Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Carcinogenesis ; 41(7): 865-874, 2020 07 14.
Article in English | MEDLINE | ID: mdl-31738404

ABSTRACT

Prostate cancer is one of the most common cancers in men, yet the biology behind lethal disease progression and bone metastasis is poorly understood. In this study, we found elevated levels of microRNA-96 (miR-96) in prostate cancer bone metastasis samples. To determine the molecular mechanisms by which miR-96 deregulation contributes to metastatic progression, we performed an Argonaute2-immunoprecipitation assay, in which mRNAs associated with cell-cell interaction were enriched. The expression of two cell adhesion molecules, E-Cadherin and EpCAM, was upregulated by miR-96, and potential targets sites were identified in the coding sequences of their mRNAs. We further showed that miR-96 enhanced cell-cell adhesion between prostate cancer cells as well as their ability to bind to osteoblasts. Our findings suggest that increased levels of miR-96 give prostate cancer cells an advantage at forming metastases in the bone microenvironment due to increased cell-cell interaction. We propose that miR-96 promotes bone metastasis in prostate cancer patients by facilitating the outgrowth of macroscopic tumours in the bone.


Subject(s)
Bone Neoplasms/genetics , Cadherins/genetics , Epithelial Cell Adhesion Molecule/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Argonaute Proteins/genetics , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Neoplasm Metastasis , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Tumor Microenvironment/genetics
2.
Prostate ; 78(4): 257-265, 2018 03.
Article in English | MEDLINE | ID: mdl-29250809

ABSTRACT

BACKGROUND: Microseminoprotein-beta (MSMB) is a major secretory product from prostate epithelial cells. MSMB synthesis is decreased in prostate tumors in relation to tumor grade. MSMB levels are also reduced in the circulation and MSMB is therefore used as a serum biomarker for prostate cancer. We hypothesized that cancers induce a reduction in MSMB synthesis also in the benign parts of the prostate, and that the magnitude of this response is related to tumor aggressiveness. Reduced levels of MSMB in the circulation could therefore be a consequence of reduced MSMB expression not only in tumor tissue but also in the benign prostate tissue. METHODS: MSMB expression was analyzed in prostatectomy specimens from 36 patients using immunohistochemistry and qRT-PCR. MSMB expression in the benign prostate tissue was analyzed in relation to Gleason score, tumor stage, and distance to the tumor. Furthermore, Dunning rat prostate tumors with different aggressiveness were implanted into the prostate of Copenhagen rats to study if this affected the MSMB expression in the tumor-adjacent benign rat prostate tissue. RESULTS: In prostatectomy specimens, MSMB expression was reduced in prostate tumors but also in the tumor-adjacent benign parts of the prostate. The reduction in tumor MSMB was related to tumor grade and stage, and the reduction in the benign parts of the prostate to tumor grade, stage, and distance to the tumor. Implantation of Dunning cancer cells into the rat prostate resulted in reduced MSMB protein levels in the tumor-adjacent benign prostate tissue. Rapidly growing and metastatic MatLyLu tumors had a more pronounced effect than slow-growing non-metastatic G tumors. CONCLUSION: Our data suggest that aggressive prostate tumors suppress MSMB synthesis in the benign prostate and that this could explain why serum levels of MSMB are decreased in prostate cancer patients. This study suggests that markers for aggressive cancer can be found among factors altered in parallel in prostate tumors and in the adjacent benign tissue.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/genetics , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Secretory Proteins/metabolism , Animals , Down-Regulation , Humans , Immunohistochemistry , Male , Prostate/pathology , Prostatectomy , Prostatic Neoplasms/pathology , Rats , Real-Time Polymerase Chain Reaction
3.
Cancers (Basel) ; 15(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37173903

ABSTRACT

MicroRNAs (miRNAs) are aberrantly expressed in prostate cancer (PC), but comprehensive knowledge about their levels and function in metastatic PC is lacking. Here, we explored the differential expression of miRNA profiles during PC progression to bone metastasis, and further focused on the downregulation of miRNA-23c and -4328 and their impact on PC growth in experimental models. Using microarray screening, the levels of 1510 miRNAs were compared between bone metastases (n = 14), localized PC (n = 7) and benign prostate tissue (n = 7). Differentially expressed miRNAs (n = 4 increased and n = 75 decreased, p < 0.05) were identified, of which miRNA-1, -23c, -143-3p, -143-5p, -145-3p, -205-5p, -221-3p, -222-3p and -4328 showed consistent downregulation during disease progression (benign > localized PC > bone metastases). The downregulation of miRNA-23c and -4328 was confirmed by reverse transcription and quantitative polymerase chain reaction analysis of 67 metastasis, 12 localized PC and 12 benign prostate tissue samples. The stable overexpression of miRNA-23c and -4328 in the 22Rv1 and PC-3 cell lines resulted in reduced PC cell growth in vitro, and in the secretion of high levels of miRNA-23c (but not -4328) in extracellular vesicles. However, no tumor suppressive effects were observed from miRNA-23c overexpression in PC-3 cells subcutaneously grown in mice. In conclusion, bone metastases display a profound reduction of miRNA levels compared to localized PC and benign disease. The downregulation of those miRNAs, including miRNA-23c and -4328, may lead to a loss of tumor suppressive effects and provide biomarker and therapeutic possibilities that deserve to be further explored.

4.
Mol Oncol ; 16(4): 846-859, 2022 02.
Article in English | MEDLINE | ID: mdl-34889043

ABSTRACT

To improve treatment of metastatic prostate cancer, the biology of metastases needs to be understood. We recently described three subtypes of prostate cancer bone metastases (MetA-C), based on differential gene expression. The aim of this study was to verify the clinical relevance of these subtypes and to explore their biology and relations to genetic drivers. Freshly-frozen metastasis samples were obtained as hormone-naive (n = 17), short-term castrated (n = 21), or castration-resistant (n = 65) from a total of 67 patients. Previously published sequencing data from 573 metastasis samples were also analyzed. Through transcriptome profiling and sample classification based on a set of predefined MetA-C-differentiating genes, we found that most metastases were heterogeneous for the MetA-C subtypes. Overall, MetA was the most common subtype, while MetB was significantly enriched in castration-resistant samples and in liver metastases, and consistently associated with poor prognosis. By gene set enrichment analysis, the phenotype of MetA was described by high androgen response, protein secretion and adipogenesis, MetB by high cell cycle activity and DNA repair, and MetC by epithelial-to-mesenchymal transition and inflammation. The MetB subtype demonstrated single nucleotide variants of RB transcriptional corepressor 1 (RB1) and loss of 21 genes at chromosome 13, including RB1, but provided independent prognostic value to those genetic aberrations. In conclusion, a distinct set of gene transcripts can be used to classify prostate cancer metastases into the subtypes MetA-C. The MetA-C subtypes show diverse biology, organ tropism, and prognosis. The MetA-C classification may be used independently, or in combination with genetic markers, primarily to identify MetB patients in need of complementary therapy to conventional androgen receptor-targeting treatments.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasm Metastasis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL