Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Biol Chem ; 285(5): 3417-27, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-19923222

ABSTRACT

Immunotherapy targeting of amyloid beta (Abeta) peptide in transgenic mouse models of Alzheimer disease (AD) has been widely demonstrated to resolve amyloid deposition as well as associated neuronal, glial, and inflammatory pathologies. These successes have provided the basis for ongoing clinical trials of immunotherapy for treatment of AD in humans. Acute as well as chronic Abeta-targeted immunotherapy has also been demonstrated to reverse Abeta-related behavioral deficits assessing memory in AD transgenic mouse models. We observe that three antibodies targeting the same linear epitope of Abeta, Abeta(3-7), differ in their ability to reverse contextual fear deficits in Tg2576 mice in an acute testing paradigm. Reversal of contextual fear deficit by the antibodies does not correlate with in vitro recognition of Abeta in a consistent or correlative manner. To better define differences in antigen recognition at the atomic level, we determined crystal structures of Fab fragments in complex with Abeta. The conformation of the Abeta peptide recognized by all three antibodies was highly related and is also remarkably similar to that observed in independently reported Abeta:antibody crystal structures. Sequence and structural differences between the antibodies, particularly in CDR3 of the heavy chain variable region, are proposed to account for differing in vivo properties of the antibodies under study. These findings provide a structural basis for immunotherapeutic strategies targeting Abeta species postulated to underlie cognitive deficits in AD.


Subject(s)
Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Animals , Behavior, Animal , Cross-Linking Reagents/pharmacology , Crystallography, X-Ray/methods , Disease Models, Animal , Epitopes/chemistry , Heterozygote , Humans , Kinetics , Male , Mice , Molecular Conformation , Recombinant Proteins/chemistry
2.
Proc Natl Acad Sci U S A ; 105(25): 8754-9, 2008 Jun 24.
Article in English | MEDLINE | ID: mdl-18559859

ABSTRACT

The amyloid hypothesis states that a variety of neurotoxic beta-amyloid (Abeta) species contribute to the pathogenesis of Alzheimer's disease. Accordingly, a key determinant of disease onset and progression is the appropriate balance between Abeta production and clearance. Enzymes responsible for the degradation of Abeta are not well understood, and, thus far, it has not been possible to enhance Abeta catabolism by pharmacological manipulation. We provide evidence that Abeta catabolism is increased after inhibition of plasminogen activator inhibitor-1 (PAI-1) and may constitute a viable therapeutic approach for lowering brain Abeta levels. PAI-1 inhibits the activity of tissue plasminogen activator (tPA), an enzyme that cleaves plasminogen to generate plasmin, a protease that degrades Abeta oligomers and monomers. Because tPA, plasminogen and PAI-1 are expressed in the brain, we tested the hypothesis that inhibitors of PAI-1 will enhance the proteolytic clearance of brain Abeta. Our data demonstrate that PAI-1 inhibitors augment the activity of tPA and plasmin in hippocampus, significantly lower plasma and brain Abeta levels, restore long-term potentiation deficits in hippocampal slices from transgenic Abeta-producing mice, and reverse cognitive deficits in these mice.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Fibrinolysin/metabolism , Fibrinolytic Agents/metabolism , Animals , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Plasminogen Inactivators/metabolism , Tissue Plasminogen Activator/antagonists & inhibitors , Tissue Plasminogen Activator/metabolism
3.
J Neurotrauma ; 37(13): 1574-1586, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31973644

ABSTRACT

Cathepsin B (CatB), a lysosomal cysteine protease, is important to brain function and may have dual utility as a peripheral biomarker of moderate-severe traumatic brain injury (TBI). The present study determined levels of pro- and mature (mat) CatB protein as well as cysteine protease activity within the frontal cortex (FC; proximal injury site), hippocampus (HC; distal injury site), and cerebral spinal fluid (CSF) collected 1-7 days after craniotomy and penetrating ballistic-like brain injury (PBBI) in rats. Values were compared with naïve controls. Further, the utility of CatB protein as a translational biomarker was determined in CSF derived from patients with severe TBI. Craniotomy increased matCatB levels in the FC and HC, and led to elevation of HC activity at day 7. PBBI caused an even greater elevation in matCatB within the FC and HC within 3-7 days. After PBBI, cysteine protease activity peaked at 3 days in the FC and was elevated at 1 day and 7 days, but not 3 days, in the HC. In rat CSF, proCatB, matCatB, and cysteine protease activity peaked at 3 days after craniotomy and PBBI. Addition of CA-074, a CatB-specific inhibitor, confirmed that protease activity was due to active matCatB in rat brain tissues and CSF at all time-points. In patients, CatB protein was detectable from 6 h through 10 days after TBI. Notably, CatB levels were significantly higher in CSF collected within 3 days after TBI compared with non-TBI controls. Collectively, this work indicates that CatB and its cysteine protease activity may serve as collective molecular signatures of TBI progression that differentially vary within both proximal and distal brain regions. CatB and its protease activity may have utility as a surrogate, translational biomarker of acute-subacute TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain/metabolism , Cathepsin B/metabolism , Cysteine Proteases/metabolism , Head Injuries, Penetrating/metabolism , Animals , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Brain Injuries, Traumatic/cerebrospinal fluid , Cathepsin B/cerebrospinal fluid , Craniotomy/adverse effects , Cysteine Proteases/cerebrospinal fluid , Enzyme Activation/physiology , Head Injuries, Penetrating/cerebrospinal fluid , Humans , Male , Rats , Rats, Sprague-Dawley
4.
J Pharmacol Exp Ther ; 331(2): 598-608, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19671883

ABSTRACT

The presenilin containing gamma-secretase complex is responsible for the regulated intramembraneous proteolysis of the amyloid precursor protein (APP), the Notch receptor, and a multitude of other substrates. gamma-Secretase catalyzes the final step in the generation of Abeta(40) and Abeta(42) peptides from APP. Amyloid beta-peptides (Abeta peptides) aggregate to form neurotoxic oligomers, senile plaques, and congophilic angiopathy, some of the cardinal pathologies associated with Alzheimer's disease. Although inhibition of this protease acting on APP may result in potentially therapeutic reductions of neurotoxic Abeta peptides, nonselective inhibition of the enzyme may cause severe adverse events as a result of impaired Notch receptor processing. Here, we report the preclinical pharmacological profile of GSI-953 (begacestat), a novel thiophene sulfonamide gamma-secretase inhibitor (GSI) that selectively inhibits cleavage of APP over Notch. This GSI inhibits Abeta production with low nanomolar potency in cellular and cell-free assays of gamma-secretase function, and displaces a tritiated analog of GSI-953 from enriched gamma-secretase enzyme complexes with similar potency. Cellular assays of Notch cleavage reveal that this compound is approximately 16-fold selective for the inhibition of APP cleavage. In the human APP-overexpressing Tg2576 transgenic mouse, treatment with this orally active compound results in a robust reduction in brain, plasma, and cerebral spinal fluid Abeta levels, and a reversal of contextual fear-conditioning deficits that are correlated with Abeta load. In healthy human volunteers, oral administration of a single dose of GSI-953 produces dose-dependent changes in plasma Abeta levels, confirming pharmacodynamic activity of GSI-953 in humans.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Sulfonamides/pharmacology , Thiophenes/pharmacology , Adolescent , Adult , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Binding, Competitive , CHO Cells , Cell Line , Cricetinae , Cricetulus , Dogs , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Fear/psychology , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Rats , Rats, Sprague-Dawley , Receptors, Notch/physiology , Signal Transduction/drug effects , Sulfonamides/pharmacokinetics , Sulfonamides/toxicity , Thiophenes/pharmacokinetics , Thiophenes/toxicity , Young Adult
5.
Bioorg Med Chem Lett ; 19(3): 926-9, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19097890

ABSTRACT

Accumulation of beta-amyloid (Abeta), produced by the proteolytic cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase, is widely believed to be associated with Alzheimer's disease (AD). Research around the high-throughput screening hit (S)-4-chlorophenylsulfonyl isoleucinol led to the identification of the Notch-1-sparing (9.5-fold) gamma-secretase inhibitor (S)-N-(5-chlorothiophene-2-sulfonyl)-beta,beta-diethylalaninol 7.b.2 (Abeta(40/42) EC(50)=28 nM), which is efficacious in reduction of Abeta production in vivo.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Isoleucine/analogs & derivatives , Receptor, Notch1/metabolism , Alcohols , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/chemistry , Animals , Drug Design , Humans , Isoleucine/chemistry , Models, Chemical , Propanolamines/chemistry , Sulfonamides/chemistry
6.
Neurodegener Dis ; 5(2): 65-71, 2008.
Article in English | MEDLINE | ID: mdl-18182780

ABSTRACT

BACKGROUND: In vivo administration of antibodies against the amyloid-beta (Abeta) peptide has been shown to reduce and reverse the progressive amyloidosis that develops in a variety of mouse models of Alzheimer's disease (AD). This work has been extended to clinical trials where subsequent autopsy cases of AD subjects immunized against Abeta showed similar reductions in parenchymal amyloid plaques, suggesting this approach to reduce neuropathology in man is feasible. OBJECTIVE: Multiple hypotheses have been advanced to explain how anti-Abeta antibodies may lower amyloid burden. In this report, we compare approaches utilizing either plaque-binding or peptide-capturing anti-Abeta antibodies for effectiveness in reducing amyloidosis in a mouse model of AD. METHODS: A plaque-binding monoclonal antibody (3D6) and an Abeta peptide-capturing monoclonal antibody (266) were compared in chronic treatment and prevention paradigms using a transgenic mouse model of AD. The effects of antibody therapy on plaque burden and plasma clearance of Abeta were investigated by quantitative imaging and clearance studies of intravenously injected (125)I-Abeta. RESULTS: The plaque-binding antibody 3D6 was highly effective in either treatment or prevention of amyloidosis. In these studies, the peptide-capture antibody 266 showed no reduction in amyloidosis in either paradigm and showed trends towards increasing amyloidosis. Antibody 266 was also found to greatly prolong (>180-fold) the normally rapid peripheral clearance of Abeta, in contrast to that found with 3D6 (>24-fold). CONCLUSION: Reversing and preventing Alzheimer's type amyloidosis is most effectively accomplished with anti-amyloid antibodies that avidly bind plaque.


Subject(s)
Amyloid beta-Peptides/immunology , Amyloidosis/immunology , Antibodies/therapeutic use , Cerebral Cortex/immunology , Plaque, Amyloid/immunology , Amyloid beta-Peptides/blood , Amyloidosis/blood , Amyloidosis/therapy , Animals , Antibodies/metabolism , Cerebral Cortex/pathology , Female , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , Protein Binding/immunology , Solubility
7.
J Neurosci ; 25(39): 8898-902, 2005 Sep 28.
Article in English | MEDLINE | ID: mdl-16192379

ABSTRACT

Transgenic mice (Tg2576) overexpressing the Swedish mutation of the human amyloid precursor protein display biochemical, pathological, and behavioral markers consistent with many aspects of Alzheimer's disease, including impaired hippocampal function. Impaired, hippocampal-dependent, contextual fear conditioning (CFC) is observed in mice as young as 20 weeks of age. This impairment can be attenuated after treatment before training with the phosphodiesterase-4 inhibitor rolipram (0.1 mg/kg, i.p.). A rolipram-associated improvement is also observed in the littermate controls, suggesting that the effect of rolipram is independent of beta-amyloid. Acute treatment before training (but not after training or before testing) with the gamma-secretase inhibitor (GSI) N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine-t-butylester (DAPT), at a dose that reduces brain concentrations of beta-amyloid (100 mg/kg), attenuates the impairment in 20- to 65-week-old Tg2576 mice. Importantly, DAPT had no effect on performance of control littermates. These data are supportive of a role of beta-amyloid in the impairment of CFC in Tg2576 mice. Furthermore, they suggest that acute treatment with GSI may provide improved cognitive functioning as well as disease-modifying effects in Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Conditioning, Psychological/drug effects , Endopeptidases/metabolism , Enzyme Inhibitors/pharmacology , Fear , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Aging/psychology , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases , Cognition/drug effects , Cognition Disorders/chemically induced , Cognition Disorders/psychology , Cyclic Nucleotide Phosphodiesterases, Type 4 , Disease Models, Animal , Mice , Mice, Transgenic , Mutation , Phosphodiesterase Inhibitors/pharmacology , Rolipram/pharmacology , Triglycerides/pharmacology , gamma-Aminobutyric Acid/analogs & derivatives , gamma-Aminobutyric Acid/pharmacology
8.
Cell Signal ; 16(9): 1013-21, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15212762

ABSTRACT

NAcht Leucine-rich-repeat Protein 1 (NALP1) contains a putative nucleotide binding site, a region of leucine-rich repeats, and death domain folds at both termini providing protein/protein association functions such as caspase recruitment. We report here that NALP1 gene expression was induced in primary cerebellar granule neurons (CGN) upon injury. Up-regulation of NALP1 was also observed in a model of transient focal ischemia induced by middle cerebral artery occlusion. We investigated the biological consequence of over-expression of NALP1 in both HeLa cells and in CGN. Expression of recombinant NALP1 stimulated cell death in both HeLa cells and CGN by an apoptotic mechanism, demonstrated by the induction of apoptotic nuclear morphology and activation of the apoptotic enzyme caspase-3. Also described here are studies on the mechanism of action studies including deletion analyses and investigations of nucleotide binding, which begin to elucidate a regulatory function for NALP1 in neuronal apoptosis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Cerebellum/cytology , Neurons/metabolism , Neurons/pathology , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins , Binding Sites , Caspase 3 , Caspases/metabolism , Cells, Cultured , Deoxyadenine Nucleotides/metabolism , Deoxyadenine Nucleotides/pharmacology , Enzyme Activation , HeLa Cells , Humans , Mutagenesis , NLR Proteins , Protein Binding , RNA, Messenger/metabolism , Rats , Transfection
9.
Front Neurol ; 6: 178, 2015.
Article in English | MEDLINE | ID: mdl-26388830

ABSTRACT

There is currently no therapeutic drug treatment for traumatic brain injury (TBI) despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. This review presents supporting evidence for cathepsin B, a cysteine protease, as a potentially important drug target for TBI. Cathepsin B expression is greatly up-regulated in TBI animal models, as well as in trauma patients. Importantly, knockout of the cathepsin B gene in TBI mice results in substantial improvements of TBI-caused deficits in behavior, pathology, and biomarkers, as well as improvements in related injury models. During the process of TBI-induced injury, cathepsin B likely escapes the lysosome, its normal subcellular location, into the cytoplasm or extracellular matrix (ECM) where the unleashed proteolytic power causes destruction via necrotic, apoptotic, autophagic, and activated glia-induced cell death, together with ECM breakdown and inflammation. Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, rheumatoid arthritis, epilepsy, Huntington's disease, multiple sclerosis, and Alzheimer's disease. The inhibitor E64d is unique among cathepsin B inhibitors in being the only compound to have demonstrated oral efficacy in a TBI model and prior safe use in man and as such it is an excellent tool compound for preclinical testing and clinical compound development. These data support the conclusion that drug development of cathepsin B inhibitors for TBI treatment should be accelerated.

10.
Curr Top Med Chem ; 2(4): 343-52, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11966458

ABSTRACT

Alzheimer's Disease (AD) is a progressive neurodegenerative disease that is prevalent among the elderly. It is a heterogeneous disease involving a number of genetic components, risk factors and other poorly defined elements that all impact on the accumulation of beta-amyloid peptide (Abeta). Current understanding of pathology, biochemistry and genetics strengthens the notion that Abeta is potentially the common pathogenic agent in an apparent convergence of various mechanisms leading to the decline of cognitive function and neuronal loss. While many issues remain controversial, recent evidence attributing Abeta accumulation to cognitive decline in humans, coupled to the demonstrated improvement of cognitive function following Abeta immunization in pre-clinical models, strongly supports the "amyloid hypothesis" and a central role for Abeta; in the pathophysiology and etiology of AD. These and other observations endorse the notion that therapeutic strategies targeting the inhibition of Abeta accumulation by the use of protease inhibitors,immunization or other strategies, may provide disease-altering interventions to the development and progression of AD. The only approved and marketed treatments currently available for AD are the acetylcholinesterase inhibitors, a palliative strategy aimed at the temporary improvement of cognitive function. The purpose of this overview is to provide a brief understanding of key events leading to the progression of AD and to highlight a few of the current and most promising therapeutic strategies that one day might be available for the treatment of AD.


Subject(s)
Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cholinesterase Inhibitors/therapeutic use , Drug Design , Forecasting , Genetic Therapy , Humans , Immunotherapy
12.
J Med Chem ; 51(23): 7348-51, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-19012391

ABSTRACT

SAR on HTS hits 1 and 2 led to the potent, Notch-1-sparing GSI 9, which lowered brain Abeta in Tg2576 mice at 100 mg/kg po. Converting the metabolically labile methyl groups in 9 to trifluoromethyl groups afforded the more stable analogue 10, which had improved in vivo potency. Further side chain modification afforded the potent Notch-1-sparing GSI begacestat (5), which was selected for development for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Receptor, Notch1/metabolism , Sulfonamides/pharmacology , Thiophenes/pharmacology , Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Mice, Transgenic , Models, Molecular , Molecular Conformation , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Thiophenes/chemical synthesis , Thiophenes/chemistry
13.
Cytometry A ; 69(11): 1123-31, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17051583

ABSTRACT

BACKGROUND: NARC 1/PCSK9 encodes a novel serine proteinase known to play a role in cholesterol homeostasis. NARC 1 mRNA expression in cerebellar granule neurons (CGNs) was discovered to be induced following an apoptotic injury. Coregulation of known apoptotic mediators (caspase-3 and death receptor 6) raises the possibility that NARC 1 might be involved in the propagation of apoptotic signaling in neurons. METHODS: CGNs were transfected with EGFP-fusion constructs of wild-type and mutant NARC 1, and a laser scanning cytometry-based method of scoring cell death in transfectants was applied. Use of the poly-caspase inhibitor BAF allowed assessment of the caspase-dependence of the NARC 1 proapoptotic effect. RESULTS: Wild-type NARC 1 was found to have substantial proapoptotic effects that were only partially reversible by BAF. Mutation of the active site serine or deletion of the catalytic domain resulted in a reduced level of cell death, consistent with loss of the BAF-sensitive component of cell death. NH(2)-terminal deletion constructs of NARC 1 had effects similar to wild-type, both in the absence and presence of BAF, whereas expression of COOH-terminal deletion mutants produced a rate of cell death similar to wild-type in the absence of BAF treatment, but which lacked the capacity to be reduced by treatment with BAF. CONCLUSION: The mechanism by which NARC 1-EGFP over-expression induces cell death in cultured CGNs remains unclear. Mutation analysis established a positive correlation between the presence of the Narc 1 active site serine in the transiently expressed protein and induction of the BAF-sensitive component of the cell death phenotype. A caspase-independent component proved sufficiently complex to map discretely within the Narc 1 protein.


Subject(s)
Apoptosis/genetics , Laser Scanning Cytometry/methods , Neurons/pathology , Serine Endopeptidases/genetics , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Caspase 3/metabolism , Caspase Inhibitors , Cells, Cultured , Cerebellum/cytology , Cerebellum/enzymology , Cerebellum/pathology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic/genetics , Neurons/drug effects , Neurons/enzymology , Point Mutation , Proprotein Convertase 9 , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Serine , Serine Endopeptidases/metabolism , Transfection
14.
Proc Natl Acad Sci U S A ; 103(13): 5161-6, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16549764

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which numerous mouse models have been generated. In both AD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of beta-amyloid (Abeta)-containing plaques and neurodegeneration. Characterization of the timing and nature of preplaque dysfunction is important for understanding the progression of this disease and to identify pathways and molecular targets for therapeutic intervention. Hence, we have examined the progression of dysfunction at the morphological, functional, and behavioral levels in the Tg2576 mouse model of AD. Our data show that decreased dendritic spine density, impaired long-term potentiation (LTP), and behavioral deficits occurred months before plaque deposition, which was first detectable at 18 months of age. We detected a decrease in spine density in the outer molecular layer of the dentate gyrus (DG) beginning as early as 4 months of age. Furthermore, by 5 months, there was a decline in LTP in the DG after perforant path stimulation and impairment in contextual fear conditioning. Moreover, an increase in the Abeta42/Abeta40 ratio was first observed at these early ages. However, total amyloid levels did not significantly increase until approximately 18 months of age, at which time significant increases in reactive astrocytes and microglia could be observed. Overall, these data show that the perforant path input from the entorhinal cortex to the DG is compromised both structurally and functionally, and this pathology is manifested in memory defects long before significant plaque deposition.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Behavior, Animal/physiology , Synapses/pathology , Aging/physiology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Fear , Memory , Mice , Mice, Transgenic , Organ Size , Spine/pathology , Synapses/metabolism , Synaptophysin/metabolism , Time Factors
15.
NeuroRx ; 2(4): 612-26, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16489369

ABSTRACT

Alzheimer's disease is a progressive neurodegenerative disorder and the leading cause of dementia in the Western world. Postmortem, it is characterized neuropathologically by the presence of amyloid plaques, neurofibrillary tangles, and a profound gray matter loss. Neurofibrillary tangles are composed of an abnormally hyperphosphorylated intracellular protein called tau, tightly wound into paired helical filaments and thought to impact microtubule assembly and protein trafficking, resulting in the eventual demise of neuronal viability. The extracellular amyloid plaque deposits are composed of a proteinacious core of insoluble aggregated amyloid-beta (Abeta) peptide and have led to the foundation of the amyloid hypothesis. This hypothesis postulates that Abeta is one of the principal causative factors of neuronal death in the brains of Alzheimer's patients. With multiple drugs now moving through clinical development for the treatment of Alzheimer's disease, we will review current and future treatment strategies aimed at improving both the cognitive deficits associated with the disease, as well as more novel approaches that may potentially slow or halt the deadly neurodegenerative progression of the disease.


Subject(s)
Alzheimer Disease/therapy , Central Nervous System Agents/therapeutic use , Cognition Disorders/therapy , Alzheimer Disease/complications , Alzheimer Vaccines , Animals , Clinical Trials as Topic , Cognition Disorders/etiology , Humans
16.
Arch Biochem Biophys ; 420(1): 55-67, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14622975

ABSTRACT

The NARC 1 gene encodes a novel proteinase K family proteinase. The domain structure of rat Narc 1 resembles that of the subtilisin-like proprotein convertases (SPCs), except that rNarc 1 lacks the canonical P-domain of SPCs, retaining only the RGD motif as part of what might be a cryptically functioning P-domain. Narc 1 undergoes autocatalytic intramolecular processing at the site LVFAQ/, resulting in the cleavage of its prosegment and the generation of an active proteinase with a broad alkaline pH optimum and no apparent calcium requirement for activity. Both primary and secondary structural determinants influence Narc 1 substrate recognition. Our functional characterization of Narc 1 reinforces the inference drawn from the analysis of its predicted structure that this enzyme is most closely related to representatives of the proteinase K family, but that it is also sufficiently different to warrant its possible classification in a separate sub-family.


Subject(s)
Endopeptidase K/chemistry , Endopeptidase K/metabolism , Models, Chemical , Sequence Alignment , Sequence Analysis, Protein , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Calcium/chemistry , Enzyme Activation , Enzyme Stability , Gene Expression Regulation, Enzymologic/physiology , Hydrogen-Ion Concentration , Molecular Sequence Data , Oligopeptides/chemistry , Proprotein Convertase 9 , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology , Structure-Activity Relationship , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL