in patients with colorectal or non-small-cell lung cancer with KRAS and/or BRAF mutations. Intravenous prexasertib was administered at 60 mg/m2 (days 1 and 15 of a 28-day cycle), together with oral ralimetinib every 12 h (days 1 to 14 at 100 mg [Cohort 1, n = 3] or 200 mg [Cohort 2, n = 6]). Dose escalations for each agent were planned using a model-based 3 + 3 escalation paradigm. Safety was assessed using Common Terminology Criteria for Adverse Events (CTCAE) v4.0X. Tumor response was determined by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1. Results Nine patients were treated; 3 experienced dose-limiting toxicities, all in Cohort 2, prohibiting further dose escalation. The most common ≥Grade 3 adverse event was neutrophil count decreased; other reported ≥Grade 3 hematological toxicities included febrile neutropenia and anemia. The pharmacokinetics of prexasertib+ralimetinib was comparable to the monotherapy population profile for each agent. One patient achieved a best overall response of stable disease (for 2 cycles); there were no complete/partial responses. Conclusions This study did not achieve its primary objective of establishing an RP2D of combination prexasertib + ralimetinib that could be safely administered to patients with advanced cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Checkpoint Kinase 1/antagonists & inhibitors , Imidazoles/administration & dosage , Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Pyrazines/administration & dosage , Pyrazoles/administration & dosage , Pyridines/administration & dosage , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Adult , Aged , Antineoplastic Agents/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Female , Humans , Imidazoles/pharmacokinetics , Male , Middle Aged , Models, Biological , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Pyrazines/pharmacokinetics , Pyrazoles/pharmacokinetics , Pyridines/pharmacokinetics , Treatment Outcome
2.
J Pharmacol Exp Ther ; 366(1): 96-104, 2018 07.
Article in English | MEDLINE | ID: mdl-29691287

ABSTRACT

Xenograft mice are largely used to evaluate the efficacy of oncological drugs during preclinical phases of drug discovery and development. Mathematical models provide a useful tool to quantitatively characterize tumor growth dynamics and also optimize upcoming experiments. To the best of our knowledge, this is the first report where unperturbed growth of a large set of tumor cell lines (n = 28) has been systematically analyzed using a previously proposed model of nonlinear mixed effects (NLME). Exponential growth was identified as the governing mechanism in the majority of the cell lines, with constant rate values ranging from 0.0204 to 0.203 day-1 No common patterns could be observed across tumor types, highlighting the importance of combining information from different cell lines when evaluating drug activity. Overall, typical model parameters were precisely estimated using designs in which tumor size measurements were taken every 2 days. Moreover, reducing the number of measurements to twice per week, or even once per week for cell lines with low growth rates, showed little impact on parameter precision. However, a sample size of at least 50 mice is needed to accurately characterize parameter variability (i.e., relative S.E. values below 50%). This work illustrates the feasibility of systematically applying NLME models to characterize tumor growth in drug discovery and development, and constitutes a valuable source of data to optimize experimental designs by providing an a priori sampling window and minimizing the number of samples required.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Models, Statistical
3.
J Pharmacol Exp Ther ; 360(3): 445-456, 2017 03.
Article in English | MEDLINE | ID: mdl-28028124

ABSTRACT

In this work, a semimechanistic tumor growth-response model for gemcitabine in pancreatic (administered as single agent) and ovarian (given as single agent and in combination with carboplatin) cancer in mice was developed. Tumor profiles were obtained from nude mice, previously inoculated with KP4, ASPC1, MIA PACA2, PANC1 (pancreas), A2780, or SKOV3×luc (ovarian) cell lines, and then treated with different dosing schedules of gemcitabine and/or carboplatin. Data were fitted using the population approach with Nonlinear Mixed Effect Models 7.2. In addition to cell proliferation, the tumor progression model for both types of cancer incorporates a carrying capacity representing metabolite pool for DNA synthesis required to tumor growth. Analysis of data from the treated groups revealed that gemcitabine exerted its tumor effects by promoting apoptosis as well as decreasing the carrying capacity compartment. Pharmacodynamic parameters were cell-specific and overall had similar range values between cancer types. In pancreas, a linear model was used to describe both gemcitabine effects with parameter values between 3.26 × 10-2 and 4.2 × 10-1 L/(mg × d). In ovarian cancer, the apoptotic effect was driven by an EMAX model with an efficacy/potency ratio of 5.25-8.65 L/(mg × d). The contribution of carboplatin to tumor effects was lower than the response exerted by gemcitabine and was incorporated in the model as an inhibition of the carrying capacity. The model developed was consistent in its structure across different tumor cell lines and two tumor types where gemcitabine is approved. Simulation-based evaluation diagnostics showed that the model performed well in all experimental design scenarios, including dose, schedule, and tumor type.


Subject(s)
Carboplatin , Deoxycytidine/analogs & derivatives , Ovarian Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols , Apoptosis/drug effects , Carboplatin/administration & dosage , Carboplatin/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/administration & dosage , Deoxycytidine/pharmacokinetics , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Heterografts/drug effects , Heterografts/pathology , Mice , Mice, Nude , Ovarian Neoplasms/pathology , Pancreatic Neoplasms/pathology , Gemcitabine
4.
Blood ; 121(18): 3675-81, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23509154

ABSTRACT

Mnk kinases regulate the phosphorylation and activation of the eukaryotic initiation factor 4E (eIF4E), a protein that plays key roles in the initiation of messenger RNA translation and whose activity is critical for various cellular functions. eIF4E is deregulated in acute myeloid leukemia (AML), and its aberrant activity contributes to leukemogenesis. We determined whether cercosporamide, an antifungal agent that was recently shown to act as a unique Mnk inhibitor, exhibits antileukemic properties. Treatment of AML cells with cercosporamide resulted in a dose-dependent suppression of eIF4E phosphorylation. Such suppression of Mnk kinase activity and eIF4E phosphorylation by cercosporamide resulted in dose-dependent suppressive effects on primitive leukemic progenitors (CFU-L) from AML patients and enhanced the antileukemic properties of cytarabine (Ara-C) or mammalian target of rapamycin (mTOR) complex 1 inhibition. Similarly, the combination of cercosporamide with cytarabine resulted in enhanced antileukemic responses in a xenograft mouse model in vivo. Altogether, this work demonstrates that the unique Mnk inhibitor cercosporamide suppresses phosphorylation of eIF4E and exhibits antileukemic effects, in support of future clinical-translational efforts involving combinations of Mnk inhibitors with cytarabine and/or mTOR inhibitors for the treatment of AML.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Antineoplastic Agents/therapeutic use , Benzofurans/therapeutic use , Cation Transport Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/therapeutic use , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Copper-Transporting ATPases , Down-Regulation/drug effects , Humans , K562 Cells , Mice , Neoplastic Stem Cells/drug effects , U937 Cells , Xenograft Model Antitumor Assays
5.
Invest New Drugs ; 32(5): 825-37, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24919854

ABSTRACT

The G1 restriction point is critical for regulating the cell cycle and is controlled by the Rb pathway (CDK4/6-cyclin D1-Rb-p16/ink4a). This pathway is important because of its inactivation in a majority of human tumors. Transition through the restriction point requires phosphorylation of retinoblastoma protein (Rb) by CDK4/6, which are highly validated cancer drug targets. We present the identification and characterization of a potent CDK4/6 inhibitor, LY2835219. LY2835219 inhibits CDK4 and CDK6 with low nanomolar potency, inhibits Rb phosphorylation resulting in a G1 arrest and inhibition of proliferation, and its activity is specific for Rb-proficient cells. In vivo target inhibition studies show LY2835219 is a potent inhibitor of Rb phosphorylation, induces a complete cell cycle arrest and suppresses expression of several Rb-E2F-regulated proteins 24 hours after a single dose. Oral administration of LY2835219 inhibits tumor growth in human tumor xenografts representing different histologies in tumor-bearing mice. LY2835219 is effective and well tolerated when administered up to 56 days in immunodeficient mice without significant loss of body weight or tumor outgrowth. In calu-6 xenografts, LY2835219 in combination with gemcitabine enhanced in vivo antitumor activity without a G1 cell cycle arrest, but was associated with a reduction of ribonucleotide reductase expression. These results suggest LY2835219 may be used alone or in combination with standard-of-care cytotoxic therapy. In summary, we have identified a potent, orally active small-molecule inhibitor of CDK4/6 that is active in xenograft tumors. LY2835219 is currently in clinical development.


Subject(s)
Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Aminopyridines/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Benzimidazoles/therapeutic use , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Therapy, Combination , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Mice , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/therapeutic use , Retinoblastoma Protein/antagonists & inhibitors , Retinoblastoma Protein/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , Gemcitabine
6.
Invest New Drugs ; 32(5): 955-68, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24942404

ABSTRACT

LY2603618 is an inhibitor of checkpoint kinase 1 (CHK1), an important regulator of the DNA damage checkpoints. Preclinical experiments analyzed NCI-H2122 and NCI-H441 NSCLC cell lines and in vitro/in vivo models treated with pemetrexed and LY2603618 to provide rationale for evaluating this combination in a clinical setting. Combination treatment of LY2603618 with pemetrexed arrested DNA synthesis following initiation of S-phase in cells. Experiments with tumor-bearing mice administered the combination of LY2603618 and pemetrexed demonstrated a significant increase of growth inhibition of NCI-H2122 (H2122) and NCI-H441 (H441) xenograft tumors. These data informed the clinical assessment of LY2603618 in a seamless phase I/II study, which administered pemetrexed (500 mg/m(2)) and cisplatin (75 mg/m(2)) and escalating doses of LY2603618: 130-275 mg. Patients were assessed for safety, toxicity, and pharmacokinetics. In phase I, 14 patients were enrolled, and the most frequently reported adverse events included fatigue, nausea, pyrexia, neutropenia, and vomiting. No DLTs were reported at the tested doses. The systemic exposure of LY2603618 increased in a dose-dependent manner. Pharmacokinetic parameters that correlate with the maximal pharmacodynamic effect in nonclinical xenograft models were achieved at doses ≥240 mg. The pharmacokinetics of LY2603618, pemetrexed, and cisplatin were not altered when used in combination. Two patients achieved a confirmed partial response (both non-small cell lung cancer), and 8 patients had stable disease. LY2603618 administered in combination with pemetrexed and cisplatin demonstrated an acceptable safety profile. The recommended phase II dose of LY2603618 was 275 mg.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Adult , Aged , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/blood , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/adverse effects , Cisplatin/blood , Cisplatin/pharmacokinetics , DNA/metabolism , Female , Glutamates/administration & dosage , Glutamates/adverse effects , Glutamates/blood , Glutamates/pharmacokinetics , Guanine/administration & dosage , Guanine/adverse effects , Guanine/analogs & derivatives , Guanine/blood , Guanine/pharmacokinetics , Humans , Male , Mice, Nude , Middle Aged , Neoplasms/blood , Neoplasms/pathology , Pemetrexed , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/adverse effects , Phenylurea Compounds/blood , Phenylurea Compounds/pharmacokinetics , Pyrazines/administration & dosage , Pyrazines/adverse effects , Pyrazines/blood , Pyrazines/pharmacokinetics , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
7.
J Biopharm Stat ; 22(3): 496-518, 2012.
Article in English | MEDLINE | ID: mdl-22416837

ABSTRACT

We propose a new method that allows screening oncology drug combinations using data from in vitro studies to select agents that have the promise of showing a synergistic effect in vivo. In contrast to known approaches that define combination effects either on the concentration scale or on the percent inhibition scale, we use the growth rate of treated cells as a primary indicator of treatment activity. The developed method is based on a novel statistical model that describes the growth of cancer cells that are subject to treatment with a combination of compounds. The model assumes a multicompartment cell population with transition rates between compartments modeled according to biochemical reaction properties, and cells in each compartment growing according to exponential law. This translates to a linear system of ordinary differential equations, whose solution is accurately approximated by a closed-form expression using rapid equilibrium assumptions. Special cases of the aforementioned model represent situations when the combination effect is absent or when the considered drugs act as the same compound. Assuming the normal distribution for the growth rate measurement error, we describe a formal statistical testing procedure to distinguish between different mechanisms of action for the considered compounds, and to test if a significant combination effect is being observed.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cell Proliferation/drug effects , Models, Biological , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Drug Synergism , Humans , Neoplasms/pathology
8.
Int J Toxicol ; 31(4): 317-25, 2012.
Article in English | MEDLINE | ID: mdl-22692976

ABSTRACT

Prasugrel, a thienopyridine ADP receptor antagonist, is an orally administered prodrug requiring in vivo metabolism to form the active metabolite that irreversibly inhibits platelet activation and aggregation mediated by the P2Y12[sub 12] receptor. A comprehensive nonclinical safety assessment including genotoxicity and carcinogenicity studies supported the chronic use of prasugrel in patients with atherothrombotic disease. In addition, a special assessment of the potential for prasugrel to enhance tumor growth was undertaken to address regulatory concerns relating to increases in human cancers. Prasugrel demonstrated no evidence of genotoxicity and was not oncogenic in a 2-year rat carcinogenicity study. In the 2-year mouse study, an increase in hepatocellular adenomas was considered secondary to enzyme induction and not relevant to human safety. Further, the absence of any increase in common background tumors at any other organ site in either rodent study indicated a lack of tumor promoting activity (apart from the CYP450 induction-related increase in mouse liver tumors). Cell culture studies with 3 human tumor cell lines (lung, colon, prostate) demonstrated that exposure of serum-starved cells to prasugrel's active and major circulating human metabolites does not increase cell proliferation relative to starved cells stimulated to proliferate by addition of 10% FBS. Prasugrel also did not increase tumor growth relative to vehicle controls in nude mice implanted with 3 human tumor cell lines. Thus, traditional genotoxicity and 2-year bioassays as well as specially designed tumor growth enhancement studies in human tumor cell lines and mouse xenograft models clearly demonstrated prasugrel's lack of tumorigenic potential.


Subject(s)
Blood Platelets/drug effects , Carcinogens/toxicity , Piperazines/adverse effects , Platelet Aggregation Inhibitors/adverse effects , Thiophenes/adverse effects , Adenoma, Liver Cell/pathology , Animals , Blood Platelets/metabolism , Carcinogens/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Drug Evaluation, Preclinical , Female , Humans , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred ICR , Piperazines/administration & dosage , Platelet Aggregation Inhibitors/administration & dosage , Prasugrel Hydrochloride , Rats , Rats, Inbred F344 , Risk Factors , Thiophenes/administration & dosage , Xenograft Model Antitumor Assays
9.
Behav Processes ; 201: 104710, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35870551

ABSTRACT

The experiences that domestic dogs have with humans take many forms. We hypothesized that more experience with humans would lead to greater dependence on humans in problem-solving situations. We used the unsolvable task to compare persistence and gazing in dogs with differing degrees of experience with humans: 1) dogs living in a home for a year or more; 2) dogs living in a home for less than a year (including foster dogs); and 3) shelter dogs. Dogs first learned a solvable task; we then measured persistence as well as gazing at humans when the task was unsolvable. Dogs living in a home for a year or more gazed sooner and longer than shelter dogs. Formally trained dogs from breeders also gazed sooner than formally trained dogs from shelters. There were no differences in overall persistence among the three types of dog. However, shelter dogs spent more time biting the box and gazing at it than dogs in the home. Former shelter dogs, former strays, and dogs that had no formal training also spent more time biting the box. We conclude that ownership duration, background, and prior experiences with humans influence human-directed communication and persistence behaviors in dogs.


Subject(s)
Behavior, Animal , Ownership , Animals , Attention , Communication , Dogs , Humans , Learning
10.
SLAS Discov ; 26(10): 1291-1297, 2021 12.
Article in English | MEDLINE | ID: mdl-34474612

ABSTRACT

Well-behaved, in vitro bioassays generally produce normally distributed values in their primary (efficacy) data. Accordingly, the best practices for statistical analysis are well documented and understood. However, assays may occasionally display unusually high variability and fall outside the assumptions inherent in these standard analyses. These assays may still be in the optimization phase, in which the source of variation could be identified and addressed. They might also represent the best available option to address the biological process being examined. In these cases, the use of robust statistical methods may provide a more appropriate set of tools for both data analysis and assay optimization. This article provides guidance on best practices for the use of robust statistical methods for the analysis of bioassay data as an alternative to standard methods. Impacts on experimental design and interpretation will be discussed.


Subject(s)
Biological Assay/methods
11.
Oncotarget ; 11(3): 216-236, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-32076484

ABSTRACT

The combined influence of oncogenic drivers, genomic instability, and/or DNA damage repair deficiencies increases replication stress in cancer. Cells with high replication stress rely on the upregulation of checkpoints like those governed by CHK1 for survival. Previous studies of the CHK1 inhibitor prexasertib demonstrated activity across multiple cancer types. Therefore, we sought to (1) identify markers of prexasertib sensitivity and (2) define the molecular mechanism(s) of intrinsic and acquired resistance using preclinical models representing multiple tumor types. Our findings indicate that while cyclin E dysregulation is a driving mechanism of prexasertib response, biomarkers associated with this aberration lack sufficient predictive power to render them clinically actionable for patient selection. Transcriptome analysis of a pan-cancer cell line panel and in vivo models revealed an association between expression of E2F target genes and prexasertib sensitivity and identified innate immunity genes associated with prexasertib resistance. Functional RNAi studies supported a causal role of replication fork components as modulators of prexasertib response. Mechanisms that protect cells from oncogene-induced replication stress may safeguard tumors from such stress induced by a CHK1 inhibitor, resulting in acquired drug resistance. Furthermore, resistance to prexasertib may be shaped by innate immunity.

12.
AAPS J ; 21(2): 23, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30706160

ABSTRACT

The aim of this evaluation was to predict tumour response to gemcitabine in patients with advanced pancreas or ovarian cancer using pre-clinical data obtained from xenograft tumour-bearing mice. The approach consisted of building a translational model combining pre-clinical pharmacokinetic-pharmacodynamic (PKPD) models and parameters, with dosing paradigms used in the clinics along with clinical PK models to derive tumour profiles in humans driving overall survival. Tumour growth inhibition simulations were performed using drug effect parameters obtained from mice, system parameters obtained from mice after appropriate scaling, patient PK models for gemcitabine and carboplatin, and the standard dosing schedules given in the clinical scenario for both types of cancers. Tumour profiles in mice were scaled by body weight to their equivalent values in humans. As models for survival in humans showed that tumour size was the main driver of the hazard rate, it was possible to describe overall survival in pancreatic and ovarian cancer patients. Simulated tumour dynamics in pancreatic and ovarian cancer patients were evaluated using available data from clinical trials. Furthermore, calculated metrics showed values (maximal tumour regression [0-17%] and tumour size ratio at week 12 with respect to baseline [- 9, - 4.5]) in the range of those predicted with the clinical PKPD models. The model-informed Drug Discovery and Development paradigm has been successfully applied retrospectively to gemcitabine data, through a semi-mechanistic translational approach, describing the time course of the tumour response in patients from pre-clinical studies.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Deoxycytidine/analogs & derivatives , Models, Biological , Ovarian Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Animals , Antimetabolites, Antineoplastic/therapeutic use , Data Interpretation, Statistical , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Mice , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Retrospective Studies , Survival Analysis , Treatment Outcome , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , Gemcitabine
13.
Clin Cancer Res ; 25(7): 2278-2289, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30563935

ABSTRACT

PURPOSE: Checkpoint kinase 1 (CHK1) inhibitors potentiate the DNA-damaging effects of cytotoxic therapies and/or promote elevated levels of replication stress, leading to tumor cell death. Prexasertib (LY2606368) is a CHK1 small-molecule inhibitor under clinical evaluation in multiple adult and pediatric cancers. In this study, prexasertib was tested in a large panel of preclinical models of pediatric solid malignancies alone or in combination with chemotherapy. EXPERIMENTAL DESIGN: DNA damage and changes in cell signaling following in vitro prexasertib treatment in pediatric sarcoma cell lines were analyzed by Western blot and high content imaging. Antitumor activity of prexasertib as a single agent or in combination with different chemotherapies was explored in cell line-derived (CDX) and patient-derived xenograft (PDX) mouse models representing nine different pediatric cancer histologies. RESULTS: Pediatric sarcoma cell lines were highly sensitive to prexasertib treatment in vitro, resulting in activation of the DNA damage response. Two PDX models of desmoplastic small round cell tumor and one malignant rhabdoid tumor CDX model responded to prexasertib with complete regression. Prexasertib monotherapy also elicited robust responses in mouse models of rhabdomyosarcoma. Concurrent administration with chemotherapy was sufficient to overcome innate resistance or prevent acquired resistance to prexasertib in preclinical models of neuroblastoma, osteosarcoma, and Ewing sarcoma, or alveolar rhabdomyosarcoma, respectively. CONCLUSIONS: Prexasertib has significant antitumor effects as a monotherapy or in combination with chemotherapy in multiple preclinical models of pediatric cancer. These findings support further investigation of prexasertib in pediatric malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Checkpoint Kinase 1/antagonists & inhibitors , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Pyrazoles/pharmacology , Animals , Cell Line, Tumor , Cells, Cultured , Child , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Synergism , Humans , Mice , Neoplasms/drug therapy , Sarcoma, Ewing , Xenograft Model Antitumor Assays
14.
Cancer Discov ; 9(2): 248-263, 2019 02.
Article in English | MEDLINE | ID: mdl-30373917

ABSTRACT

Loss-of-function mutations in the retinoblastoma gene RB1 are common in several treatment-refractory cancers such as small-cell lung cancer and triple-negative breast cancer. To identify drugs synthetic lethal with RB1 mutation (RB1 mut), we tested 36 cell-cycle inhibitors using a cancer cell panel profiling approach optimized to discern cytotoxic from cytostatic effects. Inhibitors of the Aurora kinases AURKA and AURKB showed the strongest RB1 association in this assay. LY3295668, an AURKA inhibitor with over 1,000-fold selectivity versus AURKB, is distinguished by minimal toxicity to bone marrow cells at concentrations active against RB1 mut cancer cells and leads to durable regression of RB1 mut tumor xenografts at exposures that are well tolerated in rodents. Genetic suppression screens identified enforcers of the spindle-assembly checkpoint (SAC) as essential for LY3295668 cytotoxicity in RB1-deficient cancers and suggest a model in which a primed SAC creates a unique dependency on AURKA for mitotic exit and survival. SIGNIFICANCE: The identification of a synthetic lethal interaction between RB1 and AURKA inhibition, and the discovery of a drug that can be dosed continuously to achieve uninterrupted inhibition of AURKA kinase activity without myelosuppression, suggest a new approach for the treatment of RB1-deficient malignancies, including patients progressing on CDK4/6 inhibitors.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.


Subject(s)
Aurora Kinase A/antagonists & inhibitors , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Enzyme Inhibitors/pharmacology , M Phase Cell Cycle Checkpoints/drug effects , Retinoblastoma Binding Proteins/metabolism , Small Cell Lung Carcinoma/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Proliferation , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Retinoblastoma Binding Proteins/genetics , Signal Transduction , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/metabolism , Tumor Cells, Cultured , Ubiquitin-Protein Ligases/genetics , Xenograft Model Antitumor Assays
15.
Eur J Pharm Sci ; 115: 296-303, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29366960

ABSTRACT

The aim of this evaluation was to characterize the impact of the tumour size (TS) effects driven by the anticancer drug gemcitabine on overall survival (OS) in patients with advanced pancreatic cancer by building and validating a predictive semi-mechanistic joint TS-OS model. TS and OS data were obtained from one phase II and one phase III study where gemcitabine was administered (1000-1250 mg/kg over 30-60 min i.v infusion) as single agent to patients (n = 285) with advanced pancreatic cancer. Drug exposure, TS and OS were linked using the population approach with NONMEM 7.3. Pancreatic tumour progression was characterized by exponential growth (doubling time = 67 weeks), and tumour response to treatment was described as a function of the weekly area under the gemcitabine triphosphate concentration vs time curve (AUC), including treatment-related resistance development. The typical predicted percentage of tumour growth inhibition with respect to no treatment was 22.3% at the end of 6 chemotherapy cycles. Emerging resistance elicited a 57% decrease in drug effects during the 6th chemotherapy cycle. Predicted TS profile was identified as main prognostic factor of OS, with tumours responders' profiles improving median OS by 30 weeks compared to stable-disease TS profiles. Results of NCT00574275 trial were predicted using this modelling framework, thereby validating the approach as a prediction tool in clinical development. Our analyses show that despite the advanced stage of the disease in this patient population, the modelling framework herein can be used to predict the likelihood of treatment success using early clinical data.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Deoxycytidine/therapeutic use , Disease Progression , Female , Humans , Male , Middle Aged , Pancreas/drug effects , Pancreas/pathology , Pancreatic Neoplasms/pathology , Prognosis , Treatment Outcome , Gemcitabine
16.
Clin Cancer Res ; 24(23): 6028-6039, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30131386

ABSTRACT

PURPOSE: Ewing sarcoma (ES) is a rare and highly malignant cancer that occurs in the bone and surrounding tissue of children and adolescents. The EWS/ETS fusion transcription factor that drives ES pathobiology was previously demonstrated to modulate cyclin D1 expression. In this study, we evaluated abemaciclib, a small-molecule CDK4 and CDK6 (CDK4 and 6) inhibitor currently under clinical investigation in pediatric solid tumors, in preclinical models of ES. EXPERIMENTAL DESIGN: Using Western blot, high-content imaging, flow cytometry, ELISA, RNA sequencing, and CpG methylation assays, we characterized the in vitro response of ES cell lines to abemaciclib. We then evaluated abemaciclib in vivo in cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models of ES as either a monotherapy or in combination with chemotherapy. RESULTS: Abemaciclib induced quiescence in ES cell lines via a G1 cell-cycle block, characterized by decreased proliferation and reduction of Ki-67 and FOXM1 expression and retinoblastoma protein (RB) phosphorylation. In addition, abemaciclib reduced DNMT1 expression and promoted an inflammatory immune response as measured by cytokine secretion, antigen presentation, and interferon pathway upregulation. Single-agent abemaciclib reduced ES tumor volume in preclinical mouse models and, when given in combination with doxorubicin or temozolomide plus irinotecan, durable disease control was observed. CONCLUSIONS: Collectively, our data demonstrate that the antitumor effects of abemaciclib in preclinical ES models are multifaceted and include cell-cycle inhibition, DNA demethylation, and immunogenic changes.


Subject(s)
Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Cell Cycle , DNA Methylation , Interferons/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Signal Transduction/drug effects , Animals , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/genetics , Humans , Mice , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/pathology , Xenograft Model Antitumor Assays
17.
J Immunother Cancer ; 6(1): 47, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29866156

ABSTRACT

BACKGROUND: TGFß signaling plays a pleotropic role in tumor biology, promoting tumor proliferation, invasion and metastasis, and escape from immune surveillance. Inhibiting TGFß's immune suppressive effects has become of particular interest as a way to increase the benefit of cancer immunotherapy. Here we utilized preclinical models to explore the impact of the clinical stage TGFß pathway inhibitor, galunisertib, on anti-tumor immunity at clinically relevant doses. RESULTS: In vitro treatment with galunisertib reversed TGFß and regulatory T cell mediated suppression of human T cell proliferation. In vivo treatment of mice with established 4T1-LP tumors resulted in strong dose-dependent anti-tumor activity with close to 100% inhibition of tumor growth and complete regressions upon cessation of treatment in 50% of animals. This effect was CD8+ T cell dependent, and led to increased T cell numbers in treated tumors. Mice with durable regressions rejected tumor rechallenge, demonstrating the establishment of immunological memory. Consequently, mice that rejected immunogenic 4T1-LP tumors were able to resist rechallenge with poorly immunogenic 4 T1 parental cells, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. Combination of galunisertib with PD-L1 blockade resulted in improved tumor growth inhibition and complete regressions in colon carcinoma models, demonstrating the potential synergy when cotargeting TGFß and PD-1/PD-L1 pathways. Combination therapy was associated with enhanced anti-tumor immune related gene expression profile that was accelerated compared to anti-PD-L1 monotherapy. CONCLUSIONS: Together these data highlight the ability of galunisertib to modulate T cell immunity and the therapeutic potential of combining galunisertib with current PD-1/L1 immunotherapy.


Subject(s)
Combined Modality Therapy/methods , Immunotherapy/methods , Pyrazoles/therapeutic use , Quinolines/therapeutic use , Transforming Growth Factor beta/drug effects , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Pyrazoles/pharmacology , Quinolines/pharmacology
18.
Sci Rep ; 8(1): 15458, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337562

ABSTRACT

AICARFT is a folate dependent catalytic site within the ATIC gene, part of the purine biosynthetic pathway, a pathway frequently upregulated in cancers. LSN3213128 is a potent (16 nM) anti-folate inhibitor of AICARFT and selective relative to TS, SHMT1, MTHFD1, MTHFD2 and MTHFD2L. Increases in ZMP, accompanied by activation of AMPK and cell growth inhibition, were observed with treatment of LY3213128. These effects on ZMP and proliferation were dependent on folate levels. In human breast MDA-MB-231met2 and lung NCI-H460 cell lines, growth inhibition was rescued by hypoxanthine, but not in the A9 murine cell line which is deficient in purine salvage. In athymic nude mice, LSN3213128 robustly elevates ZMP in MDA-MB-231met2, NCI-H460 and A9 tumors in a time and dose dependent manner. Significant tumor growth inhibition in human breast MDA-MB231met2 and lung NCI-H460 xenografts and in the syngeneic A9 tumor model were observed with oral administration of LSN3213128. Strikingly, AMPK appeared activated within the tumors and did not change even at high levels of intratumoral ZMP after weeks of dosing. These results support the evaluation of LSN3213128 as an antineoplastic agent.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Antineoplastic Agents , Enzyme Inhibitors/pharmacology , Hydroxymethyl and Formyl Transferases/antagonists & inhibitors , Lung Neoplasms , Multienzyme Complexes/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Nucleotide Deaminases/antagonists & inhibitors , Ribonucleotides , Aminoimidazole Carboxamide/pharmacokinetics , Aminoimidazole Carboxamide/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Hydroxymethyl and Formyl Transferases/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mice, Nude , Multienzyme Complexes/metabolism , Neoplasm Proteins/metabolism , Nucleotide Deaminases/metabolism , Ribonucleotides/pharmacokinetics , Ribonucleotides/pharmacology , Xenograft Model Antitumor Assays
19.
Cell Rep ; 22(11): 2978-2994, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29539425

ABSTRACT

Abemaciclib, an inhibitor of cyclin dependent kinases 4 and 6 (CDK4/6), has recently been approved for the treatment of hormone receptor-positive breast cancer. In this study, we use murine syngeneic tumor models and in vitro assays to investigate the impact of abemaciclib on T cells, the tumor immune microenvironment and the ability to combine with anti-PD-L1 blockade. Abemaciclib monotherapy resulted in tumor growth delay that was associated with an increased T cell inflammatory signature in tumors. Combination with anti-PD-L1 therapy led to complete tumor regressions and immunological memory, accompanied by enhanced antigen presentation, a T cell inflamed phenotype, and enhanced cell cycle control. In vitro, treatment with abemaciclib resulted in increased activation of human T cells and upregulated expression of antigen presentation genes in MCF-7 breast cancer cells. These data collectively support the clinical investigation of the combination of abemaciclib with agents such as anti-PD-L1 that modulate T cell anti-tumor immunity.


Subject(s)
Aminopyridines/therapeutic use , Benzimidazoles/therapeutic use , Cyclin-Dependent Kinase Inhibitor p15/therapeutic use , Cyclin-Dependent Kinase Inhibitor p18/therapeutic use , Programmed Cell Death 1 Receptor/metabolism , Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Cyclin-Dependent Kinase Inhibitor p15/pharmacology , Cyclin-Dependent Kinase Inhibitor p18/pharmacology , Humans , Tumor Microenvironment
20.
Oncotarget ; 9(6): 6659-6677, 2018 Jan 23.
Article in English | MEDLINE | ID: mdl-29467918

ABSTRACT

Transforming growth factor-ß (TGFß) is an important driver of tumor growth via intrinsic and extrinsic mechanisms, and is therefore an attractive target for developing cancer therapeutics. Using preclinical models, we characterized the anti-tumor activity of a small molecule inhibitor of TGFß receptor I (TGFßRI), galunisertib (LY2157299 monohydrate). Galunisertib demonstrated potent and selective inhibition of TGFßRI with corresponding inhibition of downstream signaling via inhibition of SMAD phosphorylation (pSMAD). Galunisertib also inhibited TGFß-induced pSMAD in vivo, which enabled a pharmacokinetic/pharmacodynamic profile in Calu6 and EMT6-LM2 tumors. Galunisertib demonstrated anti-tumor activity including inhibition of tumor cell migration and mesenchymal phenotype, reversal of TGFß-mediated immune-suppression, and tumor growth delay. A concentration-effect relationship was established with a dosing schedule to achieve the optimal level of target modulation. Finally, a rat model demonstrated a correlation between galunisertib-dependent inhibition of pSMAD in tumor tissues and in PBMCs, supporting the use of PBMCs for assessing pharmacodynamic effects. Galunisertib has been tested in several clinical studies with evidence of anti-tumor activity observed in subsets of patients. Here, we demonstrate that galunisertib inhibits a number of TGFß-dependent functions leading to anti-tumor activity. The enhanced understanding of galunisertib provides rationale for further informed clinical development of TGFß pathway inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL