Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Publication year range
1.
Nano Lett ; 23(14): 6520-6527, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37399502

ABSTRACT

Metal nanoparticles are attracting interest for their light-absorption properties, but such materials are known to dynamically evolve under the action of chemical and physical perturbations, resulting in changes in their structure and composition. Using a transmission electron microscope equipped for optical excitation of the specimen, the structural evolution of Cu-based nanoparticles under simultaneous electron beam irradiation and plasmonic excitation was investigated with high spatiotemporal resolution. These nanoparticles initially have a Cu core-Cu2O oxide shell structure, but over the course of imaging, they undergo hollowing via the nanoscale Kirkendall effect. We captured the nucleation of a void within the core, which then rapidly grows along specific crystallographic directions until the core is hollowed out. Hollowing is triggered by electron-beam irradiation; plasmonic excitation enhances the kinetics of the transformation likely by the effect of photothermal heating.

2.
Nano Lett ; 22(19): 7819-7825, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36178334

ABSTRACT

Hot carriers generated by localized surface plasmon resonance (LSPR) excitation of plasmonic metal nanoparticles are known to enhance electrocatalytic reactions. However, the participation of plasmonically generated carriers in interfacial electrochemical reactions is often limited by fast relaxation of these carriers. Herein, we address this challenge by tuning the electronic structure of a plasmonic electrocatalyst. Specifically, we design an electrocatalyst for alkaline hydrogen evolution reaction (HER) that consists of nanoparticles of a ternary Cu-Pt-Ni ternary alloy. The CuPt alloy has both plasmonic attributes and electrocatalytic HER activity. Ni doping contributes an electron-deficient 3d band and fully filled 4s band, which promotes water adsorption and prolongs the lifetimes of excited carriers generated by plasmonic excitation. As an outcome, the Cu-Pt-Ni nanoparticles exhibit boosted activity for electrochemical water dissociation and HER under LSPR excitation.

3.
J Am Chem Soc ; 144(24): 10743-10751, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35671395

ABSTRACT

Ammonia is a promising liquid-phase carrier for the storage, transport, and deployment of carbon-free energy. However, the realization of an ammonia economy is predicated on the availability of green methods for the production of ammonia powered by electricity from renewable sources or by solar energy. Here, we demonstrate the synthesis of ammonium from nitrate powered by a synergistic combination of electricity and light. We use an electrocatalyst composed of gold nanoparticles, which have dual attributes of electrochemical nitrate reduction activity and visible-light-harvesting ability due to their localized surface plasmon resonances. Plasmonic excitation of the electrocatalyst induces ammonium synthesis with up to a 15× boost in activity relative to conventional electrocatalysis. We devise a strategy to account for the effect of photothermal heating of the electrode surface, which allows the observed enhancement to be attributed to non-thermal effects such as energetic carriers and charged interfaces induced by plasmonic excitation. The synergy between electrochemical activation and plasmonic activation is the most optimal at a potential close to the onset of nitrate reduction. Plasmon-assisted electrochemistry presents an opportunity for conventional limits of electrocatalytic conversion to be surpassed due to non-equilibrium conditions generated by plasmonic excitation.

4.
Annu Rev Phys Chem ; 72: 423-443, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33481640

ABSTRACT

Because plasmonic metal nanostructures combine strong light absorption with catalytically active surfaces, they have become platforms for the light-assisted catalysis of chemical reactions. The enhancement of reaction rates by plasmonic excitation has been extensively discussed. This review focuses on a less discussed aspect: the induction of new reaction pathways by light excitation. Through commentary on seminal reports, we describe the principles behind the optical modulation of chemical reactivity and selectivity on plasmonic metal nanostructures. Central to these phenomena are excited charge carriers generated by plasmonic excitation, which modify the energy landscape available to surface reactive species and unlock pathways not conventionally available in thermal catalysis. Photogenerated carriers can trigger bond dissociation or desorption in an adsorbate-selective manner, drive charge transfer and multielectron redox reactions, and generate radical intermediates. Through one or more of these mechanisms, a specific pathway becomes favored under light. By improved control over these mechanisms, light-assisted catalysis can be transformational for chemical synthesis and energy conversion.

5.
Nano Lett ; 21(1): 556-561, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33274940

ABSTRACT

Superionic conductors are prime candidates for the electrolytes of all-solid-state batteries. Our understanding of the mechanism and performance of superionic conductors is largely based on their idealized lattice structures. But how do defects in the lattice affect ionic structure and transport in these materials? This is a question answered here by in situ transmission electron microscopy of copper selenide, a classic superionic conductor. Nanowires of copper selenide exhibit antiphase boundaries which are a form of a planar defect. We examine the lattice structure around an antiphase boundary and monitor with atomic resolution how this structure evolves in an ordered-to-superionic phase transition. Antiphase boundaries are found to act as barriers to the propagation of the superionic phase. Antiphase boundaries also undergo spatial diffusion and shape changes resulting from thermally activated fluctuations of the neighboring ionic structure. These spatiotemporal insights highlight the importance of collective ionic transport and the role of defects in superionic conduction.

6.
Acc Chem Res ; 53(9): 1773-1781, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32786334

ABSTRACT

ConspectusPlasmonic nanostructures have garnered widescale scientific interest because of their strong light-matter interactions and the tunability of their absorption across the solar spectrum. At the heart of their superlative interaction with light is the resonant excitation of a collective oscillation of electrons in the nanostructure by the incident electromagnetic field. These resonant oscillations are known as localized surface plasmon resonances (LSPRs). In recent years, the community has uncovered intriguing photochemical attributes of noble metal nanostructures arising from their LSPRs. Chemical reactions that are otherwise unfavorable or sluggish in the dark are induced on the nanostructure surface upon photoexcitation of LSPRs. This phenomenon has led to the birth of plasmonic catalysis. The rates of a variety of kinetically challenging reactions are enhanced by plasmon-excited nanostructures. While the potential utility for solar energy harvesting and chemical production is clear, there is a natural curiosity about the precise origin(s) of plasmonic catalysis. One explanation is that the reactions are facilitated by the action of the intensely concentrated and confined electric fields generated on the nanostructure upon LSPR excitation. Another mechanism of activation involves hot carriers transiently produced in the metal nanostructure by damping of LSPRs.In this Account, we visit a phenomenon that has received less attention but has a key role to play in plasmonic catalysis and chemistry. Under common chemical scenarios, plasmonic excitation induces a potential or a voltage on a nanoparticle. This photopotential modifies the energetics of a chemical reaction on noble metal nanoparticles. In a range of cases studied by our laboratory and others, light-induced potentials underlie the plasmonic enhancement of reaction kinetics. The photopotential model does not replace other known mechanisms, but it complements them. There are multiple ways in which an electrostatic photopotential is produced by LSPR excitation, such as optical rectification, but one that is most relevant in chemical media is asymmetric charge transfer to solution-phase acceptors. Electrons and holes produced in a nanostructure by damping of LSPRs are not removed at the same rate. As a result, the slower carrier accumulates on the nanostructure, and a steady-state charge is built up on the nanostructure, leading to a photopotential. Potentials of up to a few hundred millivolts have been measured by our laboratory and others. A photocharged nanoparticle is a source of carriers of a higher potential than an uncharged one. As a result, redox chemical reactions on noble metal nanoparticles exhibit lower activation barriers under photoexcitation. In electrochemical reactions on noble metal nanoparticles, the photopotential supplements the applied potential. In a diverse set of reactions, the photopotential model explains the photoenhancement of rates as well as the trends as a function of light intensity and photon energy. With further gains, light-induced potentials may be used as a knob for controlling the activities and selectivities of noble metal nanoparticle catalysts.

7.
Nanotechnology ; 32(16): 162003, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33543734

ABSTRACT

Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a view to what the future holds. Materials and devices with nanoscale features are used for quantum metrology and sensing, as building blocks for quantum computing, and as sources and detectors for quantum communication. They enable explorations of quantum behaviour and unconventional states in nano- and opto-mechanical systems, low-dimensional systems, molecular devices, nano-plasmonics, quantum electrodynamics, scanning tunnelling microscopy, and more. This rapidly expanding intersection of nanotechnology and quantum science/technology is mutually beneficial to both fields, laying claim to some of the most exciting scientific leaps of the last decade, with more on the horizon.

8.
Chem Soc Rev ; 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32700702

ABSTRACT

Single-molecule-level measurements are bringing about a revolution in our understanding of chemical and biochemical processes. Conventional measurements are performed on large ensembles of molecules. Such ensemble-averaged measurements mask molecular-level dynamics and static and dynamic fluctuations in reactivity, which are vital to a holistic understanding of chemical reactions. Watching reactions on the single-molecule level provides access to this otherwise hidden information. Sub-diffraction-limited spatial resolution fluorescence imaging methods, which have been successful in the field of biophysics, have been applied to study chemical processes on single-nanoparticle and single-molecule levels, bringing us new mechanistic insights into physiochemical processes. However, the scope of chemical processes that can be studied using fluorescence imaging is considerably limited; the chemical reaction has to be designed such that it involves fluorophores or fluorogenic probes. In this article, we review optical imaging modalities alternative to fluorescence imaging, which expand greatly the range of chemical processes that can be probed with nanoscale or even single-molecule resolution. First, we show that the luminosity, wavelength, and intermittency of solid-state photoluminescence (PL) can be used to probe chemical transformations on the single-nanoparticle-level. Next, we highlight case studies where localized surface plasmon resonance (LSPR) scattering is used for tracking solid-state, interfacial, and near-field-driven chemical reactions occurring in individual nanoscale locations. Third, we explore the utility of surface- and tip-enhanced Raman scattering to monitor individual bond-dissociation and bond-formation events occurring locally in chemical reactions on surfaces. Each example has yielded some new understanding about molecular mechanisms or location-to-location heterogeneity in chemical activity. The review finishes with new and complementary tools that are expected to further enhance the scope of knowledge attainable through nanometer-scale resolution chemical imaging.

9.
Angew Chem Int Ed Engl ; 59(50): 22480-22483, 2020 12 07.
Article in English | MEDLINE | ID: mdl-32898311

ABSTRACT

The photoexcitation of plasmonic nanoparticles has been shown to drive multistep, multicarrier transformations, such as the conversion of CO2 into hydrocarbons. But for such plasmon-driven chemistry to be precisely understood and modeled, the critical photoinitiation step in the reaction cascade must be identified. We meet this goal by measuring H/D and 12 C/13 C kinetic isotope effects (KIEs) in plasmonic photosynthesis. In particular, we found that the substitution of H2 O with D2 O slows hydrocarbon production by a factor of 5-8. This primary H/D KIE leads to the inference that hole-driven scission of the O-H bond in H2 O is a critical, limiting step in plasmonic photosynthesis. This study advances mechanistic understanding of light-driven chemical reactions on plasmonic nanoparticles.

10.
Angew Chem Int Ed Engl ; 59(5): 2085-2088, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31765516

ABSTRACT

By the photoexcitation of localized surface plasmon resonances of metal nanoparticles, one can generate reaction equivalents for driving redox reactions. We show that, in such cases, there is a chemical potential contributed by the plasmonic excitation. This chemical potential is a function of the concentration of light, as we determine from the light-intensity-dependent activity in the plasmon-excitation-driven reduction of CO2 on Au nanoparticles. Our finding allows the treatment of plasmonic excitation as a reagent in chemical reactions; the chemical potential of this reagent is tunable by the light intensity.

11.
Nano Lett ; 18(4): 2189-2194, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29405717

ABSTRACT

Artificial photosynthesis relies on the availability of synthetic photocatalysts that can drive CO2 reduction in the presence of water and light. From the standpoint of solar fuel production, it is desirable that these photocatalysts perform under visible light and produce energy-rich hydrocarbons from CO2 reduction. However, the multistep nature of CO2-to-hydrocarbon conversion poses a significant kinetic bottleneck when compared to CO production and H2 evolution. Here, we show that plasmonic Au nanoparticle photocatalysts can harvest visible light for multielectron, multiproton reduction of CO2 to yield C1 (methane) and C2 (ethane) hydrocarbons. The light-excitation attributes influence the C2 and C1 selectivity. The observed trends in activity and selectivity follow Poisson statistics of electron harvesting. Higher photon energies and flux favor simultaneous harvesting of more than one electron from the photocharged Au nanoparticle catalyst, inducing the C-C coupling required for C2 production. These findings elucidate the nature of plasmonic photocatalysis, which involves strong light-matter coupling, and set the stage for the controlled chemical bond formation by light excitation.

12.
Nano Lett ; 18(7): 4370-4376, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29932665

ABSTRACT

Conversion of solar energy into liquid fuel often relies on multielectron redox processes that include highly reactive intermediates, with back reaction routes that hinder the overall efficiency of the process. Here, we reveal that these undesirable reaction pathways can be minimized, rendering the photocatalytic reactions more efficient, when charge carriers are harvested from a multiexcitonic state of a semiconductor photocatalyst. A plasmonic antenna, comprising Au nanoprisms, was employed to accomplish feasible levels of multiple carrier excitations in semiconductor nanocrystal-based photocatalytic systems (CdSe@CdS core-shell quantum dots and CdSe@CdS seeded nanorods). The antenna's near-field amplifies the otherwise inherently weak biexciton generation in the semiconductor. The two-electron photoreduction of Pt and Pd metal precursors served as model reactions. In the presence of the plasmonic antenna, these photocatalyzed two-electron reactions exhibited enhanced yields and kinetics. This work uniquely relies on a nonlinear enhancement that has potential for large amplification of photocatalytic activity in the presence of a plasmonic near-field.

13.
Angew Chem Int Ed Engl ; 58(25): 8410-8415, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31016822

ABSTRACT

Cuprous selenide nanocrystals have hallmark attributes, especially tunable localized surface plasmon resonances (LSPRs) and super-ionic behavior. These attributes of cuprous selenide are now integrated with a one-dimensional morphology. Essentially, Cu2 Se nanowires (NWs) of micrometer-scale lengths and about 10 nm diameter are prepared. The NWs exhibit a super-ionic phase that is stable at temperatures lower than in the bulk, owing to compressive lattice strain along the radial dimension of the NWs. The NWs can be switched between oxidized and reduced forms, which have contrasting phase transition and LSPR characteristics. This work thus makes available switchable, one-dimensional waveguides and ion-conducting channels.

14.
Angew Chem Int Ed Engl ; 58(26): 8794-8798, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31038831

ABSTRACT

Localized surface plasmon resonance (LSPR) excitation of noble metal nanoparticles has been shown to accelerate and drive photochemical reactions. Here, LSPR excitation is shown to enhance the electrocatalysis of a fuel-cell-relevant reaction. The electrocatalyst consists of Pdx Ag alloy nanotubes (NTs), which combine the catalytic activity of Pd toward the methanol oxidation reaction (MOR) and the visible-light plasmonic response of Ag. The alloy electrocatalyst exhibits enhanced MOR activity under LSPR excitation with significantly higher current densities and a shift to more positive potentials. The modulation of MOR activity is ascribed primarily to hot holes generated by LSPR excitation of the Pdx Ag NTs.

15.
J Am Chem Soc ; 140(17): 5853-5859, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29649874

ABSTRACT

Oxygenic photosynthesis in nature occurs via water splitting catalyzed by the oxygen-evolving complex (OEC) of photosystem II. To split water, the OEC cycles through a sequence of oxidation states (S i, i = 0-4), the structural mechanism of which is not fully understood under physiological conditions. We monitored the OEC in visible-light-driven water-splitting action by using in situ, aqueous-environment surface-enhanced Raman scattering (SERS). In the unexplored low-frequency region of SERS, we found dynamic vibrational signatures of water binding and splitting. Specific snapshots in the dynamic SERS correspond to intermediate states in the catalytic cycle, as determined by density functional theory and isotopologue comparisons. We assign the previously ambiguous protonation configuration of the S0-S3 states and propose a structural mechanism of the OEC's catalytic cycle. The findings address unresolved questions about photosynthetic water splitting and introduce spatially resolved, low-frequency SERS as a chemically sensitive tool for interrogating homogeneous catalysis in operando.

16.
J Chem Phys ; 159(7)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37584952
17.
Angew Chem Int Ed Engl ; 57(30): 9315-9319, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29863294

ABSTRACT

The search for ion-conductive solid electrolytes for Li+ batteries is an important scientific and technological challenge with economic and sustainable energy implications. In this study, nanocrystals (NCs) of the ion conductor copper selenide (Cu2-y Se) were doped with Li by the process of cation exchange. Li2x Cu2-2x Se alloy NCs were formed at intermediate stages of the reaction, which was followed by phase segregation into Li2 Se and Cu2 Se domains. Li-doped Cu2-y Se NCs and Li2 Se NCs exhibit a possible SI phase at moderately elevated temperatures and warrant further ion-conductance tests. These findings may guide the design of nanostructured super-ionic electrolytes for Li+ transport.

18.
Nano Lett ; 16(5): 3399-407, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27064549

ABSTRACT

The activation energy of a catalytic reaction serves not only as a metric of the efficacy of a catalyst but also as a potential indicator of mechanistic differences between the catalytic and noncatalytic reaction. However, activation energies are quite underutilized in the field of photocatalysis. We characterize in detail the effect of visible light excitation on the activation enthalpy of an electron transfer reaction photocatalyzed by plasmonic Au nanoparticles. We find that in the presence of visible light photoexcitation, the activation enthalpy of the Au nanoparticle-catalyzed electron transfer reaction is significantly reduced. The reduction in the activation enthalpy depends on the excitation wavelength, the incident laser power, and the strength of a hole scavenger. On the basis of these results, we argue that the activation enthalpy reduction is directly related to the photoelectrochemical potential built-up on the Au nanoparticle under steady-state light excitation, analogous to electrochemical activation. Under optimum light excitation conditions, a potential as high as 240 mV is measured. The findings constitute more precise insights into the mechanistic role and energetic contribution of plasmonic excitation to chemical reactions catalyzed by transition metal nanoparticles.

19.
J Am Chem Soc ; 138(21): 6765-73, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27152595

ABSTRACT

Transition metal nanoparticles, including those employed in catalytic, electrocatalytic, and photocatalytic conversions, have surfaces that are typically coated with a layer of short or long-chain ligands. There is little systematic understanding of how much this ligand layer affects the reactivity of the underlying surface. We show for Ag nanoparticles that a surface-adsorbed thiol layer greatly impedes the kinetics of an ionic chemical reaction taking place on the Ag surface. The model reaction studied is the galvanic exchange of Ag with Au(3+) ions, the kinetics of which is measured on individual thiol-coated nanoparticles using in situ optical scattering spectroscopy. We observe a systematic lowering of the reactivity of the nanoparticle as the chain length of the thiol is increased, from which we deduce that the ligand layer serves as an energy barrier to the transport of incoming/outgoing reactive ions. This barrier effect can be decreased by light irradiation, resulting from weakened binding of the thiol layer to the metal surface. We find that the influence of the surface ligand layer on reactivity is much stronger than factors such as nanoparticle size, shape, or crystallinity. These findings provide improved understanding of the role of ligand or adsorbates in colloidal catalysis and photocatalysis and have important implications for the transport of reactants and ions to surfaces and for engineering the reactivity of nanoparticles using surface passivation.

20.
Phys Chem Chem Phys ; 18(34): 23990-7, 2016 Aug 24.
Article in English | MEDLINE | ID: mdl-27523488

ABSTRACT

Self-assembled monolayer (SAM) formation of alkanethiols on nanoparticle surfaces is an extensively studied surface reaction. But the nanoscale aspects of the rich microscopic kinetics of this reaction may remain hidden due to ensemble-averaging in colloidal samples, which is why we investigated in real-time how alkanethiol SAMs form on a single Ag nanoparticle. From single-nanoparticle trajectories obtained using in situ optical spectroscopy, the kinetics of SAM formation appears to be limited by the growth of the layer across the nanoparticle surface. A significant spread in the growth kinetics is seen between nanoparticles. The single-nanoparticle rate distributions suggest two distinct modes for SAM growth: spillover of adsorbed thiols from the initial binding sites on the nanoparticle and direct adsorption of thiol from solution. At low concentrations, wherein direct adsorption from solution is not prevalent and growth takes place primarily by adsorbate migration, the SAM formation rate was less variable from one nanoparticle to another. On the other hand, at higher thiol concentrations, when both modes of growth were operative, the population of nanoparticles with inherent variations in surface conditions and/or morphology exhibited a heterogeneous distribution of rates. These new insights into the complex dynamics of SAM formation may inform synthetic strategies for ligand passivation and functionalization of nanoparticles and models of reactive adsorption and catalysis on nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL