Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673778

ABSTRACT

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


Subject(s)
DNA Damage , DNA Repair , RNA Splicing Factors , RNA Splicing , DNA Damage/genetics , DNA Repair/genetics , Gene Expression Regulation, Fungal , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Spliceosomes/metabolism , Spliceosomes/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism
2.
Int J Cancer ; 152(9): 1947-1963, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36533670

ABSTRACT

Waldenström macroglobulinemia (WM) is a rare subtype of non-Hodgkin lymphoma characterized by malignant lymphoplasmacytic cells in the bone marrow (BM). To dissect the pathophysiology of WM, we evaluated clonal cells by mapping of B cell lymphomagenesis with adaptive and innate immune tumor microenvironment (TME) in the BM of WM patients using mass cytometry (CyTOF). In-depth immunophenotypic profiling of WM cells exhibited profound expansion of clonal cells in both unswitched and switched memory B cells and also plasma cells with aberrant expression variations. WM B lymphomagenesis was associated with reduction of most B cell precursors assessed with the same clonally restricted light chain and phenotypic changes. The immune TME was infiltrated by mature monocytes, neutrophils and adaptive T cells, preferentially subsets of effector T helper, effector CTL and effector memory CTL cells that were associated with superior overall survival (OS), in contrast to progenitors of T cells and myeloid/monocytic lineage subsets that were suppressed in WM cohort. Moreover, decrease in immature B and NKT cells was related to worse OS in WM patients. Innate and adaptive immune subsets of WM TME were modulated by immune checkpoints, including PD-1/PD-L1&PD-L2, TIGIT/PVR, CD137/CD137-L, CTLA-4, BTLA and KIR expression. The response of ibrutinib treatment to the reduction of clonal memory B cell was associated with high levels of immature B cells and effector memory CTL cells. Our study demonstrates that CyTOF technology is a powerful approach for characterizing the pathophysiology of WM at various stages, predicting patient risk and monitoring the effectiveness of treatment strategies.


Subject(s)
Lymphoma, B-Cell , Waldenstrom Macroglobulinemia , Humans , Waldenstrom Macroglobulinemia/drug therapy , Waldenstrom Macroglobulinemia/metabolism , Tumor Microenvironment , Plasma Cells/pathology , B-Lymphocytes/pathology
3.
Neoplasma ; 70(3): 375-389, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37498073

ABSTRACT

Experimental and clinical data have shown that the nervous system can significantly stimulate the initiation and progression of melanoma. In support of this, approaches that reduce the transmission of signals from peripheral nerves to effector tissues reduce the recurrence of melanoma. Therefore, we investigated the effect of topical application of the local anesthetic Pliaglis (7% lidocaine and 7% tetracaine) on the growth of melanoma induced by intradermal application of B16F0 cells in mice without treatment and in mice treated with the anti-PD-1 antibody. We found that application of Pliaglis to melanoma significantly reduced its growth and this effect was even pronounced in mice treated with the anti-PD-1 antibody. To determine the mechanisms and pathways responsible for the observed effect, the in vitro effect of incubating melanoma cells with lidocaine and/or tetracaine and the in vivo gene expression of cancer and immune-related factors, percentage of immune cells, gene expression of selected neurotransmitter receptors and nerve growth factors in melanoma tissue were studied. We found that lidocaine and tetracaine significantly reduced the viability of B16F0 cells in vitro. In mice with melanoma, Pliaglis potentiated the effect of anti-PD-1 antibody on gene expression of COX-2, IL-1ß, IL-6, CCL11, F4/80, CD206, and NCR1. In addition, Pliaglis increased the gene expression of α9nACHR and 5-HT2a receptors and decreased the gene expression of nerve growth factor receptor (p75NTR) and p53. We also observed Pliaglis-mediated changes in myeloid populations. Topical application of this local anesthetic cream decreased the CD11b+Gr1- population and increased the CD11b+Gr1high population. Our data suggest that Pliaglis reduces melanoma growth through a direct effect on melanoma cells as well as through modulation of the immune response. The involvement of nervous system-related signaling in the inhibitory effect of Pliaglis on melanoma is inconclusive from our data.


Subject(s)
Anesthetics, Local , Melanoma , Animals , Mice , Anesthetics, Local/pharmacology , Tetracaine/pharmacology , Lidocaine/pharmacology , Lidocaine/therapeutic use , Melanoma/drug therapy
4.
Cytometry A ; 99(12): 1198-1208, 2021 12.
Article in English | MEDLINE | ID: mdl-34089242

ABSTRACT

DNA double strand breaks (DSB) induced by ionizing radiation (IR) are usually measured using γH2AX/53BP1 DNA repair foci, that is considered to be the most sensitive assay for DSB analysis. While fluorescence microscopy (FM) is the gold standard for this analysis, imaging flow cytometry (IFC) may offer number of advantages such as lack of the fluorescence background, higher number of cells analyzed, and higher sensitivity in detection of DNA damage induced by IR at low doses. Along with appearance of γH2AX foci, the variable fraction of the cells exhibits homogeneously stained γH2AX signal resulting in so-called γH2AX pan-staining, which is believed to appear at early stages of apoptosis. Here, we investigated incidence of γH2AX pan-staining at different time points after irradiation with γ-rays using IFC and compared the obtained data with the data from FM. Appearance of γH2AX pan-staining during the apoptotic process was further analyzed by fluorescence-activated cell sorting (FACS) of cells at different stages of apoptosis and subsequent immunofluorescence analysis. Our results show that IFC was able to reveal dose dependence of pan-staining, while FM failed to detect all pan-staining cells. Moreover, we found that γH2AX pan-staining could be induced by therapeutic, but not low doses of γ-rays and correlate well with percentage of apoptotic cells was analyzed using flow cytometric Annexin-V/7-AAD assay. Further investigations showed that γH2AX pan-staining is formed in the early phases of apoptosis and remains until later stages of apoptotic process. Apoptotic DNA fragmentation as detected with comet assay using FM correlated with the percentage of live and late apoptotic/necrotic cells as analyzed by flow cytometry. Lastly, we successfully tested IFC for detection of γH2AX pan-staining and γH2AX/53BP1 DNA repair foci in lymphocyte of breast cancer patients after radiotherapy, which may be useful for assessing individual radiosensitivity in a clinically relevant cohort of patients.


Subject(s)
Histones , Neoplasms , DNA Repair , Fetal Blood/metabolism , Flow Cytometry , Histones/metabolism , Humans , Lymphocytes/metabolism , Microscopy, Fluorescence , Neoplasms/radiotherapy
5.
Int J Mol Sci ; 20(9)2019 May 01.
Article in English | MEDLINE | ID: mdl-31052469

ABSTRACT

Berberine is a bioactive isoquinoline alkaloid derived from many plants. Although berberine has been shown to inhibit growth and induce apoptosis of several tumor cell lines, its poor absorption and moderate activity hamper its full therapeutic potential. Here, we describe the synthesis of a series of 9-O-substituted berberine derivatives with improved antiproliferative and apoptosis-inducing activities. An analysis of novel berberine derivatives by EPR spectroscopy confirmed their similar photosensitivity and analogous behavior upon UVA irradiation as berberine, supporting their potential to generate ROS. Improved antitumor activity of novel berberine derivatives was revealed by MTT assay, by flow cytometry and by detection of apoptotic DNA fragmentation and caspase-3 activation, respectively. We showed that novel berberine derivatives are potent inhibitors of growth of HeLa and HL-60 tumor cell lines with IC50 values ranging from 0.7 to 16.7 µM for HL-60 cells and 36 to >200 µM for HeLa cells after 48 h treatment. Further cell cycle analysis showed that the observed inhibition of growth of HL-60 cells treated with berberine derivatives was due to arresting these cells in the G2/M and S phases. Most strikingly, we found that berberine derivative 3 (9-(3-bromopropoxy)-10-methoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquino[3,2-a] isoquinolin-7-ylium bromide) possesses 30-fold superior antiproliferative activity with an IC50 value of 0.7 µM and 6-fold higher apoptosis-inducing activity in HL-60 leukemia cells compared to berberine. Therefore, further studies are merited of the antitumor activity in leukemia cells of this berberine derivative.


Subject(s)
Antineoplastic Agents/chemical synthesis , Berberine/analogs & derivatives , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Division/drug effects , HeLa Cells , Humans
6.
Br J Haematol ; 179(5): 756-771, 2017 12.
Article in English | MEDLINE | ID: mdl-29048129

ABSTRACT

Multiple myeloma (MM), a B cell malignancy characterized by clonal proliferation of plasma cells in the bone marrow, remains incurable despite the use of novel and conventional therapies. In this study, we demonstrated MM cell cytotoxicity triggered by realgar (REA; As4 S4 ) nanoparticles (NREA) versus Arsenic trioxide (ATO) against MM cell lines and patient cells. Both NREA and ATO showed in vivo anti-MM activity, resulting in significantly decreased tumour burden. The anti-MM activity of NREA and ATO is associated with apoptosis, evidenced by DNA fragmentation, depletion of mitochondrial membrane potential, cleavage of caspases and anti-apoptotic proteins. NREA induced G2 /M cell cycle arrest and modulation of cyclin B1, p53 (TP53), p21 (CDKN1A), Puma (BBC3) and Wee-1 (WEE1). Moreover, NREA induced modulation of key regulatory molecules in MM pathogenesis including JNK activation, c-Myc (MYC), BRD4, and histones. Importantly, NREA, but not ATO, significantly depleted the proportion and clonogenicity of the MM stem-like side population, even in the context of the bone marrow stromal cells. Finally, our study showed that both NREA and ATO triggered synergistic anti-MM activity when combined with lenalidomide or melphalan. Taken together, the anti-MM activity of NREA was more potent compared to ATO, providing the preclinical framework for clinical trials to improve patient outcome in MM.


Subject(s)
Antineoplastic Agents/administration & dosage , Arsenicals/administration & dosage , Multiple Myeloma/drug therapy , Oxides/administration & dosage , Sulfides/administration & dosage , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Arsenic Trioxide , Arsenicals/pharmacology , Arsenicals/therapeutic use , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Delivery Systems/methods , Humans , Mice, SCID , Molecular Targeted Therapy/methods , Multiple Myeloma/pathology , Nanoparticles , Neoplastic Stem Cells/drug effects , Oxides/pharmacology , Oxides/therapeutic use , Prohibitins , Sulfides/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Blood ; 120(17): 3519-29, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-22955917

ABSTRACT

Malignant cells have a higher nicotinamide adenine dinucleotide (NAD(+)) turnover rate than normal cells, making this biosynthetic pathway an attractive target for cancer treatment. Here we investigated the biologic role of a rate-limiting enzyme involved in NAD(+) synthesis, Nampt, in multiple myeloma (MM). Nampt-specific chemical inhibitor FK866 triggered cytotoxicity in MM cell lines and patient MM cells, but not normal donor as well as MM patients PBMCs. Importantly, FK866 in a dose-dependent fashion triggered cytotoxicity in MM cells resistant to conventional and novel anti-MM therapies and overcomes the protective effects of cytokines (IL-6, IGF-1) and bone marrow stromal cells. Nampt knockdown by RNAi confirmed its pivotal role in maintenance of both MM cell viability and intracellular NAD(+) stores. Interestingly, cytotoxicity of FK866 triggered autophagy, but not apoptosis. A transcriptional-dependent (TFEB) and independent (PI3K/mTORC1) activation of autophagy mediated FK866 MM cytotoxicity. Finally, FK866 demonstrated significant anti-MM activity in a xenograft-murine MM model, associated with down-regulation of ERK1/2 phosphorylation and proteolytic cleavage of LC3 in tumor cells. Our data therefore define a key role of Nampt in MM biology, providing the basis for a novel targeted therapeutic approach.


Subject(s)
Acrylamides/pharmacology , Antineoplastic Agents/pharmacology , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Multiple Myeloma/drug therapy , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Piperidines/pharmacology , Proteins/antagonists & inhibitors , Animals , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Cell Survival , Cytokines/genetics , Cytokines/metabolism , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Targeted Therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Multiprotein Complexes , NAD/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Organ Specificity , Proteins/genetics , Proteins/metabolism , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays
8.
Blood ; 120(25): 5002-13, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-22821765

ABSTRACT

The Hedgehog (Hh) pathway is required for cell-fate determination during the embryonic life, as well as cell growth and differentiation in the adult organism, where the inappropriate activation has been implicated in several cancers. Here we demonstrate that Hh signaling plays a significant role in growth and survival of multiple myeloma (MM) cells. We observed that CD138(+) MM cells express Hh genes and confirmed Smoothened (Smo)-dependent Hh signaling in MM using a novel synthetic Smo inhibitor, NVP-LDE225 (Novartis), which decreased MM cell viability by inducing specific down-regulation of Gli1 and Ptch1, hallmarks of Hh activity. In addition, we detected a nuclear localization of Gli1 in MM cells, which is completely abrogated by Forskolin, a Gli1-modulating compound, confirming Smo-independent mechanisms leading to Hh activation in MM. Finally, we identified that bone marrow stromal cells are a source of the Shh ligand, although they are resistant to the Hh inhibitor because of defective Smo expression and Ptch1 up-regulation. Further in vitro as well as in vivo studies showed antitumor efficacy of NVP-LDE225 in combination with bortezomib. Altogether, our data demonstrate activation of both canonical and noncanonical Hh pathway in MM, thus providing the rationale for testing Hh inhibitors in clinical trials to improve MM patient outcome.


Subject(s)
Hedgehog Proteins/metabolism , Multiple Myeloma/metabolism , Plasma Cells/metabolism , Signal Transduction , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Boronic Acids/pharmacology , Boronic Acids/therapeutic use , Bortezomib , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/genetics , Humans , Mice , Mice, SCID , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Patched Receptors , Patched-1 Receptor , Plasma Cells/drug effects , Plasma Cells/pathology , Pyrazines/pharmacology , Pyrazines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Smoothened Receptor , Syndecan-1/analysis
9.
Cancer Immunol Immunother ; 62(3): 437-45, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22941038

ABSTRACT

Dendritic cells (DCs) and natural killer (NK) cells are central components of innate immunity for controlling tumor growth. The therapeutic effects of certain anti-myeloma drugs are partially mediated by targeting the innate immune response. In addition, novel types of natural compounds have been developed that efficiently modulate the activity of both the cellular and humoral compartments of immunity. MGN-3 is known as an activator of natural killer cells, inducer of apoptosis and cytokine production, and modulator of dendritic cell maturation and differentiation in vitro. We have performed a randomized, placebo-controlled study to examine the effects of MGN-3 on innate immune system parameters in 48 multiple myeloma patients. We performed immunophenotypic analysis of peripheral blood samples, determined NK cell activity, and assessed the cytokine profiles of plasma before and during 3 months of treatment. The results demonstrate a clear increase in NK activity in MGN-3-treated patients compared to the placebo group, an increased level of myeloid DCs in peripheral blood, and augmented concentrations of T helper cell type 1-related cytokines. The present study suggests that MGN-3 may represent an immunologically relevant product for activating innate immunity in multiple myeloma patients and warrants further testing to demonstrate clinical efficacy.


Subject(s)
Dendritic Cells/immunology , Immunity, Innate/drug effects , Killer Cells, Natural/immunology , Multiple Myeloma/immunology , Xylans/pharmacology , Aged , Aged, 80 and over , Cytokines/metabolism , Dendritic Cells/drug effects , Female , Humans , Killer Cells, Natural/drug effects , Male , Middle Aged , Multiple Myeloma/drug therapy , Oryza/chemistry
10.
Blood ; 117(17): 4409-19, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21321360

ABSTRACT

Recurrence of multiple myeloma (MM) after therapy suggests the presence of tumor-initiating subpopulations. In our study, we performed flow cytometry-based Hoechst 33342 staining to evaluate the existence of a MM population with stem-like features known as side population (SP) cells. SP cells exhibit substantial heterogeneity in MM cell lines and primary MM cells; express CD138 antigen in MM cell lines; display higher mRNA expression and functional activity of ABCG2 transporter; and have a higher proliferation index compared with non-SP cells. We observed evidence for clonogenic potential of SP cells, as well as the ability of SP cells to regenerate original population. Moreover, SP cells revealed higher tumorigenicity compared with non-SP cells. Importantly, lenalidomide decreased the percentage and clonogenicity of SP cells, and also induced phosphorylation changes in Akt, GSK-3α/ß, MEK1, c-Jun, p53, and p70S6K in SP cells. Adherence to bone marrow stromal cells (BMSCs) increased the percentage, viability, and proliferation potential of SP cells. Lenalidomide and thalidomide abrogated this stimulatory effect of BMSCs and significantly decreased the percentage of SP cells. Our studies demonstrate a novel mechanism of action for lenalidomide, namely targeting SP fraction, providing the framework for new therapeutic strategies targeting subpopulations of MM cells including presumptive stem cells.


Subject(s)
Antineoplastic Agents/pharmacology , Multiple Myeloma , Neoplastic Stem Cells/drug effects , Thalidomide/analogs & derivatives , ATP-Binding Cassette Transporters/genetics , Angiogenesis Inhibitors/pharmacology , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/physiology , Cell Division/drug effects , Cell Fractionation , Cell Line, Tumor , Cell Survival/drug effects , Colony-Forming Units Assay , Drug Resistance, Neoplasm , Humans , Lenalidomide , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/physiopathology , Neoplasm Recurrence, Local/prevention & control , Neoplastic Stem Cells/pathology , Signal Transduction/drug effects , Stromal Cells/cytology , Stromal Cells/drug effects , Stromal Cells/physiology , Syndecan-1/metabolism , Thalidomide/pharmacology
11.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37765027

ABSTRACT

In this paper, ZnS nanoparticles were bioconjugated with bovine serum albumin and prepared in a form of nanosuspension using a wet circulation grinding. The stable nanosuspension with monomodal particle size distribution (d50 = 137 nm) and negative zeta potential (-18.3 mV) was obtained. The sorption kinetics and isotherm were determined. Interactions between ZnS and albumin were studied using the fluorescence techniques. The quenching mechanism, describing both static and dynamic interactions, was investigated. Various parameters were calculated, including the quenching rate constant, binding constant, stoichiometry of the binding process, and accessibility of fluorophore to the quencher. It has been found that tryptophan, in comparison to tyrosine, can be closer to the binding site established by analyzing the synchronous fluorescence spectra. The cellular mechanism in multiple myeloma cells treated with nanosuspension was evaluated by fluorescence assays for quantification of apoptosis, assessment of mitochondrial membrane potential and evaluation of cell cycle changes. The preliminary results confirm that the nontoxic nature of ZnS nanoparticles is potentially applicable in drug delivery systems. Additionally, slight changes in the secondary structure of albumin, accompanied by a decrease in α-helix content, were investigated using the FTIR method after analyzing the deconvoluted Amide I band spectra of ZnS nanoparticles conjugated with albumin. Thermogravimetric analysis and long-term stability studies were also performed to obtain a complete picture about the studied system.

12.
Int J Pharm ; 640: 123046, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37178791

ABSTRACT

Arsenic sulfide (As4S4) nanoparticles have been intensively researched as a promising drug in a cancer treatment. For the first time, the interaction between As4S4 and bovine serum albumin has been studied in this paper. Initially, the sorption kinetics of albumin on the surface of nanoparticles was investigated. Subsequently, its structural changes influenced by interaction with the As4S4 nanoparticles during wet stirred media milling were studied in deep. Both the dynamic and static quenching were detected after analyzing the fluorescence quenching spectra. From the synchronous fluorescence spectra it was investigated, that the fluorescence intensity for tyrosine residues decreased by about 55%, and for tryptophan it was about 80%. It indicates the fluorescence from tryptophan is more intense and gets more efficiently quenched than those from tyrosine residues in presence of As4S4, implying that the tryptophan can be closer to the binding site. From the circular dichroisms and FTIR spectra it was observed that conformation of the protein remains almost unchanged. The content of appropriate secondary structures was determined by deconvolution of the absorption peak attributed to the amide I band in FTIR spectra. The preliminary anti-tumor cytotoxic effect of prepared albumin-As4S4 system was also tested on multiple myeloma cell lines.


Subject(s)
Nanoparticles , Tryptophan , Nanoparticles/chemistry , Protein Binding , Protein Structure, Secondary , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Tyrosine
13.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36752202

ABSTRACT

To better characterize the heterogeneity of multiple myeloma (MM), we profiled plasma cells (PCs) and their B cell lymphopoiesis in the BM samples from patients with monoclonal gammopathy of undetermined significance, smoldering MM, and active MM by mass cytometry (CyTOF) analysis. Characterization of intra- and interneoplastic heterogeneity of malignant plasmablasts and PCs revealed overexpression of the MM SET domain (MMSET), Notch-1, and CD47. Variations in upregulation of B cell signaling regulators (IFN regulatory factor 4 [IRF-4], CXCR4, B cell lymphoma 6 [Bcl-6], c-Myc, myeloid differentiation primary response protein 88 [MYD88], and spliced X box-binding protein 1 [sXBP-1]) and aberrant markers (CD319, CD269, CD200, CD117, CD56, and CD28) were associated with different clinical outcomes in clonal PC subsets. In addition, prognosis was related to heterogeneity in subclonal expression of stemness markers, including neuroepithelial stem cell protein (Nestin), SRY-box transcription factor 2 (Sox2), Krüppel-like factor 4 (KLF-4), and Nanog. Furthermore, we have defined significantly elevated levels of MMSET, MYD88, c-Myc, CD243, Notch-1, and CD47 from hematopoietic stem cells to PCs in myeloma B cell lymphopoiesis, noted even in premalignant conditions, with variably modulated expression of B cell development regulators, including IRF-4, Bcl-2, Bcl-6, and sXBP-1; aberrant PC markers (such as CD52, CD44, CD200, CD81, CD269, CD117, and CXCR4); and stemness-controlling regulators, including Nanog, KLF-4, octamer-binding transcription factor 3/4 (Oct3/4), Sox2, and retinoic acid receptor α2 (RARα2). This study provides the rationale for precise molecular profiling of patients with MM by CyTOF technology to define disease heterogeneity and prognosis.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/pathology , CD47 Antigen/metabolism , Myeloid Differentiation Factor 88/metabolism , Lymphopoiesis , B-Lymphocytes/metabolism
14.
Front Pharmacol ; 14: 1121950, 2023.
Article in English | MEDLINE | ID: mdl-37033601

ABSTRACT

Cancer causes many deaths worldwide each year, especially due to tumor heterogeneity leading to disease progression and treatment failure. Targeted treatment of heterogeneous population of cells - cancer stem cells is still an issue in protecting affected individuals against associated multidrug resistance and disease progression. Nanotherapeutic agents have the potential to go beyond state-of-the-art approaches in overall cancer management. Specially assembled nanoparticles act as carriers for targeted drug delivery. Several nanodrugs have already been approved by the US Food and Drug Administration (FDA) for treating different cancer types. Phytochemicals isolated from plants demonstrate considerable potential for nanomedical applications in oncology thanks to their antioxidant, anti-inflammatory, anti-proliferative, and other health benefits. Phytochemical-based NPs can enhance anticancer therapeutic effects, improve cellular uptake of therapeutic agents, and mitigate the side effects of toxic anticancer treatments. Per evidence, phytochemical-based NPs can specifically target CSCs decreasing risks of tumor relapse and metastatic disease manifestation. Therefore, this review focuses on current outlook of phytochemical-based NPs and their potential targeting CSCs in cancer research studies and their consideration in the framework of predictive, preventive, and personalized medicine (3PM).

15.
Br J Haematol ; 159(3): 340-51, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22970818

ABSTRACT

Jasmonates, plant stress hormones, have been demonstrated to be effective in killing various types of cancer cells. We therefore tested if methyljasmonate (MJ) has activity against multiple myeloma (MM) in vitro and in vivo. MM cell lines and primary MM tumour cells responded to MJ in vitro at concentrations that did not significantly affect normal haematopoietic cells, without stroma-mediated resistance. Brief MJ exposures of MM cells caused release of Hexokinase 2 (HK2) from mitochondria, rapid ATP depletion, perturbation of major intracellular signalling pathways, and ensuing mainly apoptotic cell death. Sensitivity to MJ correlated with lower cellular glucose consumption and lactate production, as well as lower intracellular protein levels of HK2, phosphorylated Voltage-dependent anion channel 2/3 (pVDAC2/3) and Aldo-keto reductase family 1 member C1 (AKR1C1), which represent potential biomarkers of responsiveness to MJ treatment, especially as AKR1C1 transcript levels also correlate with clinical outcome in bortezomib- or dexamethasone-treated MM patients. Interestingly, MJ synergized with bortezomib in vitro and prolonged survival of immunocompromised mice harbouring diffuse lesions of MM.1S cells compared to vehicle-treated mice (P = 0·0046). These studies indicate that jasmonates represent a new, promising strategy to treat MM.


Subject(s)
Acetates/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cyclopentanes/pharmacology , Multiple Myeloma/metabolism , Oxylipins/pharmacology , Plant Growth Regulators/pharmacology , Acetates/administration & dosage , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclopentanes/administration & dosage , Drug Synergism , Humans , Leukocytes, Mononuclear/drug effects , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondria/drug effects , Mitochondria/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/mortality , Oxylipins/administration & dosage
16.
Br J Haematol ; 157(6): 718-31, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22533681

ABSTRACT

Multiple Myeloma (MM), a malignancy of plasma cells, remains incurable despite the use of conventional and novel therapies. Halofuginone (HF), a synthetic derivative of quinazolinone alkaloid, has recently been shown to have anti-cancer activity in various preclinical settings. This study demonstrated the anti-tumour activity of HF against a panel of human MM cell lines and primary patient-derived MM cells, regardless of their sensitivity to conventional therapy or novel agents. HF showed anti-MM activity in vivo using a myeloma xenograft mouse model. HF suppressed proliferation of myeloma cells alone and when co-cultured with bone marrow stromal cells. Similarly, HF induced apoptosis in MM cells even in the presence of insulin-like growth factor 1 or interleukin 6. Importantly, HF, even at high doses, did not induce cytotoxicity against CD40 activated peripheral blood mononuclear cells from normal donors. HF treatment induced accumulation of cells in the G(0) /G(1) cell cycle and induction of apoptotic cell death associated with depletion of mitochondrial membrane potential; cleavage of poly (ADP-ribose) polymerase and caspases-3, 8 and 9 as well as down-regulation of anti-apoptotic proteins including Mcl-1 and X-IAP. Multiplex analysis of phosphorylation of diverse components of signalling cascades revealed that HF induced changes in P38MAPK activation; increased phosphorylation of c-jun, c-jun NH(2)-terminal kinase (JNK), p53 and Hsp-27. Importantly, HF triggered synergistic cytotoxicity in combination with lenalidomide, melphalan, dexamethasone, and doxorubicin. Taken together, these preclinical studies provide the preclinical framework for future clinical studies of HF in MM.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , G1 Phase/drug effects , Multiple Myeloma/drug therapy , Piperidines/pharmacology , Quinazolinones/pharmacology , Resting Phase, Cell Cycle/drug effects , Animals , Antineoplastic Agents/agonists , Antineoplastic Agents/therapeutic use , Caspases/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Synergism , Female , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, SCID , Myeloid Cell Leukemia Sequence 1 Protein , Phosphorylation/drug effects , Piperidines/agonists , Piperidines/therapeutic use , Proto-Oncogene Proteins c-bcl-2/metabolism , Quinazolinones/agonists , Quinazolinones/therapeutic use , Tumor Suppressor Protein p53/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Sci Rep ; 12(1): 17961, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289430

ABSTRACT

Nanoparticles in medicine can integrate actively targeted imaging agents and drug delivery vehicles, and combining multiple types of therapeutics in a single particle has numerous advantages, especially in multiple myeloma. MM is an incurable hematological disorder characterized by clonal proliferation of plasma cells in the bone marrow. In this study, we evaluated the anti-myeloma activity of 3 nanocomposites (3NPs): As4S4/ZnS/Fe3O4 (1:4:1), As4S4/ZnS/Fe3O4 with folic acid (FA), and As4S4/ZnS/Fe3O4 with FA and albumin with reduced survival MM cell lines and primary MM samples by each of 3NP. Cytotoxic effects of 3NPs were associated with caspase- and mitochondria-dependent apoptosis induction and reduced c-Myc expression. Modulation of cell cycle regulators, such as p-ATM/ATM and p-ATR/ATR, and increases in p-Chk2, cyclin B1, and histones were accompanied by G2/M arrest triggered by 3NPs. In addition, 3NPs activated several myeloma-related signaling, including JNK1/2/3, ERK1/2 and mTOR. To overcome BM microenvironment-mediated drug resistance, nanocomposites retained its anti-MM activity in the presence of stroma. 3NPs significantly decreased the stem cell-like side population in MM cells, even in the context of stroma. We observed strong synergistic effects of 3NPs combined with lenalidomide, pomalidomide, or melphalan, suggesting the potential of these combinations for future clinical studies.


Subject(s)
Multiple Myeloma , Nanocomposites , Humans , Albumins/metabolism , Apoptosis , Caspases/metabolism , Cell Line, Tumor , Cyclin B1/metabolism , Folic Acid/pharmacology , Histones/pharmacology , Lenalidomide/pharmacology , Melphalan/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment
18.
Biomedicines ; 10(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35884979

ABSTRACT

Clonal evolution drives treatment failure in multiple myeloma (MM). Here, we used a custom 372-gene panel to track genetic changes occurring during MM progression at different stages of the disease. A tumor-only targeted next-generation DNA sequencing was performed on 69 samples sequentially collected from 30 MM patients. The MAPK/ERK pathway was mostly affected with KRAS mutated in 47% of patients. Acquisition and loss of mutations were observed in 63% and 37% of patients, respectively. Four different patterns of mutation evolution were found: branching-, mutation acquisition-, mutation loss- and a stable mutational pathway. Better response to anti-myeloma therapy was more frequently observed in patients who followed the mutation loss-compared to the mutation acquisition pathway. More than two-thirds of patients had druggable genes mutated (including cases of heavily pre-treated disease). Only 7% of patients had a stable copy number variants profile. Consequently, a redistribution in stages according to R-ISS between the first and paired samples (R-ISS″) was seen. The higher the R-ISS″, the higher the risk of MM progression and death. We provided new insights into the genetics of MM evolution, especially in heavily pre-treated patients. Additionally, we confirmed that redefining R-ISS at MM relapse is of high clinical value.

19.
Br J Haematol ; 152(4): 420-32, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21223249

ABSTRACT

Cell cycle regulators, such as cyclin-dependent kinases (CDKs), are appealing targets for multiple myeloma (MM) therapy given the increased proliferative rates of tumour cells in advanced versus early stages of MM. We hypothesized that a multi-targeted CDK inhibitor with a different spectrum of activity compared to existing CDK inhibitors could trigger distinct molecular sequelae with therapeutic implications for MM. We therefore studied the small molecule heterocyclic compound NVP-LCQ195/AT9311 (LCQ195), which inhibits CDK1, CDK2 and CDK5, as well as CDK3 and CDK9. LCQ195 induced cell cycle arrest and eventual apoptotic cell death of MM cells, even at sub-µmol/l concentrations, spared non-malignant cells, and overcame the protection conferred to MM cells by stroma or cytokines of the bone marrow milieu. In MM cells, LCQ195 triggered decreased amplitude of transcriptional signatures associated with oncogenesis, drug resistance and stem cell renewal, including signatures of activation of key transcription factors for MM cells e.g. myc, HIF-1α, IRF4. Bortezomib-treated MM patients whose tumours had high baseline expression of genes suppressed by LCQ195 had significantly shorter progression-free and overall survival than those with low levels of these transcripts in their MM cells. These observations provide insight into the biological relevance of multi-targeted CDK inhibition in MM.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinases/antagonists & inhibitors , Multiple Myeloma/pathology , Apoptosis/drug effects , Boronic Acids/therapeutic use , Bortezomib , Cell Cycle/drug effects , Cell Survival/drug effects , Coculture Techniques , Cyclin-Dependent Kinases/metabolism , Cytokines/antagonists & inhibitors , Cytokines/pharmacology , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Drug Combinations , Drug Interactions , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/enzymology , Multiple Myeloma/genetics , Pyrazines/therapeutic use , Signal Transduction/drug effects , Stromal Cells/physiology , Survival Analysis , Transcription, Genetic , Treatment Outcome , Tumor Cells, Cultured
20.
Blood ; 114(15): 3276-84, 2009 Oct 08.
Article in English | MEDLINE | ID: mdl-19587378

ABSTRACT

The transformation from monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM) is thought to be associated with changes in immune processes. We have therefore used serologic analysis of recombinant cDNA expression library to screen the sera of MGUS patients to identify tumor-associated antigens. A total of 10 antigens were identified, with specific antibody responses in MGUS. Responses appeared to be directed against intracellular proteins involved in cellular functions, such as apoptosis (SON, IFT57/HIPPI), DNA and RNA binding (ZNF292, GPATCH4), signal transduction regulators (AKAP11), transcriptional corepressor (IRF2BP2), developmental proteins (OFD1), and proteins of the ubiquitin-proteasome pathway (PSMC1). Importantly, the gene responsible for the oral-facial-digital type I syndrome (OFD1) had response in 6 of 29 (20.6%) MGUS patients but 0 of 11 newly diagnosed MM patients. Interestingly, 3 of 11 (27.2%) MM patients after autologous stem cell transplantations showed responses to OFD1. We have confirmed T-cell responses against OFD1 in MGUS and observed down-regulation of GLI1/PTCH1 and p-beta-catenin after OFD1 knock-down with specific siRNA, suggesting its functional role in the regulation of Hh and Wnt pathways. These findings demonstrate OFD1 as an important immune target and highlight its possible role in signal transduction and tumorigenesis in MGUS and MM.


Subject(s)
Autoantigens/immunology , Multiple Myeloma/immunology , Paraproteinemias/immunology , Proteins/immunology , Aged , Aged, 80 and over , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , Autoantigens/genetics , Carrier Proteins/genetics , Carrier Proteins/immunology , DNA, Complementary/genetics , DNA-Binding Proteins , Female , Humans , Male , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Paraproteinemias/genetics , Paraproteinemias/therapy , Patched Receptors , Patched-1 Receptor , Proteins/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Signal Transduction/immunology , Stem Cell Transplantation , T-Lymphocytes/immunology , Transcription Factors , Transplantation, Autologous , beta Catenin/genetics , beta Catenin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL