Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Publication year range
1.
Mol Cell ; 57(3): 521-36, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25658204

ABSTRACT

Mitochondrial division is essential for mitosis and metazoan development, but a mechanistic role in cancer biology remains unknown. Here, we examine the direct effects of oncogenic RAS(G12V)-mediated cellular transformation on the mitochondrial dynamics machinery and observe a positive selection for dynamin-related protein 1 (DRP1), a protein required for mitochondrial network division. Loss of DRP1 prevents RAS(G12V)-induced mitochondrial dysfunction and renders cells resistant to transformation. Conversely, in human tumor cell lines with activating MAPK mutations, inhibition of these signals leads to robust mitochondrial network reprogramming initiated by DRP1 loss resulting in mitochondrial hyper-fusion and increased mitochondrial metabolism. These phenotypes are mechanistically linked by ERK1/2 phosphorylation of DRP1 serine 616; DRP1(S616) phosphorylation is sufficient to phenocopy transformation-induced mitochondrial dysfunction, and DRP1(S616) phosphorylation status dichotomizes BRAF(WT) from BRAF(V600E)-positive lesions. These findings implicate mitochondrial division and DRP1 as crucial regulators of transformation with leverage in chemotherapeutic success.


Subject(s)
Cell Transformation, Neoplastic/genetics , Dynamins/metabolism , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , ras Proteins/metabolism , Animals , Cell Line, Tumor , Dynamins/genetics , GTP Phosphohydrolases/genetics , HT29 Cells , Humans , MAP Kinase Signaling System/drug effects , Mice , Microtubule-Associated Proteins/genetics , Mitochondrial Proteins/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Serine/metabolism , ras Proteins/genetics
2.
Nature ; 485(7397): 242-5, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22495311

ABSTRACT

Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant, and the overall rate of mutation is only modestly higher than the expected rate. In contrast, the proteins encoded by genes that harboured de novo missense or nonsense mutations showed a higher degree of connectivity among themselves and to previous ASD genes as indexed by protein-protein interaction screens. The small increase in the rate of de novo events, when taken together with the protein interaction results, are consistent with an important but limited role for de novo point mutations in ASD, similar to that documented for de novo copy number variants. Genetic models incorporating these data indicate that most of the observed de novo events are unconnected to ASD; those that do confer risk are distributed across many genes and are incompletely penetrant (that is, not necessarily sufficient for disease). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5- to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favour of CHD8 and KATNAL2 as genuine autism risk factors.


Subject(s)
Autistic Disorder/genetics , DNA-Binding Proteins/genetics , Exons/genetics , Genetic Predisposition to Disease/genetics , Mutation/genetics , Transcription Factors/genetics , Case-Control Studies , Exome/genetics , Family Health , Humans , Models, Genetic , Multifactorial Inheritance/genetics , Phenotype , Poisson Distribution , Protein Interaction Maps
3.
J Virol ; 89(15): 7550-66, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25972557

ABSTRACT

UNLABELLED: Bats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response of Pteropus vampyrus bat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. The Pteropus genus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells. IMPORTANCE: Bats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral maintenance, research into their immune system and mechanisms for viral control has only recently begun. Nipah virus and Hendra virus are two paramyxoviruses associated with high mortality rates in humans and whose reservoir is the Pteropus genus of bats. Greater knowledge of the innate immune response of P. vampyrus bats to viral infection may elucidate how bats serve as a reservoir for so many viruses.


Subject(s)
Chiroptera/immunology , Disease Reservoirs/virology , Gene Expression Profiling , Henipavirus Infections/immunology , Immunity, Innate , Interferons/immunology , Nipah Virus/immunology , Animals , Chiroptera/genetics , Chiroptera/virology , Hendra Virus/genetics , Hendra Virus/immunology , Hendra Virus/physiology , Henipavirus Infections/genetics , Henipavirus Infections/virology , Humans , Immune Evasion , Interferons/genetics , Newcastle disease virus/genetics , Newcastle disease virus/immunology , Newcastle disease virus/physiology , Nipah Virus/genetics , Nipah Virus/physiology
4.
PLoS Pathog ; 9(1): e1003147, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23382680

ABSTRACT

Ebolaviruses, highly lethal zoonotic pathogens, possess longer genomes than most other non-segmented negative-strand RNA viruses due in part to long 5' and 3' untranslated regions (UTRs) present in the seven viral transcriptional units. To date, specific functions have not been assigned to these UTRs. With reporter assays, we demonstrated that the Zaire ebolavirus (EBOV) 5'-UTRs lack internal ribosomal entry site function. However, the 5'-UTRs do differentially regulate cap-dependent translation when placed upstream of a GFP reporter gene. Most dramatically, the 5'-UTR derived from the viral polymerase (L) mRNA strongly suppressed translation of GFP compared to a ß-actin 5'-UTR. The L 5'-UTR is one of four viral genes to possess upstream AUGs (uAUGs), and ablation of each uAUG enhanced translation of the primary ORF (pORF), most dramatically in the case of the L 5'-UTR. The L uAUG was sufficient to initiate translation, is surrounded by a "weak" Kozak sequence and suppressed pORF translation in a position-dependent manner. Under conditions where eIF2α was phosphorylated, the presence of the uORF maintained translation of the L pORF, indicating that the uORF modulates L translation in response to cellular stress. To directly address the role of the L uAUG in virus replication, a recombinant EBOV was generated in which the L uAUG was mutated to UCG. Strikingly, mutating two nucleotides outside of previously-defined protein coding and cis-acting regulatory sequences attenuated virus growth to titers 10-100-fold lower than a wild-type virus in Vero and A549 cells. The mutant virus also exhibited decreased viral RNA synthesis as early as 6 hours post-infection and enhanced sensitivity to the stress inducer thapsigargin. Cumulatively, these data identify novel mechanisms by which EBOV regulates its polymerase expression, demonstrate their relevance to virus replication and identify a potential therapeutic target.


Subject(s)
DNA-Directed RNA Polymerases , Ebolavirus/enzymology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Viral , Viral Proteins/metabolism , Virus Replication/genetics , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Animals , Base Sequence , Cell Line , Chlorocebus aethiops , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Ebolavirus/genetics , Enzyme Inhibitors/pharmacology , Humans , Molecular Sequence Data , Protein Biosynthesis , RNA, Viral/biosynthesis , Thapsigargin/pharmacology , Vero Cells
5.
Angew Chem Int Ed Engl ; 53(35): 9222-5, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25044570

ABSTRACT

The monitoring of molecular systems usually requires sophisticated technologies to interpret nanoscale events into electronic-decipherable signals. We demonstrate a new method for obtaining read-outs of molecular states that uses graphics processing units made from molecular circuits. Because they are made from molecules, the units are able to directly interact with molecular systems. We developed deoxyribozyme-based graphics processing units able to monitor nucleic acids and output alphanumerical read-outs via a fluorescent display. Using this design we created a molecular 7-segment display, a molecular calculator able to add and multiply small numbers, and a molecular automaton able to diagnose Ebola and Marburg virus sequences. These molecular graphics processing units provide insight for the construction of autonomous biosensing devices, and are essential components for the development of molecular computing platforms devoid of electronics.


Subject(s)
Biosensing Techniques , Computer Graphics , DNA, Catalytic/chemistry , Nucleic Acids/analysis , DNA, Catalytic/metabolism , Electronics
6.
Nucleic Acids Res ; 39(21): e141, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21890899

ABSTRACT

Deep sequencing of small RNAs (sRNA-seq) is now the gold standard for small RNA profiling and discovery. Biases in sRNA-seq have been reported, but their etiology remains unidentified. Through a comprehensive series of sRNA-seq experiments, we establish that the predominant cause of the bias is the RNA ligases. We further demonstrate that RNA ligases have strong sequence-specific biases which distort the small RNA profiles considerably. We have devised a pooled adapter strategy to overcome this bias, and validated the method through data derived from microarray and qPCR. In light of our findings, published small RNA profiles, as well as barcoding strategies using adapter-end modifications, may need to be revisited. Importantly, by providing a wide spectrum of substrate for the ligase, the pooled-adapter strategy developed here provides a means to overcome issues of bias, and generate more accurate small RNA profiles.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA Ligase (ATP) , RNA, Small Untranslated/chemistry , Sequence Analysis, RNA/methods , Animals , Bias , Gene Expression Profiling , HEK293 Cells , Humans , Mice , RNA, Small Untranslated/metabolism
7.
PLoS Pathog ; 6: e1000972, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20617167

ABSTRACT

Bats are reservoirs for a wide range of zoonotic agents including lyssa-, henipah-, SARS-like corona-, Marburg-, Ebola-, and astroviruses. In an effort to survey for the presence of other infectious agents, known and unknown, we screened sera from 16 Pteropus giganteus bats from Faridpur, Bangladesh, using high-throughput pyrosequencing. Sequence analyses indicated the presence of a previously undescribed virus that has approximately 50% identity at the amino acid level to GB virus A and C (GBV-A and -C). Viral nucleic acid was present in 5 of 98 sera (5%) from a single colony of free-ranging bats. Infection was not associated with evidence of hepatitis or hepatic dysfunction. Phylogenetic analysis indicates that this first GBV-like flavivirus reported in bats constitutes a distinct species within the Flaviviridae family and is ancestral to the GBV-A and -C virus clades.


Subject(s)
Chiroptera/virology , Flaviviridae/classification , Animals , Bangladesh , DNA, Viral/analysis , Flaviviridae/genetics , GB virus A/genetics , GB virus C/genetics , Phylogeny , Sequence Homology, Nucleic Acid
8.
Rheumatol Ther ; 9(2): 391-409, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34878629

ABSTRACT

INTRODUCTION: The biologics abatacept and adalimumab have different mechanisms of action (MoAs). We analyzed data from patients with rheumatoid arthritis treated in AMPLE (NCT00929864) to explore the pharmacodynamic effects of abatacept or adalimumab on anti-citrullinated protein antibodies (ACPAs) and gene expression. METHODS: AMPLE was a phase IIIb, 2-year, randomized, head-to-head trial of abatacept versus adalimumab. Post hoc analyses of baseline anti-cyclic citrullinated peptide-2 (anti-CCP2, an ACPA surrogate) positive (+) status and ACPA fine-specificity profiles over time, as well as transcriptional profiling (peripheral whole blood), were performed. RESULTS: Of 646 patients treated (abatacept, n = 318; adalimumab, n = 328), ACPA and gene expression data were available from 508 and 566 patients, respectively. In anti-CCP2+ patients (n = 388), baseline fine specificities for most ACPAs were highly correlated; over 2 years, levels decreased with abatacept but not adalimumab. By year 2, expression of genes associated with T cell co-stimulation and antibody production was lower for abatacept versus adalimumab; expression of genes associated with proinflammatory signaling was lower for adalimumab versus abatacept. Treatment modulated the expression of T- and B-cell gene signatures, with differences in CD8+ T cells, activated T cells, plasma cells, B cells, natural killer cells (all lower with abatacept versus adalimumab), and polymorphonuclear leukocytes (higher with abatacept versus adalimumab). CONCLUSIONS: In AMPLE, despite similar clinical outcomes, data showed that pharmacodynamic/genetic changes after 2 years of abatacept or adalimumab were consistent with drug MoAs. Further assessment of the relationship between such changes and clinical outcomes, including prediction of response, is warranted. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT00929864.

9.
BMC Bioinformatics ; 11: 354, 2010 Jun 28.
Article in English | MEDLINE | ID: mdl-20584331

ABSTRACT

BACKGROUND: The analysis of oligonucleotide microarray data in pathogen surveillance and discovery is a challenging task. Target template concentration, nucleic acid integrity, and host nucleic acid composition can each have a profound effect on signal distribution. Exploratory analysis of fluorescent signal distribution in clinical samples has revealed deviations from normality, suggesting that distribution-free approaches should be applied. RESULTS: Positive predictive value and false positive rates were examined to assess the utility of three well-established nonparametric methods for the analysis of viral array hybridization data: (1) Mann-Whitney U, (2) the Spearman correlation coefficient and (3) the chi-square test. Of the three tests, the chi-square proved most useful. CONCLUSIONS: The acceptance of microarray use for routine clinical diagnostics will require that the technology be accompanied by simple yet reliable analytic methods. We report that our implementation of the chi-square test yielded a combination of low false positive rates and a high degree of predictive accuracy.


Subject(s)
Oligonucleotide Array Sequence Analysis/methods , Viruses/genetics , Animals , Gene Expression Profiling , Humans , Models, Statistical , Nucleic Acid Hybridization/methods , Reference Standards
10.
J Biol Chem ; 284(45): 30994-1005, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19690167

ABSTRACT

Deletion of the acyltransferases responsible for triglyceride and steryl ester synthesis in Saccharomyces cerevisiae serves as a genetic model of diseases where lipid overload is a component. The yeast mutants lack detectable neutral lipids and cytoplasmic lipid droplets and are strikingly sensitive to unsaturated fatty acids. Expression of human diacylglycerol acyltransferase 2 in the yeast mutants was sufficient to reverse these phenotypes. Similar to mammalian cells, fatty acid-mediated death in yeast is apoptotic and presaged by transcriptional induction of stress-response pathways, elevated oxidative stress, and activation of the unfolded protein response. To identify pathways that protect cells from lipid excess, we performed genetic interaction and transcriptional profiling screens with the yeast acyltransferase mutants. We thus identified diacylglycerol kinase-mediated phosphatidic acid biosynthesis and production of phosphatidylcholine via methylation of phosphatidylethanolamine as modifiers of lipotoxicity. Accordingly, the combined ablation of phospholipid and triglyceride biosynthesis increased sensitivity to saturated fatty acids. Similarly, normal sphingolipid biosynthesis and vesicular transport were required for optimal growth upon denudation of triglyceride biosynthesis and also mediated resistance to exogenous fatty acids. In metazoans, many of these processes are implicated in insulin secretion thus linking lipotoxicity with early aspects of pancreatic beta-cell dysfunction, diabetes, and the metabolic syndrome.


Subject(s)
Diacylglycerol O-Acyltransferase/deficiency , Fatty Acids/toxicity , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Sterols/metabolism , Cell Death/drug effects , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Fungal , Humans , Microbial Viability , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
11.
Nucleic Acids Res ; 36(1): e3, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18079152

ABSTRACT

Oligonucleotide microarrays have been applied to microbial surveillance and discovery where highly multiplexed assays are required to address a wide range of genetic targets. Although printing density continues to increase, the design of comprehensive microbial probe sets remains a daunting challenge, particularly in virology where rapid sequence evolution and database expansion confound static solutions. Here, we present a strategy for probe design based on protein sequences that is responsive to the unique problems posed in virus detection and discovery. The method uses the Protein Families database (Pfam) and motif finding algorithms to identify oligonucleotide probes in conserved amino acid regions and untranslated sequences. In silico testing using an experimentally derived thermodynamic model indicated near complete coverage of the viral sequence database.


Subject(s)
Oligonucleotide Array Sequence Analysis , Oligonucleotide Probes/chemistry , Sequence Analysis, Protein/methods , Viral Proteins/chemistry , Viruses/isolation & purification , Amino Acid Motifs , Amino Acid Sequence , Conserved Sequence , Databases, Nucleic Acid , Databases, Protein , Genes, Viral , Genome, Viral , HIV-1/genetics , Humans , Sequence Homology, Amino Acid , Viral Proteins/genetics , Viruses/genetics
12.
Medicina (B Aires) ; 70(6): 518-23, 2010.
Article in English | MEDLINE | ID: mdl-21163739

ABSTRACT

While worldwide pandemic influenza A(H1N1) pdm case fatality rate (CFR) was 0.4%, Argentina's was 4.5%. A total of 34 strains from mild and severe cases were analyzed. A full genome sequencing was carried out on 26 of these, and a partial sequencing on the remaining eight. We observed no evidence that the high CFR can be attributed to direct virus changes. No evidence of re-assortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence was observed. Although the mutation D225G associated with severity in the latest reports from the Ukraine and Norway is not observed among the Argentine strains, an amino acid change in the area (S206T) surrounding the HA receptor binding domain was observed, the same previously established worldwide.


Subject(s)
DNA, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/virology , Mutation/genetics , Adolescent , Adult , Argentina/epidemiology , Child , Child, Preschool , Cluster Analysis , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/mortality , Male , Middle Aged , Molecular Sequence Data , RNA, Viral/genetics , Receptors, Virus/genetics , Reproducibility of Results , Severity of Illness Index , Young Adult
13.
Vet Microbiol ; 133(1-2): 145-53, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18621489

ABSTRACT

Definitive diagnosis of vesicular or vesicular-like lesions in livestock animals presents challenges both for veterinary clinicians and diagnostic laboratories. It is often impossible to diagnose the causative disease agent on a clinical basis alone and difficult to collect ample vesicular epithelium samples. Due to restrictions of time and sample size, once laboratory tests have ruled out foot-and-mouth disease, vesicular stomatitis and swine vesicular disease a definitive diagnosis may remain elusive. With the ability to test a small quantity of sample for a large number of pathogens simultaneously, DNA microarrays represent a potential solution to this problem. This study describes the application of a long oligonucleotide microarray assay to the identification of viruses known to cause vesicular or vesicular-like lesions in livestock animals. Eighteen virus isolates from cell culture were successfully identified to genus level, including representatives of each foot-and-mouth disease virus serotype, two species of vesicular stomatitis virus (VSV), swine vesicular disease virus, vesicular exanthema of swine virus (VESV), bovine herpesvirus 1, orf virus, pseudocowpox virus, bluetongue virus serotype 1 and bovine viral diarrhoea virus 1. VSV and VESV were also identified in vesicular epithelium samples, with varying levels of sensitivity. The results indicate that with further development this microarray assay could be a valuable tool for the diagnosis of vesicular and vesicular-like diseases.


Subject(s)
Cattle Diseases/diagnosis , Foot-and-Mouth Disease/diagnosis , Oligonucleotide Array Sequence Analysis/veterinary , Swine Diseases/diagnosis , Swine Vesicular Disease/diagnosis , Vesicular Stomatitis/diagnosis , Animals , Cattle , Cattle Diseases/virology , DNA, Viral/chemistry , DNA, Viral/genetics , Female , Foot-and-Mouth Disease/pathology , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/isolation & purification , Oligonucleotide Array Sequence Analysis/methods , RNA, Viral/chemistry , RNA, Viral/genetics , Sensitivity and Specificity , Swine , Swine Diseases/pathology , Swine Diseases/virology , Swine Vesicular Disease/pathology , Swine Vesicular Disease/virology , Vesicular Stomatitis/pathology , Vesicular Stomatitis/virology , Vesiculovirus/isolation & purification
14.
Nucleic Acids Res ; 34(22): 6605-11, 2006.
Article in English | MEDLINE | ID: mdl-17135211

ABSTRACT

Polymerase chain reaction (PCR) is widely applied in clinical and environmental microbiology. Primer design is key to the development of successful assays and is often performed manually by using multiple nucleic acid alignments. Few public software tools exist that allow comprehensive design of degenerate primers for large groups of related targets based on complex multiple sequence alignments. Here we present a method for designing such primers based on tree building followed by application of a set covering algorithm, and demonstrate its utility in compiling Multiplex PCR primer panels for detection and differentiation of viral pathogens.


Subject(s)
DNA Primers/chemistry , Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Software , Algorithms , Computational Biology , DNA, Viral/analysis
15.
Schizophr Res ; 191: 140-147, 2018 01.
Article in English | MEDLINE | ID: mdl-28532686

ABSTRACT

Persistent auditory verbal hallucinations (AVH) in schizophrenia are increasingly tied to dysfunction at the level of auditory cortex. AVH may reflect in part misattribution of internally generated thoughts to external spatial locations. Here, we investigated the association between persistent AVH and spatial localization abilities assessed both behaviorally and by mismatch negativity (MMN) to location deviants. METHODS: Spatial- and tonal- discrimination abilities were assessed in patients (n=20) and controls (n=20) using free-field tones. MMN was assessed to spatial-location-, pitch- and duration-deviants. AVH and thought disorder were assessed using clinical evaluation. RESULTS: As predicted, patients showed significant reductions in behavioral spatial-discrimination (p<0.0001) and tone-matching (p<0.001) ability, along with impaired MMN generation to location (p<0.03) and pitch (p<0.05) deviants. Hallucinating (AVH+) and non-hallucinating (AVH-) subjects showed similar deficits in location MMN to left-hemifield stimuli (p<0.0001 vs. control). By contrast, AVH- patients differed significantly from controls (p=0.009) and AVH+ patients (p=0.018) for MMN to right-lateral hemifield (left auditory cortex) stimuli, whereas AVH+ patients showed paradoxically preserved MMN generation (p=0.99 vs. controls). Severity of thought disorder correlated with impaired spatial discrimination, especially to right-hemifield stimuli (p=0.013), but did not correlate significantly with MMN or tone matching deficits. CONCLUSION: These findings demonstrate a significant relationship between auditory cortical spatial localization abilities and AVH susceptibility, with relatively preserved function of left vs. right auditory cortex predisposing to more severe AVH, and support models that attribute persistent AVH to impaired source-monitoring. The findings suggest new approaches for therapeutic intervention for both AVH and thought disorder in schizophrenia.


Subject(s)
Contingent Negative Variation/physiology , Evoked Potentials, Auditory/physiology , Hallucinations/etiology , Schizophrenia/complications , Acoustic Stimulation , Adult , Analysis of Variance , Auditory Cortex/physiopathology , Auditory Perception , Brain Mapping , Electroencephalography , Female , Humans , Male , Middle Aged
16.
Lupus Sci Med ; 4(1): e000206, 2017.
Article in English | MEDLINE | ID: mdl-29214034

ABSTRACT

OBJECTIVE: To characterise patients with active SLE based on pretreatment gene expression-defined peripheral immune cell patterns and identify clusters enriched for potential responders to abatacept treatment. METHODS: This post hoc analysis used baseline peripheral whole blood transcriptomic data from patients in a phase IIb trial of intravenous abatacept (~10 mg/kg/month). Cell-specific genes were used with a published deconvolution algorithm to identify immune cell proportions in patient samples, and unsupervised consensus clustering was generated. Efficacy data were re-analysed. RESULTS: Patient data (n=144: abatacept: n=98; placebo: n=46) were grouped into four main clusters (C) by predominant characteristic cells: C1-neutrophils; C2-cytotoxic T cells, B-cell receptor-ligated B cells, monocytes, IgG memory B cells, activated T helper cells; C3-plasma cells, activated dendritic cells, activated natural killer cells, neutrophils; C4-activated dendritic cells, cytotoxic T cells. C3 had the highest baseline total British Isles Lupus Assessment Group (BILAG) scores, highest antidouble-stranded DNA autoantibody levels and shortest time to flare (TTF), plus trends in favour of response to abatacept over placebo: adjusted mean difference in BILAG score over 1 year, -4.78 (95% CI -12.49 to 2.92); median TTF, 56 vs 6 days; greater normalisation of complement component 3 and 4 levels. Differential improvements with abatacept were not seen in other clusters, except for median TTF in C1 (201 vs 109 days). CONCLUSIONS: Immune cell clustering segmented disease severity and responsiveness to abatacept. Definition of immune response cell types may inform design and interpretation of SLE trials and treatment decisions. TRIAL REGISTRATION NUMBER: NCT00119678; results.

17.
Mol Biol Cell ; 27(25): 4002-4010, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27798241

ABSTRACT

Eukaryotes contain three essential Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin, and Smc5/6. Cohesin forms a ring-shaped structure that embraces sister chromatids to promote their cohesion. The cohesiveness of cohesin is promoted by acetylation of N-terminal lysines of the Smc3 subunit by the acetyltransferases Eco1 in Saccharomyces cerevisiae and the homologue, Eso1, in Schizosaccharomyces pombe. In both yeasts, these acetyltransferases are essential for cell viability. However, whereas nonacetylatable Smc3 mutants are lethal in S. cerevisiae, they are not in S. pombe We show that the lethality of a temperature-sensitive allele of eso1 (eso1-H17) is due to activation of the spindle assembly checkpoint (SAC) and is associated with premature centromere separation. The lack of cohesion at the centromeres does not correlate with Psm3 acetylation or cohesin levels at the centromeres, but is associated ith significantly reduced recruitment of the cohesin regulator Pds5. The SAC activation in this context is dependent on Smc5/6 function, which is required to remove cohesin from chromosome arms but not centromeres. The mitotic defects caused by Smc5/6 and Eso1 dysfunction are cosuppressed in double mutants. This identifies a novel function (or functions) for Eso1 and Smc5/6 at centromeres and extends the functional relationships between these SMC complexes.


Subject(s)
Acetyltransferases/metabolism , Cell Cycle Proteins/metabolism , Centromere/enzymology , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Acetyltransferases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/physiology , Cell Cycle Proteins/genetics , Chromatids/enzymology , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Chromosomes, Fungal/enzymology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Mitosis/physiology , Multiprotein Complexes/metabolism , Multiprotein Complexes/physiology , Nuclear Proteins/genetics , S Phase , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Schizosaccharomyces/cytology , Schizosaccharomyces/enzymology , Schizosaccharomyces pombe Proteins/genetics , Cohesins
18.
J Neurosci ; 24(7): 1780-91, 2004 Feb 18.
Article in English | MEDLINE | ID: mdl-14973249

ABSTRACT

A syndrome of motoric and neuropsychiatric symptoms comprising various elements, including chorea, hyperactivity, tics, emotional lability, and obsessive-compulsive symptoms, can occur in association with group A beta-hemolytic streptococcal (GABHS) infection. We tested the hypothesis that an immune response to GABHS can result in behavioral abnormalities. Female SJL/J mice were immunized and boosted with a GABHS homogenate in Freund's adjuvant, whereas controls received Freund's adjuvant alone. When sera from GABHS-immunized mice were tested for immunoreactivity to mouse brain, a subset was found to be immunoreactive to several brain regions, including deep cerebellar nuclei (DCN), globus pallidus, and thalamus. GABHS-immunized mice having serum immunoreactivity to DCN also had increased IgG deposits in DCN and exhibited increased rearing behavior in open-field and hole-board tests compared with controls and with GABHS-immunized mice lacking serum anti-DCN antibodies. Rearing and ambulatory behavior were correlated with IgG deposits in the DCN and with serum immunoreactivity to GABHS proteins in Western blot. In addition, serum from a GABHS mouse reacted with normal mouse cerebellum in nondenaturing Western blots and immunoprecipitated C4 complement protein and alpha-2-macroglobulin. These results are consistent with the hypothesis that immune response to GABHS can result in motoric and behavioral disturbances and suggest that anti-GABHS antibodies cross-reactive with brain components may play a role in their pathophysiology.


Subject(s)
Brain/immunology , Neurocognitive Disorders/etiology , Streptococcal Infections/complications , Streptococcal Infections/immunology , Streptococcus pyogenes/immunology , Animals , Bacterial Proteins/immunology , Behavior, Animal , Blotting, Western , Brain/pathology , Cerebellar Nuclei/immunology , Cerebellar Nuclei/pathology , Cross Reactions/immunology , Disease Models, Animal , Female , Globus Pallidus/immunology , Globus Pallidus/pathology , Immunization/methods , Immunoglobulin G/analysis , Immunoglobulin G/blood , Immunoglobulin G/metabolism , Membrane Proteins/biosynthesis , Mice , Motor Activity , Nerve Tissue Proteins/biosynthesis , Serologic Tests , Streptococcal Infections/pathology , Streptococcus pyogenes/chemistry , Synaptosomal-Associated Protein 25 , Thalamus/immunology , Thalamus/pathology
19.
Chin Med J (Engl) ; 118(6): 451-9, 2005 Mar 20.
Article in English | MEDLINE | ID: mdl-15788125

ABSTRACT

BACKGROUND: Several coronaviruses establish persistent infections in vitro and in vivo, however it is unknown whether persistence is a feature of the severe acute respiratory syndrome coronavirus (SARS-CoV) life cycle. This study was conducted to investigate viral persistence. METHODS: We inoculated confluent monolayers of Vero cells with SARS-CoV at a multiplicity of infection of 0.1 TCID50 and passaged the remaining cells every 4 to 8 days for a total of 11 passages. Virus was titrated at each passage by limited dilution assay and nucleocapsid antigen was detected by Western blot and immunofluoresence assays. The presence of viral particles in passage 11 cells was assessed by electron microscopy. Changes in viral genomic sequences during persistent infection were examined by DNA sequencing. RESULTS: Cytopathic effect was extensive after initial inoculation but diminished with serial passages. Infectious virus was detected after each passage and viral growth curves were identical for parental virus stock and virus obtained from passage 11 cells. Nucleocapsid antigen was detected in the majority of cells after initial inoculation but in only 10%-40% of cells at passages 2-11. Electron microscopy confirmed the presence of viral particles in passage 11 cells. Sequence analysis at passage 11 revealed fixed mutations in the spike (S) gene and ORFs 7a-8b but not in the nucleocapsid (N) gene. CONCLUSIONS: SARS-CoV can establish a persistent infection in vitro. The mechanism for viral persistence is consistent with the formation of a carrier culture whereby a limited number of cells are infected with each round of virus replication and release. Persistence is associated with selected mutations in the SARS-CoV genome. This model may provide insight into SARS-related lung pathology and mechanisms by which humans and animals can serve as reservoirs for infection.


Subject(s)
Severe acute respiratory syndrome-related coronavirus/growth & development , Animals , Antigens, Viral/analysis , Chlorocebus aethiops , Microscopy, Electron , Nucleocapsid Proteins/analysis , Severe acute respiratory syndrome-related coronavirus/genetics , Vero Cells
20.
mBio ; 6(5): e01491-15, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26396248

ABSTRACT

Insensitivity and technical complexity have impeded the implementation of high-throughput nucleic acid sequencing in differential diagnosis of viral infections in clinical laboratories. Here, we describe the development of a virome capture sequencing platform for vertebrate viruses (VirCapSeq-VERT) that increases the sensitivity of sequence-based virus detection and characterization. The system uses ~2 million probes that cover the genomes of members of the 207 viral taxa known to infect vertebrates, including humans. A biotinylated oligonucleotide library was synthesized on the NimbleGen cleavable array platform and used for solution-based capture of viral nucleic acids present in complex samples containing variable proportions of viral and host nucleic acids. The use of VirCapSeq-VERT resulted in a 100- to 10,000-fold increase in viral reads from blood and tissue homogenates compared to conventional Illumina sequencing using established virus enrichment procedures, including filtration, nuclease treatments, and RiboZero rRNA subtraction. VirCapSeq-VERT had a limit of detection comparable to that of agent-specific real-time PCR in serum, blood, and tissue extracts. Furthermore, the method identified novel viruses whose genomes were approximately 40% different from the known virus genomes used for designing the probe library. The VirCapSeq-VERT platform is ideally suited for analyses of virome composition and dynamics. IMPORTANCE : VirCapSeq-VERT enables detection of viral sequences in complex sample backgrounds, including those found in clinical specimens, such as serum, blood, and tissue. The highly multiplexed nature of the system allows both the simultaneous identification and the comprehensive genetic characterization of all known vertebrate viruses, their genetic variants, and novel viruses. The operational simplicity and efficiency of the VirCapSeq-VERT platform may facilitate transition of high-throughput sequencing to clinical diagnostic as well as research applications.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Microbiota , Virology/methods , Virus Diseases/diagnosis , Viruses/classification , Viruses/isolation & purification , Animals , Humans , Nucleic Acid Hybridization , Oligonucleotide Probes , Vertebrates , Virus Diseases/veterinary , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL