Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Phys Rev Lett ; 133(9): 093002, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39270177

ABSTRACT

We use one-photon excitation to promote K-shell electrons of formic acid (which has a planar equilibrium structure) to an antibonding π^{*} orbital. The excited molecule is known to have a (chiral) pyramidal equilibrium structure. In our experiment, we determine the handedness of the excited molecule by imaging the momenta of charged fragments, which occur after its Coulomb explosion triggered by Auger-Meitner decay cascades succeeding the excitation. We find that the handedness of the excited molecule depends on its spatial orientation with respect to the propagation (or polarization) direction of the exciting photon. The effect is largely independent of the exact polarization properties of the light driving the 1s→π^{*} excitation.

2.
Phys Rev Lett ; 132(12): 123202, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38579236

ABSTRACT

We studied strong-field multiphoton ionization of 1-iodo-2-methylbutane enantiomers with 395 nm circularly polarized laser pulses experimentally and theoretically. For randomly oriented molecules, we observe spin polarization up to about 15%, which is independent of the molecular enantiomer. Our experimental findings are explained theoretically as an intricate interplay between three contributions from HOMO, HOMO-1, and HOMO-2, which are formed of 5p-electrons of the iodine atom. For uniaxially oriented molecules, our theory demonstrates even larger spin polarization. Moreover, we predict a sizable enantiosensitive photoelectron circular dichroism of about 10%, which is different for different spin states of photoelectrons.

3.
Phys Rev Lett ; 132(23): 233002, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905657

ABSTRACT

We experimentally study the influence of the binding energy on nondipole effects in K-shell single-photon ionization of atoms at high photon energies. We find that for each ionization event, as expected by momentum conservation, the photon momentum is transferred almost fully to the recoiling ion. The momentum distribution of the electrons becomes asymmetrically deformed along the photon propagation direction with a mean value of 8/(5c)(E_{γ}-I_{P}) confirming an almost 100 year old prediction by Sommerfeld and Schur [Ann. Phys. (N.Y.) 396, 409 (1930)10.1002/andp.19303960402]. The emission direction of the photoions results from competition between the forward-directed photon momentum and the backward-directed recoil imparted by the photoelectron. Which of the two counteracting effects prevails depends on the binding energy of the emitted electron. As an example, we show that at 20 keV photon energy, Ne^{+} and Ar^{+} photoions are pushed backward towards the radiation source, while Kr^{+} photoions are emitted forward along the light propagation direction.

4.
J Phys Chem A ; 128(7): 1241-1249, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38324399

ABSTRACT

The recent implementation of attosecond and few-femtosecond X-ray pump/X-ray probe schemes in large-scale free-electron laser facilities has opened the way to visualize fast nuclear dynamics in molecules with unprecedented temporal and spatial resolution. Here, we present the results of theoretical calculations showing how polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) can be used to visualize the dynamics of hydrogen migration in methanol, ethanol, propanol, and isopropyl alcohol dications generated by X-ray irradiation of the corresponding neutral species. We show that changes in the PA-MFPADs with the pump-probe delay as a result of intramolecular photoelectron diffraction carry information on the dynamics of hydrogen migration in real space. Although visualization of this dynamics is more straightforward in the smaller systems, methanol and ethanol, one can still recognize the signature of that motion in propanol and isopropyl alcohol and assign a tentative path to it. A possible pathway for a corresponding experiment requires an angularly resolved detection of photoelectrons in coincidence with molecular fragment ions used to define a molecular frame of reference. Such studies have become, in principle, possible since the first XFELs with sufficiently high repetition rates have emerged. To further support our findings, we provide experimental evidence of H migration in ethanol-OD from ion-ion coincidence measurements performed with synchrotron radiation.

5.
Phys Chem Chem Phys ; 25(19): 13784-13791, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37159272

ABSTRACT

We present a study on molecular-frame photoelectron angular distributions (MFPADs) of small molecules using circularly polarized synchrotron light. We find that the main forward-scattering peaks of the MFPADs are slightly tilted with respect to the molecular axis. This tilt angle is directly connected to the molecular bond length by a simple, universal formula. We apply the derived formula to several examples of MFPADs of C 1s and O 1s photoelectrons of CO, which have been measured experimentally or obtained by means of ab initio modeling. In addition, we discuss the influence of the back-scattering contribution that is superimposed over the analyzed forward-scattering peak in the case of homo-nuclear diatomic molecules such as N2.

6.
Phys Rev Lett ; 128(5): 053001, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179929

ABSTRACT

We present the momentum distributions of the nucleus and of the electrons from double ionization of the helium atom by Compton scattering of photons with hν=40 keV. We find that the doubly charged ion momentum distribution is very close to the Compton profile of the nucleus in the ground state of the helium atom, and the momentum distribution of the singly charged ion to give a precise image of the electron Compton profile. To reproduce these results, nonrelativistic calculations require the use of highly correlated initial- and final-state wave functions.

7.
Phys Rev Lett ; 129(25): 253201, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36608244

ABSTRACT

We investigate experimentally and theoretically the C and O 1s photoionization of fixed-in-space CO molecules at a photon energy of 905 eV. We find a significant dependence of the photoelectron angular distributions on the direction of propagation of the ionizing radiation. It results from an interplay of nondipole effects, on one hand, and molecular effects, on the other. The nondipole effects lead to an increase of the emission probability in the forward direction along the light propagation, and the photoelectron wave being scattered by the molecular potential gives rise to a strong peak in the direction of the atom neighboring the emitter site. These effects can either conspire or extenuate each other, depending on the photoelectron emission direction and molecular orientation in space.

8.
Phys Rev Lett ; 127(27): 273201, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35061406

ABSTRACT

We present experimental data on the nonadiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical solution of the time-dependent Schrödinger equation (TDSE). Experiment and TDSE show four above-threshold ionization peaks in the electron's energy spectrum. The most probable emission angle (also known as "attoclock offset angle" or "streaking angle") is found to increase with energy, a trend that is opposite to standard predictions based on Coulomb interaction with the ion. We show that this increase of deflection angle can be explained by a model that includes nonadiabatic corrections of the initial momentum distribution at the tunnel exit and nonadiabatic corrections of the tunnel exit position itself.

9.
Phys Rev Lett ; 126(5): 053202, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33605768

ABSTRACT

Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magnetic component of the light field is known to shift this distribution forward. Here, we show that this magnetic nondipole effect is not the only nondipole effect in strong-field ionization. We find that an electric nondipole effect arises that is due to the position dependence of the electric field and which can be understood in analogy to the Doppler effect. This electric nondipole effect manifests as an increase of the radius of the donut-shaped photoelectron momentum distribution for forward-directed momenta and as a decrease of this radius for backwards-directed electrons. We present experimental data showing this fingerprint of the electric nondipole effect and compare our findings with a classical model and quantum calculations.

10.
Phys Rev Lett ; 126(8): 083201, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33709766

ABSTRACT

We investigate the differential ionization probability of chiral molecules in the strong-field regime as a function of the helicity of the incident light. To this end, we analyze the fourfold ionization of bromochlorofluoromethane (CHBrClF) with subsequent fragmentation into four charged fragments and different dissociation channels of the singly ionized methyloxirane. By resolving for the molecular orientation, we show that the photoion circular dichroism signal strength is increased by 2 orders of magnitude.

SELECTION OF CITATIONS
SEARCH DETAIL