Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Access Microbiol ; 6(8)2024.
Article in English | MEDLINE | ID: mdl-39165251

ABSTRACT

Objectives. This study aimed to determine patterns of respiratory, blood-borne and uropathogenic microbial pathogens among SARS-CoV-2-infected patients in a COVID-19-(coronavirus disease 2019) dedicated tertiary care hospital in Dhaka, Bangladesh. Design.This was a cross-sectional study. Setting. In a COVID-19-dedicated tertiary care hospital in Dhaka, Bangladesh, conducted from March to June 2021. Participants. Hospitalized individuals with COVID-19 infection regardless of age or sex. Primary and secondary outcome measures. The percentage of co-infected COVID-19 patients and the characterization of the micro-organisms responsible for co-infection served as the primary outcome measures. Finding any associations between co-infection and age, co-infection and sex and co-infection and comorbidity was the secondary outcome variable. Interventions. Not applicable. Results.Out of 79 patients, 61 % were male, and the mean age was 49.53 years. Co-infection was seen in 7.7 % of patients, out of which 5.1 % of isolates were from urine samples, followed by 2.6 % from blood. Bacteria isolated from urine were Enterococcus (2.6 %), coagulase-negative Staphylococcus (CONS) (1.3 %) and Enterobacter spp. (1.3 %). Pseudomonas spp. was the only organism isolated from blood sample. Mixed growth was found in nasopharyngeal and throat swabs, with the predominant species being Staphylococcus aureus and Streptococcus spp. At the time of data collection, 55.7 % of patients had been given antimicrobials, and 30.4 % of patients had been given a single antimicrobial. HBsAg was positive in 1.3 % of patients and none were anti-hepatitis C or dengue NS1Ag positive. Conclusion. Microbial infection has been seen to be associated with SARS-CoV-2 infections and is of great value in prescribing antimicrobials and reducing fatal outcomes of hospitalized patients.

2.
Curr Opin Neurobiol ; 76: 102599, 2022 10.
Article in English | MEDLINE | ID: mdl-35792478

ABSTRACT

Neuroimmune dysfunction is a cardinal feature of neurodegenerative diseases. But how immune dysregulation in the brain and peripheral organs contribute to neurodegeneration remains unclear. Here, we discuss the recent advances highlighting neuroimmune dysfunction as a key disease-driving factor in frontotemporal dementia (FTD). We provide an overview of the clinical observations supporting a high prevalence of autoimmune diseases in FTD patients with mutations in GRN or C9orf72. We then focus on a myriad of evidence from human genetic studies, mouse models, in vitro assays, and multi-omics platform, which indicate that haploinsufficiency in GRN and C9orf72 promotes neuroimmune dysfunction and contributes to neurodegeneration and premature death. These compelling data provide key insights to disease mechanisms, biomarker discovery, and therapeutic interventions for FTD (120 words).


Subject(s)
C9orf72 Protein , Frontotemporal Dementia , Progranulins , Animals , Biomarkers , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Humans , Mice , Mutation , Progranulins/genetics
3.
Sci Transl Med ; 11(521)2019 12 04.
Article in English | MEDLINE | ID: mdl-31801886

ABSTRACT

Aging involves a decline in neural function that contributes to cognitive impairment and disease. However, the mechanisms underlying the transition from a young-and-healthy to aged-and-dysfunctional brain are not well understood. Here, we report breakdown of the vascular blood-brain barrier (BBB) in aging humans and rodents, which begins as early as middle age and progresses to the end of the life span. Gain-of-function and loss-of-function manipulations show that this BBB dysfunction triggers hyperactivation of transforming growth factor-ß (TGFß) signaling in astrocytes, which is necessary and sufficient to cause neural dysfunction and age-related pathology in rodents. Specifically, infusion of the serum protein albumin into the young rodent brain (mimicking BBB leakiness) induced astrocytic TGFß signaling and an aged brain phenotype including aberrant electrocorticographic activity, vulnerability to seizures, and cognitive impairment. Furthermore, conditional genetic knockdown of astrocytic TGFß receptors or pharmacological inhibition of TGFß signaling reversed these symptomatic outcomes in aged mice. Last, we found that this same signaling pathway is activated in aging human subjects with BBB dysfunction. Our study identifies dysfunction in the neurovascular unit as one of the earliest triggers of neurological aging and demonstrates that the aging brain may retain considerable latent capacity, which can be revitalized by therapeutic inhibition of TGFß signaling.


Subject(s)
Aging/pathology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Signal Transduction , Transforming Growth Factor beta/metabolism , Adult , Aged , Aged, 80 and over , Albumins/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Blood-Brain Barrier/drug effects , Chronic Disease , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Gene Knockdown Techniques , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Mice, Transgenic , Middle Aged , Protein Kinase Inhibitors/pharmacology , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/metabolism , Young Adult
4.
J Exp Med ; 215(1): 141-157, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29203539

ABSTRACT

The median overall survival for children with diffuse intrinsic pontine glioma (DIPG) is less than one year. The majority of diffuse midline gliomas, including more than 70% of DIPGs, harbor an amino acid substitution from lysine (K) to methionine (M) at position 27 of histone 3 variant 3 (H3.3). From a CD8+ T cell clone established by stimulation of HLA-A2+ CD8+ T cells with synthetic peptide encompassing the H3.3K27M mutation, complementary DNA for T cell receptor (TCR) α- and ß-chains were cloned into a retroviral vector. TCR-transduced HLA-A2+ T cells efficiently killed HLA-A2+H3.3K27M+ glioma cells in an antigen- and HLA-specific manner. Adoptive transfer of TCR-transduced T cells significantly suppressed the progression of glioma xenografts in mice. Alanine-scanning assays suggested the absence of known human proteins sharing the key amino acid residues required for recognition by the TCR, suggesting that the TCR could be safely used in patients. These data provide us with a strong basis for developing T cell-based therapy targeting this shared neoepitope.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Glioma/genetics , Glioma/immunology , Histones/genetics , Histones/immunology , Mutation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adoptive Transfer , Amino Acid Sequence , Amino Acids , Animals , Antigen Presentation , Antigens, Neoplasm/chemistry , Chromatography, Liquid , Disease Models, Animal , Epitope Mapping , Female , Glioma/pathology , Glioma/therapy , HLA-A Antigens/immunology , HLA-A Antigens/metabolism , Histones/chemistry , Humans , Immunotherapy, Adoptive , Mice , Mice, Transgenic , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Protein Binding , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Cell Antigen Receptor Specificity/immunology , Tandem Mass Spectrometry , Xenograft Model Antitumor Assays
5.
J Clin Invest ; 127(4): 1425-1437, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28319047

ABSTRACT

Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 are among the first genetic alterations observed during the development of lower-grade glioma (LGG). LGG-associated IDH mutations confer gain-of-function activity by converting α-ketoglutarate to the oncometabolite R-2-hydroxyglutarate (2HG). Clinical samples and gene expression data from The Cancer Genome Atlas (TCGA) demonstrate reduced expression of cytotoxic T lymphocyte-associated genes and IFN-γ-inducible chemokines, including CXCL10, in IDH-mutated (IDH-MUT) tumors compared with IDH-WT tumors. Given these findings, we have investigated the impact of IDH mutations on the immunological milieu in LGG. In immortalized normal human astrocytes (NHAs) and syngeneic mouse glioma models, the introduction of mutant IDH1 or treatment with 2HG reduced levels of CXCL10, which was associated with decreased production of STAT1, a regulator of CXCL10. Expression of mutant IDH1 also suppressed the accumulation of T cells in tumor sites. Reductions in CXCL10 and T cell accumulation were reversed by IDH-C35, a specific inhibitor of mutant IDH1. Furthermore, IDH-C35 enhanced the efficacy of vaccine immunotherapy in mice bearing IDH-MUT gliomas. Our findings demonstrate a mechanism of immune evasion in IDH-MUT gliomas and suggest that specific inhibitors of mutant IDH may improve the efficacy of immunotherapy in patients with IDH-MUT gliomas.


Subject(s)
Brain Neoplasms/genetics , CD8-Positive T-Lymphocytes/enzymology , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Lymphocytes, Tumor-Infiltrating/enzymology , STAT1 Transcription Factor/metabolism , Animals , Brain Neoplasms/enzymology , Brain Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cell Line, Tumor , Chemokines/metabolism , Chemotaxis , Glioma/enzymology , Glioma/immunology , Humans , Isocitrate Dehydrogenase/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred C57BL , Neoplasm Transplantation , T-Lymphocytes, Cytotoxic/enzymology , T-Lymphocytes, Cytotoxic/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL