Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26046436

ABSTRACT

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Subject(s)
Drug Discovery , Small Molecule Libraries , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Humans , National Institutes of Health (U.S.) , United States
2.
Glia ; 71(2): 245-258, 2023 02.
Article in English | MEDLINE | ID: mdl-36106533

ABSTRACT

Fractalkine (FKN) is a membrane-bound chemokine that can be cleaved by proteases such as ADAM 10, ADAM 17, and cathepsin S to generate soluble fragments. Studies using different forms of the soluble FKN yield conflicting results in vivo. These observations prompted us to investigate the function and pharmacology of two commonly used isoforms of FKN, a human full-length soluble FKN (sFKN), and a human chemokine domain only FKN (cdFKN). Both are prevalent in the literature and are often assumed to be functionally equivalent. We observed that recombinant sFKN and cdFKN exhibit similar potencies in a cell-based cAMP assay, but binding affinity for CX3CR1 was modestly different. There was a 10-fold difference in potency between sFKN and cdFKN when assessing their ability to stimulate ß-arrestin recruitment. Interestingly, high concentrations of FKN, regardless of cleavage variant, were ineffective at reducing pro-inflammatory microglial activation and may induce a pro-inflammatory response. This effect was observed in mouse and rat primary microglial cells as well as microglial cell lines. The inflammatory response was exacerbated in aged microglia, which is known to exhibit age-related inflammatory phenotypes. We observed the same effects in Cx3cr1-/- primary microglia and therefore speculate that an alternative FKN receptor may exist. Collectively, these data provide greater insights into the function and pharmacology of these common FKN reagents, which may clarify conflicting reports and urge greater caution in the selection of FKN peptides for use in in vitro and in vivo studies and the interpretation of results obtained using these differing peptides.


Subject(s)
Chemokine CX3CL1 , Microglia , Mice , Rats , Humans , Animals , Aged , Chemokine CX3CL1/metabolism , Microglia/metabolism , Proteolysis , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cell Line
3.
Antimicrob Agents Chemother ; 66(4): e0210921, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35266827

ABSTRACT

In Plasmodium, the first two and rate-limiting enzymes of the pentose phosphate pathway, glucose 6-phosphate dehydrogenase (G6PD) and the 6-phosphogluconolactonase, are bifunctionally fused to a unique enzyme named GluPho, differing structurally and mechanistically from the respective human orthologs. Consistent with the enzyme's essentiality for malaria parasite proliferation and propagation, human G6PD deficiency has immense impact on protection against severe malaria, making PfGluPho an attractive antimalarial drug target. Herein we report on the optimized lead compound N-(((2R,4S)-1-cyclobutyl-4-hydroxypyrrolidin-2-yl)methyl)-6-fluoro-4-methyl-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SBI-0797750), a potent and fully selective PfGluPho inhibitor with robust nanomolar activity against recombinant PfGluPho, PvG6PD, and P. falciparum blood-stage parasites. Mode-of-action studies have confirmed that SBI-0797750 disturbs the cytosolic glutathione-dependent redox potential, as well as the cytosolic and mitochondrial H2O2 homeostasis of P. falciparum blood stages, at low nanomolar concentrations. Moreover, SBI-0797750 does not harm red blood cell (RBC) integrity and phagocytosis and thus does not promote anemia. SBI-0797750 is therefore a very promising antimalarial lead compound.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Falciparum , Malaria, Vivax , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Carboxylic Ester Hydrolases , Glucose/metabolism , Glucosephosphate Dehydrogenase/metabolism , Humans , Hydrogen Peroxide/metabolism , Malaria, Falciparum/drug therapy , Malaria, Vivax/drug therapy , Phosphates , Plasmodium falciparum/metabolism , Plasmodium vivax
4.
Br J Cancer ; 124(6): 1098-1109, 2021 03.
Article in English | MEDLINE | ID: mdl-33318657

ABSTRACT

BACKGROUND: The BCL2 inhibitor venetoclax has shown efficacy in several hematologic malignancies, with the greatest response rates in indolent blood cancers such as chronic lymphocytic leukaemia. There is a lower response rate to venetoclax monotherapy in diffuse large B-cell lymphoma (DLBCL). METHODS: We tested inhibitors of cap-dependent mRNA translation for the ability to sensitise DLBCL and mantle cell lymphoma (MCL) cells to apoptosis by venetoclax. We compared the mTOR kinase inhibitor (TOR-KI) MLN0128 with SBI-756, a compound targeting eukaryotic translation initiation factor 4G1 (eIF4G1), a scaffolding protein in the eIF4F complex. RESULTS: Treatment of DLBCL and MCL cells with SBI-756 synergised with venetoclax to induce apoptosis in vitro, and enhanced venetoclax efficacy in vivo. SBI-756 prevented eIF4E-eIF4G1 association and cap-dependent translation without affecting mTOR substrate phosphorylation. In TOR-KI-resistant DLBCL cells lacking eIF4E binding protein-1, SBI-756 still sensitised to venetoclax. SBI-756 selectively reduced translation of mRNAs encoding ribosomal proteins and translation factors, leading to a reduction in protein synthesis rates in sensitive cells. When normal lymphocytes were treated with SBI-756, only B cells had reduced viability, and this correlated with reduced protein synthesis. CONCLUSIONS: Our data highlight a novel combination for treatment of aggressive lymphomas, and establishes its efficacy and selectivity using preclinical models.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm/drug effects , Eukaryotic Initiation Factor-4E/antagonists & inhibitors , Lymphoma, B-Cell/drug therapy , Molecular Targeted Therapy , Animals , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Cell Proliferation , Female , Humans , Lactams/administration & dosage , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Quinolones/administration & dosage , Sulfonamides/administration & dosage , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Bioorg Med Chem Lett ; 54: 128443, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34763081

ABSTRACT

Here we report the first small-molecule inhibitors of human sulfide:quinone oxidoreductase (SQOR) that decrease the rate of breakdown of hydrogen sulfide (H2S), a potent cardioprotective signaling molecule. SQOR is a mitochondrial membrane-bound protein that catalyzes a two-electron oxidation of H2S to sulfane sulfur (S0), using glutathione (or sulfite) and coenzyme Q (CoQ) as S0 and electron acceptor, respectively. Inhibition of SQOR may constitute a new approach for the treatment of heart failure with reduced ejection fraction. Starting from top hits identified in a high-throughput screen, we conducted SAR development guided by docking of lead candidates into our crystal structure of SQOR. We identified potent SQOR inhibitors such as 19 which has an IC50 of 29 nM for SQOR inhibition and favorable pharmacokinetic and ADME properties required for in vivo efficacy testing.


Subject(s)
Enzyme Inhibitors/pharmacology , Hydrocarbons, Aromatic/pharmacology , Oxidoreductases Acting on Sulfur Group Donors/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Hydrocarbons, Aromatic/chemical synthesis , Hydrocarbons, Aromatic/chemistry , Molecular Structure , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 41: 128007, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33798699

ABSTRACT

NAD+ is a crucial cellular factor that plays multifaceted roles in wide ranging biological processes. Low levels of NAD+ have been linked to numerous diseases including metabolic disorders, cardiovascular disease, neurodegeneration, and muscle wasting disorders. A novel strategy to boost NAD+ is to activate nicotinamide phosphoribosyltransferase (NAMPT), the putative rate-limiting step in the NAD+ salvage pathway. We previously showed that NAMPT activators increase NAD+ levels in vitro and in vivo. Herein we describe the optimization of our NAMPT activator prototype (SBI-0797812) leading to the identification of 1-(4-((4-chlorophenyl)sulfonyl)phenyl)-3-(oxazol-5-ylmethyl)urea (34) that showed far more potent NAMPT activation and improved oral bioavailability.


Subject(s)
Cytokines/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Urea/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemistry
7.
Bioorg Med Chem Lett ; 28(1): 31-34, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29174347

ABSTRACT

Tissue-nonspecific alkaline phosphatase (TNAP) is an ectoenzyme crucial for bone matrix mineralization via its ability to hydrolyze extracellular inorganic pyrophosphate (ePPi), a potent mineralization inhibitor, to phosphate (Pi). By the controlled hydrolysis of ePPi, TNAP maintains the correct ratio of Pi to ePPi and therefore enables normal skeletal and dental calcification. In other areas of the body low ePPi levels lead to the development of pathological soft-tissue calcification, which can progress to a number of disorders. TNAP inhibitors have been shown to prevent these processes via an increase of ePPi. Herein we describe the use of a whole blood assay to optimize a previously described series of TNAP inhibitors resulting in 5-((5-chloro-2-methoxyphenyl)sulfonamido)nicotinamide (SBI-425), a potent, selective and oral bioavailable compound that robustly inhibits TNAP in vivo.


Subject(s)
Alkaline Phosphatase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Niacinamide/analogs & derivatives , Niacinamide/chemistry , Sulfonamides/chemistry , Administration, Oral , Alkaline Phosphatase/metabolism , Animals , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Half-Life , Inhibitory Concentration 50 , Mice , Niacinamide/metabolism , Niacinamide/pharmacokinetics , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics
8.
Biochemistry ; 56(7): 986-996, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28107627

ABSTRACT

Hydrogen sulfide (H2S) is an endogenously synthesized signaling molecule that is enzymatically metabolized in mitochondria. The metabolism of H2S maintains optimal concentrations of the gasotransmitter and produces sulfane sulfur (S0)-containing metabolites that may be functionally important in signaling. Sulfide:quinone oxidoreductase (SQOR) catalyzes the initial two-electron oxidation of H2S to S0 using coenzyme Q as the electron acceptor in a reaction that requires a third substrate to act as the acceptor of S0. We discovered that sulfite is a highly efficient acceptor and proposed that sulfite is the physiological acceptor in a reaction that produces thiosulfate, a known metabolic intermediate. This model has been challenged by others who assume that the intracellular concentration of sulfite is very low, a scenario postulated to favor reaction of SQOR with a considerably poorer acceptor, glutathione. In this study, we measured the intracellular concentration of sulfite and other metabolites in mammalian tissues. The values observed for sulfite in rat liver (9.2 µM) and heart (38 µM) are orders of magnitude higher than previously assumed. We discovered that the apparent kinetics of oxidation of H2S by SQOR with glutathione as the S0 acceptor reflect contributions from other SQOR-catalyzed reactions, including a novel glutathione:CoQ reductase reaction. We used observed metabolite levels and steady-state kinetic parameters to simulate rates of oxidation of H2S by SQOR at physiological concentrations of different S0 acceptors. The results show that the reaction with sulfite as the S0 acceptor is a major pathway in liver and heart and provide insight into the potential dynamics of H2S metabolism.


Subject(s)
Hydrogen Sulfide/metabolism , Liver/metabolism , Myocardium/metabolism , Quinone Reductases/metabolism , Anaerobiosis , Animals , Cysteine/metabolism , Glutathione/metabolism , Kinetics , Male , Metabolic Networks and Pathways , Quinone Reductases/chemistry , Rats, Wistar , Sulfites/metabolism , Ubiquinone/metabolism
9.
Biochemistry ; 53(28): 4739-53, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24981631

ABSTRACT

Human sulfide:quinone oxidoreductase (SQOR) catalyzes the conversion of H2S to thiosulfate, the first step in mammalian H2S metabolism. SQOR's inability to produce the glutathione persulfide (GSS(-)) substrate for sulfur dioxygenase (SDO) suggested that a thiosulfate:glutathione sulfurtransferase (TST) was required to provide the missing link between the SQOR and SDO reactions. Although TST could be purified from yeast, attempts to isolate the mammalian enzyme were not successful. We used bioinformatic approaches to identify genes likely to encode human TST (TSTD1) and its yeast ortholog (RDL1). Recombinant TSTD1 and RDL1 catalyze a predicted thiosulfate-dependent conversion of glutathione to GSS(-). Both enzymes contain a rhodanese homology domain and a single catalytically essential cysteine, which is converted to cysteine persulfide upon reaction with thiosulfate. GSS(-) is a potent inhibitor of TSTD1 and RDL1, as judged by initial rate accelerations and ≥25-fold lower Km values for glutathione observed in the presence of SDO. The combined action of GSS(-) and SDO is likely to regulate the biosynthesis of the reactive metabolite. SDO drives to completion p-toluenethiosulfonate:glutathione sulfurtransferase reactions catalyzed by TSTD1 and RDL1. The thermodynamic coupling of the irreversible SDO and reversible TST reactions provides a model for the physiologically relevant reaction with thiosulfate as the sulfane donor. The discovery of bacterial Rosetta Stone proteins that comprise fusions of SDO and TSTD1 provides phylogenetic evidence of the association of these enzymes. The presence of adjacent bacterial genes encoding SDO-TSTD1 fusion proteins and human-like SQORs suggests these prokaryotes and mammals exhibit strikingly similar pathways for H2S metabolism.


Subject(s)
Hydrogen Sulfide/chemistry , Neoplasm Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Humans , Hydrogen Sulfide/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Structural Homology, Protein
10.
bioRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645173

ABSTRACT

Alcohol use disorders (AUDs) impose an enormous societal and financial burden, and world-wide, alcohol misuse is the 7th leading cause of premature death1. Despite this, there are currently only 3 FDA approved pharmacological treatments for the treatment of AUDs in the United States. The neurotensin (Nts) system has long been implicated in modulating behaviors associated with alcohol misuse. Recently, a novel compound, SBI-553, that biases the action of Nts receptor 1 (NTSR1) activation, has shown promise in preclinical models of psychostimulant misuse. Here we investigate the efficacy of this compound to alter ethanol-mediated behaviors in a comprehensive battery of experiments assessing ethanol consumption, behavioral responses to ethanol, sensitivity to ethanol, and ethanol metabolism. Additionally, we investigated behavior in avoidance and cognitive assays to monitor potential side effects of SBI-553. We find that SBI-553 reduces binge-like ethanol consumption in mice without altering avoidance behavior or novel object recognition. We also observe sex-dependent differences in physiological responses to sequential ethanol injections in mice. In rats, we show that SBI-553 attenuates sensitivity to the interoceptive effects of ethanol (using a Pavlovian drug discrimination task). Our data suggest that targeting NTSR1 signaling may be promising to attenuate alcohol misuse, and adds to a body of literature that suggests NTSR1 may be a common downstream target involved in the psychoactive effects of multiple reinforcing substances.

11.
Biochemistry ; 51(34): 6804-15, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22852582

ABSTRACT

Sulfide:quinone oxidoreductase (SQOR) is a membrane-bound enzyme that catalyzes the first step in the mitochondrial metabolism of H(2)S. Human SQOR is successfully expressed at low temperature in Escherichia coli by using an optimized synthetic gene and cold-adapted chaperonins. Recombinant SQOR contains noncovalently bound FAD and catalyzes the two-electron oxidation of H(2)S to S(0) (sulfane sulfur) using CoQ(1) as an electron acceptor. The prosthetic group is reduced upon anaerobic addition of H(2)S in a reaction that proceeds via a long-wavelength-absorbing intermediate (λ(max) = 673 nm). Cyanide, sulfite, or sulfide can act as the sulfane sulfur acceptor in reactions that (i) exhibit pH optima at 8.5, 7.5, or 7.0, respectively, and (ii) produce thiocyanate, thiosulfate, or a putative sulfur analogue of hydrogen peroxide (H(2)S(2)), respectively. Importantly, thiosulfate is a known intermediate in the oxidation of H(2)S by intact animals and the major product formed in glutathione-depleted cells or mitochondria. Oxidation of H(2)S by SQOR with sulfite as the sulfane sulfur acceptor is rapid and highly efficient at physiological pH (k(cat)/K(m,H(2)S) = 2.9 × 10(7) M(-1) s(-1)). A similar efficiency is observed with cyanide, a clearly artificial acceptor, at pH 8.5, whereas a 100-fold lower value is seen with sulfide as the acceptor at pH 7.0. The latter reaction is unlikely to occur in healthy individuals but may become significant under certain pathological conditions. We propose that sulfite is the physiological acceptor of the sulfane sulfur and that the SQOR reaction is the predominant source of the thiosulfate produced during H(2)S oxidation by mammalian tissues.


Subject(s)
Hydrogen Sulfide/metabolism , Quinone Reductases/metabolism , Sulfur/metabolism , Biocatalysis , Humans , Hydrogen-Ion Concentration , Kinetics , Quinone Reductases/chemistry , Quinone Reductases/genetics
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 11): 1378-86, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23143254

ABSTRACT

A recombinant metal-dependent phosphatidylinositol-specific phospholipase C (PI-PLC) from Streptomyces antibioticus has been crystallized by the hanging-drop method with and without heavy metals. The native crystals belonged to the orthorhombic space group P222, with unit-cell parameters a=41.26, b=51.86, c=154.78 Å. The X-ray diffraction results showed significant differences in the crystal quality of samples soaked with heavy atoms. Additionally, drop pinning, which increases the surface area of the drops, was also used to improve crystal growth and quality. The combination of heavy-metal soaks and drop pinning was found to be critical for producing high-quality crystals that diffracted to 1.23 Šresolution.


Subject(s)
Bacterial Proteins/chemistry , Phosphoinositide Phospholipase C/chemistry , Streptomyces antibioticus/enzymology , Bacterial Proteins/isolation & purification , Cadmium/chemistry , Crystallization , Electrophoresis, Polyacrylamide Gel , Iridium/chemistry , Phosphoinositide Phospholipase C/isolation & purification , X-Ray Diffraction
13.
Cardiovasc Res ; 118(7): 1771-1784, 2022 06 22.
Article in English | MEDLINE | ID: mdl-34132787

ABSTRACT

AIMS: Hydrogen sulfide (H2S) is a potent signalling molecule that activates diverse cardioprotective pathways by post-translational modification (persulfidation) of cysteine residues in upstream protein targets. Heart failure patients with reduced ejection fraction (HFrEF) exhibit low levels of H2S. Sulfide:quinone oxidoreductase (SQOR) catalyses the first irreversible step in the metabolism of H2S and plays a key role in regulating H2S-mediated signalling. Here, the aim of this study was to discover a first-in-class inhibitor of human SQOR and evaluate its cardioprotective effect in an animal model of HFrEF. METHODS AND RESULTS: We identified a potent inhibitor of human SQOR (STI1, IC50 = 29 nM) by high-throughput screening of a small-molecule library, followed by focused medicinal chemistry optimization and structure-based design. STI1 is a competitive inhibitor that binds with high selectivity to the coenzyme Q-binding pocket in SQOR. STI1 exhibited very low cytotoxicity and attenuated the hypertrophic response of neonatal rat ventricular cardiomyocytes and H9c2 cells induced by neurohormonal stressors. A mouse HFrEF model was produced by transverse aortic constriction (TAC). Treatment of TAC mice with STI1 mitigated the development of cardiomegaly, pulmonary congestion, dilatation of the left ventricle, and cardiac fibrosis and decreased the pressure gradient across the aortic constriction. Moreover, STI1 dramatically improved survival, preserved cardiac function, and prevented the progression to HFrEF by impeding the transition from compensated to decompensated left ventricle hypertrophy. CONCLUSION: We demonstrate that the coenzyme Q-binding pocket in human SQOR is a druggable target and establish proof of concept for the potential of SQOR inhibitors to provide a novel therapeutic approach for the treatment of HFrEF.


Subject(s)
Heart Failure , Animals , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Failure/prevention & control , Humans , Mice , Rats , Stroke Volume , Sulfides/pharmacology , Ubiquinone/therapeutic use , Ventricular Remodeling
14.
Am Psychol ; 76(7): 1196-1197, 2021 10.
Article in English | MEDLINE | ID: mdl-34990176

ABSTRACT

A survey by Thornewill et al. (2020) produced potentially useful information about how national security roles of psychologists are viewed both within and beyond the discipline. However, a closer examination of the data, and of the authors' interpretations of that data, raises some important questions. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Subject(s)
Security Measures
15.
J Med Chem ; 64(9): 5645-5653, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33914534

ABSTRACT

Obesity-associated insulin resistance plays a central role in the pathogenesis of type 2 diabetes. A promising approach to decrease insulin resistance in obesity is to inhibit the protein tyrosine phosphatases that negatively regulate insulin receptor signaling. The low-molecular-weight protein tyrosine phosphatase (LMPTP) acts as a critical promoter of insulin resistance in obesity by inhibiting phosphorylation of the liver insulin receptor activation motif. Here, we report development of a novel purine-based chemical series of LMPTP inhibitors. These compounds inhibit LMPTP with an uncompetitive mechanism and are highly selective for LMPTP over other protein tyrosine phosphatases. We also report the generation of a highly orally bioavailable purine-based analogue that reverses obesity-induced diabetes in mice.


Subject(s)
Enzyme Inhibitors/chemistry , Protein Tyrosine Phosphatases/antagonists & inhibitors , Purines/chemistry , Administration, Oral , Animals , Binding Sites , Crystallography, X-Ray , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/etiology , Disease Models, Animal , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Half-Life , Humans , Insulin Resistance , Kinetics , Molecular Dynamics Simulation , Obesity/complications , Obesity/pathology , Phosphorylation/drug effects , Protein Tyrosine Phosphatases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Purines/metabolism , Purines/pharmacology , Purines/therapeutic use , Signal Transduction/drug effects , Structure-Activity Relationship
16.
17.
Structure ; 27(5): 794-805.e4, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30905673

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter exhibiting pivotal functions in diverse biological processes, including activation of multiple cardioprotective pathways. Sulfide:quinone oxidoreductase (SQOR) is an integral membrane flavoprotein that catalyzes the first step in the mitochondrial metabolism of H2S. As such, it plays a critical role in controlling physiological levels of the gasotransmitter and has attracted keen interest as a potential drug target. We report the crystal structure of human SQOR, unraveling the molecular basis for the enzyme's ability to catalyze sulfane sulfur transfer reactions with structurally diverse acceptors. We demonstrate that human SQOR contains unique features: an electropositive surface depression implicated as a binding site for sulfane sulfur acceptors and postulated to funnel negatively charged substrates to a hydrophilic H2S-oxidizing active site, which is connected to a hydrophobic internal tunnel that binds coenzyme Q. These findings support a proposed model for catalysis and open the door for structure-based drug design.


Subject(s)
Hydrogen Sulfide/chemistry , Mitochondria/metabolism , Oxidoreductases Acting on Sulfur Group Donors/chemistry , Oxygen/chemistry , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cysteine/analogs & derivatives , Cysteine/chemistry , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Protein Binding , Protein Domains , Protein Structure, Quaternary
18.
J Med Chem ; 62(17): 8357-8363, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31390201

ABSTRACT

Neurotensin receptor 1 (NTR1) is a G protein coupled receptor that is widely expressed throughout the central nervous system where it acts as a neuromodulator. Neurotensin receptors have been implicated in a wide variety of CNS disorders, but despite extensive efforts to develop small molecule ligands there are few reports of such compounds. Herein we describe the optimization of a quinazoline based lead to give 18 (SBI-553), a potent and brain penetrant NTR1 allosteric modulator.


Subject(s)
Central Nervous System Diseases/drug therapy , Drug Discovery , Quinazolines/pharmacology , Receptors, Neurotensin/antagonists & inhibitors , beta-Arrestins/pharmacology , Administration, Oral , Allosteric Regulation/drug effects , Animals , Biological Availability , Central Nervous System Diseases/metabolism , Dopamine Plasma Membrane Transport Proteins/deficiency , Dopamine Plasma Membrane Transport Proteins/metabolism , Dose-Response Relationship, Drug , Female , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Quinazolines/administration & dosage , Quinazolines/chemistry , Rats , Receptors, Neurotensin/metabolism , Structure-Activity Relationship , beta-Arrestins/administration & dosage , beta-Arrestins/chemistry
19.
Cancer Lett ; 449: 145-162, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30771432

ABSTRACT

Inhibition of ubiquitin ligases with small molecule remains a very challenging task, given the lack of catalytic activity of the target and the requirement of disruption of its interactions with other proteins. Siah1/2, which are E3 ubiquitin ligases, are implicated in melanoma and prostate cancer and represent high-value drug targets. We utilized three independent screening approaches in our efforts to identify small-molecule Siah1/2 inhibitors: Affinity Selection-Mass Spectrometry, a protein thermal shift-based assay and an in silico based screen. Inhibitors were assessed for their effect on viability of melanoma and prostate cancer cultures, colony formation, prolyl-hydroxylase-HIF1α signaling, expression of selected Siah2-related transcripts, and Siah2 ubiquitin ligase activity. Several analogs were further characterized, demonstrating improved efficacy. Combination of the top hits identified in the different assays demonstrated an additive effect, pointing to complementing mechanisms that underlie each of these Siah1/2 inhibitors.


Subject(s)
Melanoma/drug therapy , Nuclear Proteins/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Small Molecule Libraries/administration & dosage , Ubiquitin-Protein Ligases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Computer Simulation , Down-Regulation , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mass Spectrometry , Melanoma/genetics , Mice , Nuclear Proteins/genetics , Prostatic Neoplasms/genetics , Small Molecule Libraries/isolation & purification , Small Molecule Libraries/pharmacology , Ubiquitin-Protein Ligases/genetics , Xenograft Model Antitumor Assays
20.
J Clin Invest ; 113(12): 1722-33, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15199407

ABSTRACT

The molecular pathogenesis of focal/diffuse proliferative lupus glomerulonephritis was studied by cDNA microarray analysis of gene expression in glomeruli from clinical biopsies. Transcriptional phenotyping of glomeruli isolated by laser-capture microscopy revealed considerable kidney-to-kidney heterogeneity in increased transcript expression, resulting in four main gene clusters that identified the presence of B cells, several myelomonocytic lineages, fibroblast and epithelial cell proliferation, matrix alterations, and expression of type I IFN-inducible genes. Glomerulus-to-glomerulus variation within a kidney was less marked. The myeloid lineage transcripts, characteristic of those found in isolated activated macrophages and myeloid dendritic cells, were widely distributed in all biopsy samples. One major subgroup of the samples expressed fibrosis-related genes that correlated with pathological evidence of glomerulosclerosis; however, decreased expression of TGF-beta1 argued against its role in lupus renal fibrosis. Expression of type I IFN-inducible transcripts by a second subset of samples was associated with reduced expression of fibrosis-related genes and milder pathological features. This pattern of gene expression resembled that exhibited by activated NK cells. A large gene cluster with decreased expression found in all samples included ion channels and transcription factors, indicating a loss-of-function response to the glomerular injury.


Subject(s)
Gene Expression Profiling , Kidney Glomerulus/physiology , Kidney Glomerulus/ultrastructure , Lupus Nephritis/genetics , Lupus Nephritis/metabolism , Transcription, Genetic , Adolescent , Adult , Biopsy , Child , Female , Humans , Kidney Glomerulus/immunology , Kidney Glomerulus/surgery , Lasers , Lupus Nephritis/pathology , Male , Middle Aged , Multigene Family , Oligonucleotide Array Sequence Analysis , Phenotype , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL