Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EMBO Rep ; 22(6): e50958, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33900016

ABSTRACT

Mutations in the chromatin remodeller-coding gene CHD7 cause CHARGE syndrome (CS). CS features include moderate to severe neurological and behavioural problems, clinically characterized by intellectual disability, attention-deficit/hyperactivity disorder and autism spectrum disorder. To investigate the poorly characterized neurobiological role of CHD7, we here generate a zebrafish chd7-/- model. chd7-/- mutants have less GABAergic neurons and exhibit a hyperactivity behavioural phenotype. The GABAergic neuron defect is at least in part due to downregulation of the CHD7 direct target gene paqr3b, and subsequent upregulation of MAPK/ERK signalling, which is also dysregulated in CHD7 mutant human cells. Through a phenotype-based screen in chd7-/- zebrafish and Caenorhabditis elegans, we show that the small molecule ephedrine restores normal levels of MAPK/ERK signalling and improves both GABAergic defects and behavioural anomalies. We conclude that chd7 promotes paqr3b expression and that this is required for normal GABAergic network development. This work provides insight into the neuropathogenesis associated with CHD7 deficiency and identifies a promising compound for further preclinical studies.


Subject(s)
Autism Spectrum Disorder , Animals , Caenorhabditis elegans , Chromatin , DNA Helicases , DNA-Binding Proteins/genetics , GABAergic Neurons , Humans , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Mutation , Zebrafish
2.
J Bone Miner Res ; 39(4): 498-512, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38477756

ABSTRACT

Mutations in the Chromodomain helicase DNA-binding protein 7 - coding gene (CHD7) cause CHARGE syndrome (CS). Although craniofacial and skeletal abnormalities are major features of CS patients, the role of CHD7 in bone and cartilage development remain largely unexplored. Here, using a zebrafish (Danio rerio) CS model, we show that chd7-/- larvae display abnormal craniofacial cartilage development and spinal deformities. The craniofacial and spine defects are accompanied by a marked reduction of bone mineralization. At the molecular level, we show that these phenotypes are associated with significant reduction in the expression levels of osteoblast differentiation markers. Additionally, we detected a marked depletion of collagen 2α1 in the cartilage of craniofacial regions and vertebrae, along with significantly reduced number of chondrocytes. Chondrogenesis defects are at least in part due to downregulation of htr2b, which we found to be also dysregulated in human cells derived from an individual with CHD7 mutation-positive CS. Overall, this study thus unveils an essential role for CHD7 in cartilage and bone development, with potential clinical relevance for the craniofacial defects associated with CS.


Patients with CHARGE syndrome exhibit skeletal defects. CHARGE syndrome is primarily caused by mutations in the chromatin remodeler-coding gene CHD7. To investigate the poorly characterized role of CHD7 in cartilage and bone development, here, we examine the craniofacial and bone anomalies in a zebrafish chd7-/- mutant model. We find that zebrafish mutant larvae exhibit striking dysmorphism of craniofacial structures and spinal deformities. Notably, we find a significant reduction in osteoblast, chondrocyte, and collagen matrix markers. This work provides important insights to improve our understanding of the role of chd7 in skeletal development.


Subject(s)
Cartilage , DNA Helicases , Zebrafish Proteins , Zebrafish , Animals , Humans , Cartilage/metabolism , CHARGE Syndrome/genetics , CHARGE Syndrome/metabolism , CHARGE Syndrome/pathology , Chondrocytes/metabolism , Chondrogenesis/genetics , Collagen Type II/metabolism , Collagen Type II/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Skull/metabolism , Zebrafish/metabolism , Zebrafish/genetics , Zebrafish/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
3.
Cell Rep ; 42(3): 112243, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36933215

ABSTRACT

Advancing from gene discovery in autism spectrum disorders (ASDs) to the identification of biologically relevant mechanisms remains a central challenge. Here, we perform parallel in vivo functional analysis of 10 ASD genes at the behavioral, structural, and circuit levels in zebrafish mutants, revealing both unique and overlapping effects of gene loss of function. Whole-brain mapping identifies the forebrain and cerebellum as the most significant contributors to brain size differences, while regions involved in sensory-motor control, particularly dopaminergic regions, are associated with altered baseline brain activity. Finally, we show a global increase in microglia resulting from ASD gene loss of function in select mutants, implicating neuroimmune dysfunction as a key pathway relevant to ASD biology.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autistic Disorder/genetics , Zebrafish/genetics , Brain , Autism Spectrum Disorder/genetics , Brain Mapping
4.
Neurotoxicology ; 75: 14-23, 2019 12.
Article in English | MEDLINE | ID: mdl-31449834

ABSTRACT

Oxysterols have essential effects on brain homeostasis and their levels are often altered in neurodegenerative and neuroinflammatory diseases. Several studies have demonstrated the cytotoxic effects of 25-HC on different cell lines, however, not much is known about its effects on neurons in vivo. In this study, we examined the effects of 25-HC exposure on the nervous system development in the zebrafish. We showed that survival rate of zebrafish embryos/larvae is significantly decreased at doses of 25-HC above 40 µM. 25-HC was found to affect the motility of zebrafish larvae, primary motor axon and muscle morphology. Furthermore, larvae treated with 25-HC showed a reduced neuronal network and number of HuC-positive cells in the brain. An increased cell death was also observed in both the brain and spinal cord of zebrafish treated with 25-HC. Interestingly, administration of 25-HC at later stages of development (24 and 48 h post fertilization) had no detrimental effects on motor axons. Altogether, our findings show that elevated levels of 25-HC may have important consequences on neuronal development and cell survival.


Subject(s)
Hydroxycholesterols/toxicity , Muscle Development/drug effects , Neurogenesis/drug effects , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Motor Activity/drug effects , Motor Neurons/drug effects , Movement/drug effects , Zebrafish/growth & development
5.
Biochim Biophys Acta Gen Subj ; 1863(11): 129398, 2019 11.
Article in English | MEDLINE | ID: mdl-31306709

ABSTRACT

BACKGROUND: The pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1), a class B G protein-coupled receptor (GPCR), has emerged as a promising target for treating neurodegenerative conditions. Unfortunately, despite years of research, no PAC1-specific agonist has been discovered, as activity on two other GPCRs, VPAC1 and VPAC2, is retained with current analogs. Cell signaling is related to structural modifications in the intracellular loops (ICLs) of GPCRs. Thus, we hypothesized that peptides derived from the ICLs (called pepducins) of PAC1 might initiate, as allosteric ligands, signaling cascades after recognition of the parent receptor and modulation of its conformational landscape. METHODS: Three pepducins were synthesized and evaluated for their ability to 1) promote cell survival; 2) stimulate various signaling pathways associated with PAC1 activation; 3) modulate selectively PAC1, VPAC1 or VPAC2 activation; and 4) sustain mobility and prevent death of dopaminergic neurons in a zebrafish model of neurodegeneration. RESULTS: Assays demonstrated that these molecules promote SH-SY5Y cell survival, a human neuroblastoma cell line expressing PAC1, and activate signaling via Gαs and Gαq, with distinct potencies and efficacies. Also, PAC1-Pep1 and PAC1-Pep2 activated selectively PAC1-mediated Gαs stimulation. Finally, experiments, using a zebrafish neurodegeneration model, showed a neuroprotective action with all three pepducins and in particular, revealed the ability of PAC1-Pep1 and PAC1-Pep3 to preserve fish mobility and tyrosine hydroxylase expression in the brain. CONCLUSION: We have developed the first neuroprotective pepducins derived from PAC1, a class B GPCR. GENERAL SIGNIFICANCE: PAC1-derived pepducins represent attractive templates for the development of innovative neuroprotecting molecules.


Subject(s)
Neurogenesis/drug effects , Neuroprotective Agents , Peptides , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/chemistry , Zebrafish/embryology , Animals , Cell Line, Tumor , Cell Survival/drug effects , HEK293 Cells , Humans , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL