ABSTRACT
Due to translocation heterozygosity for all chromosomes in the cell complement, the oyster plant (Tradescantia spathacea) forms a complete meiotic ring. It also shows Rabl-arrangement at interphase, featured by polar centromere clustering. We demonstrate that the pericentromeric regions of the oyster plant are homogenized in concert by three subtelomeric sequences: 45S rDNA, (TTTAGGG)n motif, and TSrepI repeat. The Rabl-based clustering of pericentromeric regions may have been an excellent device to combine the subtelomere-pericentromere sequence migration (via inversions) with the pericentromere-pericentromere DNA movement (via whole arm translocations) that altogether led to the concerted homogenization of all the pericentromeric domains by the subtelomeric sequences. We also show that the repetitive sequence landscape of interstitial chromosome regions contains many loci consisting of Arabidopsis-type telomeric sequence or of TSrepI repeat, and it is extensively heterozygous. However, the sequence arrangement on some chromosomal arms suggest segmental inversions that are fully or partially homozygous, a fact that could be explained if the inversions started to create linkages already in a bivalent-forming ancestor. Remarkably, the subterminal TSrepI loci reside exclusively on the longer arms that could be due to sharing sequences between similarly-sized chromosomal arms in the interphase nucleus. Altogether, our study spotlights the supergene system of the oyster plant as an excellent model to link complex chromosome rearrangements, evolution of repetitive sequences, and nuclear architecture.
Subject(s)
Ostreidae , Tradescantia , Animals , DNA, Ribosomal/genetics , Heterochromatin , In Situ Hybridization, Fluorescence , Ostreidae/genetics , Repetitive Sequences, Nucleic Acid , Tradescantia/genetics , Translocation, GeneticABSTRACT
A new type of silver nanoparticles (AgNPs) was prepared and comprehensively studied. Scanning electron microscopy (SEM) and dynamic light scattering (DLS) analyses indicated that 24 nm AgNPs with narrow size distribution were obtained while Z-potential confirms their good stability. The composites of the obtained AgNPs with nontoxic-nature-inspired hydrogel were formed upon cooling of the aqueous solution AgNPs and C12Ala. The thermal gravimetric analysis (TGA) and the differential scanning calorimetry (DSC) do not show significant shifts in the characteristic temperature peaks for pure and silver-enriched gels, which indicates that AgNPs do not strongly interact with C12Ala fibers, which was also confirmed by SEM. Both AgNPs alone and in the assembly with the gelator C12Ala were almost biologically passive against bacteria, fungus, cancer, and nontumor human cells, as well as zebra-fish embryos. These studies proved that the new inactive AgNPs-doped hydrogels have potential for the application in therapy as drug delivery media.
Subject(s)
Hydrogels , Metal Nanoparticles , Animals , Humans , Hydrogels/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Bacteria , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistryABSTRACT
An aqueous solution of sodium citrate stabilized gold nanoparticles (AuNP) in the presence of N-lauroyl-L-alanine (C12ALA) forms a stable gel. The structure of the gel and the distribution profile of AuNP in it were analyzed. Will nanoparticles separated from each other with sodium citrate behave in the same way in solution and trapped in the gel matrix? Will the spatial limitation of solvent molecules aggregate nanoparticles and destroy their homogeneity? These questions are very important from the point of view of the use of gold nanoparticles, trapped in the gel structure as carriers of drugs in the slow-release process. The lack of homogeneity of this distribution will have a major impact on the rate of release of the appropriate amount of therapeutic drug from the matrix. In this work, we attempt to answer these questions. The performed biological assays revealed that both C12ALA and C12ALA-AuNP show an excellent level of biological neutrality. They might be used as a transporting medium for a drug delivery without affecting the drug's activity.
Subject(s)
Alanine/analogs & derivatives , Drug Carriers , Gold , Metal Nanoparticles , Alanine/chemistry , Alanine/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Gold/chemistry , Gold/pharmacology , HeLa Cells , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic useABSTRACT
The optimization and synthesis of new CK2 and CK1 inhibitors are the basis for the development of new therapeutic strategies for the treatment of cancer and neurodegenerative disorders associated with overexpression and abnormal functioning of these enzymes. Triazole derivatives appear to be especially interesting as potential kinase inhibitors. In this context we synthesized a series of 1,2,4-triazolin-5-thione derivatives as CK1γ kinase inhibitors. The antiproliferative activity of synthesized compounds was assessed against cancer cells: human lung adenocarcinoma (A549), human hepatoma (HepG2), and human breast adenocarcinoma (MCF-7). Compound 1 exhibited antiproliferative potency against A549 cancer cells and was characterized by a selective antiproliferative effect. Additionally, this compound has high apoptotic activity against A549, HepG2, MCF-7 cells and induced only slight amount of necrotic cells in these cell lines. In order to decipher the mechanism of anticancer activity of the studied compounds PASS software was used and these compounds were assayed for the inhibition of CK1γ and CK2α kinases. The reported series of 1,2,4-triazolin-5-thiones inhibits CK1γ and CK2α kinases in micromolar range. The most active compound shows activity against isoform γ3 which at concentration of 50 µM reduced the kinase activity by 69% while at 100 µM by 80%. CK2α was found to be less susceptible to the effects of the triazoles tested, as the reduction in kinase activity by 29% was observed for compound 15, and by 27% for compound 1 only at the concentration of 100 µM. The inhibition of CK1γ and CK2α kinases was rationalized using molecular docking.
Subject(s)
Antineoplastic Agents/pharmacology , Casein Kinase I/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Casein Kinase I/metabolism , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistryABSTRACT
In the light of the increasing occurrence of antifungal resistance, there is an urgent need to search for new therapeutic strategies to overcome this phenomenon. One of the applied approaches is the synthesis of small-molecule compounds showing antifungal properties. Here we present a continuation of the research on the recently discovered anti-Candida albicans agent 4-AN. Using next generation sequencing and transcriptional analysis, we revealed that the treatment of C. albicans with 4-AN can change the expression profile of a large number of genes. The highest upregulation was observed in the case of genes involved in cell stress, while the highest downregulation was shown for genes coding sugar transporters. Real-time PCR analysis revealed 4-AN mediated reduction of the relative expression of genes engaged in fungal virulence (ALS1, ALS3, BCR1, CPH1, ECE1, EFG1, HWP1, HYR1 and SAP1). The determination of the fractional inhibitory concentration index (FICI) showed that the combination of 4-AN with amphotericin B is synergistic. Finally, flow cytometry analysis revealed that the compound induces mainly necrosis in C. albicans cells.
Subject(s)
Antifungal Agents/pharmacology , Candida albicans/growth & development , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/drug effects , Genome, Fungal , Necrosis , Virulence/genetics , Biofilms/drug effects , Biofilms/growth & development , Candida albicans/drug effects , Candida albicans/genetics , Fungal Proteins/genetics , Gene Expression ProfilingABSTRACT
Small molecules containing quinone and/or oxime moieties have been found as promising anti-fungal agents. One of them is 4-AN, a recently reported potent anti-Candida compound, which inhibits the formation of hyphae, decreases the level of cellular phosphoproteome, and finally shows no toxicity towards human erythrocytes and zebrafish embryos. Here, further research on 4-AN is presented. The results revealed that the compound: (i) Kills Candida clinical isolates, including these with developed antibiotic resistance, (ii) affects mature biofilm, and (iii) moderately disrupts membrane permeability. Atomic force microscopy studies revealed a slight influence of 4-AN on the cell surface architecture. 4-AN was also shown to inhibit multiple various protein kinases, a characteristic shared by most of the ATP-competitive inhibitors. The presented compound can be used in novel strategies in the fight against candidiasis, and reversible protein phosphorylation should be taken into consideration as a target in designing these strategies.
Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Oximes/therapeutic use , Protein Kinase Inhibitors/pharmacology , Quinones/therapeutic use , Biofilms/drug effects , Biological Transport , Cell Membrane , Drug Evaluation, Preclinical , Drug Resistance, Microbial , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Phosphorylation , Protein Binding , Surface PropertiesABSTRACT
A new series of coumarin-1,2,3-triazole conjugates with varied alkyl, phenyl and heterocycle moieties at C-4 of the triazole nucleus were synthesized using a copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reaction of corresponding O-propargylated coumarin (3) or N-propargylated coumarin (6) with alkyl or aryl azides. Based on their minimal inhibitory concentrations (MICs) against selected microorganisms, six out of twenty-six compounds showed significant antibacterial activity towards Enterococcus faecalis (MIC = 12.5-50 µg/mL). Moreover, the synthesized triazoles show relatively low toxicity against human erythrocytes.
Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Coumarins/chemical synthesis , Coumarins/pharmacology , Triazoles/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Coumarins/chemistry , Hemolysis/drug effects , Humans , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Spectroscopy, Fourier Transform InfraredABSTRACT
Candidiasis is the most common opportunistic yeast infection, with Candida albicans as a paramount causative species. (1,3)- ß -D-glucan is one of the three main targets of clinically available antifungal agents used to treat Candida infections. It is one of the most abundant fungal cell wall components. Echinocandins represent the newest class of antifungals affecting cell wall biosynthesis through non-competitive inhibition of (1,3)- ß -D-glucan synthase. Therefore, treatment with echinocandins causes defects in fungal cell integrity. In the present study, similar activity of emodin (6-methyl-1,3,8-trihydroxyanthraquinone) has been revealed. Many reports have already shown the antifungal potential of this pleiotropic molecule, including its activity against C. albicans . The aim of this report was to evaluate the activity of emodin towards a new molecular target, i.e. (1,3)- ß -D-glucan synthase isolated from Candida cells. Moreover, given the identical mechanism of the activity of both molecules, interaction of emodin with caspofungin was determined. The study revealed that emodin reduced (1,3)- ß -D-glucan synthase activity and increased cell wall damage, which was evidenced by both a sorbitol protection assay and an aniline blue staining assay. Furthermore, the synergy testing method showed mainly independence of the action of both tested antifungal agents, i.e. emodin and caspofungin used in combination.Candidiasis is the most common opportunistic yeast infection, with Candida albicans as a paramount causative species. (1,3)-ß-D-glucan is one of the three main targets of clinically available antifungal agents used to treat Candida infections. It is one of the most abundant fungal cell wall components. Echinocandins represent the newest class of antifungals affecting cell wall biosynthesis through non-competitive inhibition of (1,3)-ß-D-glucan synthase. Therefore, treatment with echinocandins causes defects in fungal cell integrity. In the present study, similar activity of emodin (6-methyl-1,3,8-trihydroxyanthraquinone) has been revealed. Many reports have already shown the antifungal potential of this pleiotropic molecule, including its activity against C. albicans. The aim of this report was to evaluate the activity of emodin towards a new molecular target, i.e. (1,3)-ß-D-glucan synthase isolated from Candida cells. Moreover, given the identical mechanism of the activity of both molecules, interaction of emodin with caspofungin was determined. The study revealed that emodin reduced (1,3)-ß-D-glucan synthase activity and increased cell wall damage, which was evidenced by both a sorbitol protection assay and an aniline blue staining assay. Furthermore, the synergy testing method showed mainly independence of the action of both tested antifungal agents, i.e. emodin and caspofungin used in combination.
Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Caspofungin/metabolism , Emodin/pharmacology , Glucosyltransferases/antagonists & inhibitors , Candida albicans/enzymology , Candidiasis/drug therapy , Cell Wall/drug effects , Humans , Microbial Sensitivity TestsABSTRACT
In this study, we applied various assays to reveal new activities of phenylcyanomethylenequinone oxime-4-(hydroxyimino) cyclohexa-2,5-dien-1-ylidene](phenyl)ethanenitrile (4-AN) for potential anti-microbial applications. These assays demonstrated (a) the antimicrobial effect on bacterial and fungal cultures, (b) the effect on the in vitro activity of the kinase CK2, (c) toxicity towards human erythrocytes, the Caco-2 cancer cell line, and embryonic development of Zebrafish. We demonstrated the activity of 4-AN against selected bacteria and Candida spp. The MIC ranging from 4⯵g/ml to 125⯵g/ml proved effective in inhibition of formation of hyphae and cell aggregation in Candida, which was demonstrated at the cytological level. Noteworthy, 4-AN was found to inhibit the CK2 kinase with moderate potency. Moreover, at low concentrations, it did not exert any evident toxic effects on human erythrocytes, Caco-2 cells, or Zebrafish embryos. 4-AN can be a potential candidate as a novel drug against Candida infections.
ABSTRACT
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a natural secondary plant product, originally isolated from the rhizomes of Rheum palmatum. Many reports show its diuretic, vasorelaxant, antibacterial, antiviral, anti-ulcerogenic, immunosuppressive, hepatoprotective, anti-inflammatory and anticancer potential. Emodin is a pleiotropic molecule capable of interacting with several major molecular targets, e.g. NF-κB, AKT/mTOR and STAT3. The compound can also act as an inhibitor of some protein kinases, with special affinity to protein kinase CK2. The aim of the presented report was to evaluate antifungal properties of emodin and its activity towards CK2 isolated from Candida cells. Our studies revealed that the compound suppressed growth of the cells of reference strains as well as clinical Candida strains, with minimal inhibitory concentration and minimal fungicidal concentration values between 12.5 and 200 µg/mL. Moreover, at a low concentration, the compound was able to effectively stop hyphal formation, thus showing a distinct antivirulent potential. Interestingly, we showed that emodin added to Candida culture inhibited the phosphorylation of many cellular proteins, presumably owing to the inhibition of protein kinase CK2. Notably, the enzyme isolated from the Candida cells was susceptible to emodin with IC50 of 2.8 µg/mL. Indeed, our computational modelling revealed that emodin was able to occupy the ATP-binding pocket of CK2. Copyright © 2017 John Wiley & Sons, Ltd.
Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Casein Kinase II/antagonists & inhibitors , Emodin/pharmacology , Hyphae/drug effects , Biofilms/growth & development , Candida albicans/growth & development , Casein Kinase II/isolation & purification , Hyphae/growth & development , Microbial Sensitivity Tests , Microscopy, FluorescenceABSTRACT
CX-4945 is a selective inhibitor of protein kinase CK2 exhibiting clinical significance. Its antitumor properties arise from the abrogation of CK2-mediated pro-survival cellular pathways. The presented data reveal the influence of CX-4945 on the growth of yeast cells showing variable potency against Saccharomyces cerevisiae deletion strains with different contents of CK2 subunits. The catalytic subunit CK2α appears to sensitize yeast to the CX-4945 action. Moreover, the compound suppresses hyphal growth and cell adhesion of Candida albicans, thereby abolishing some hallmarks of invasiveness of the pathogen. It is known that cancer patients are more prone to fungal infections. Our data unveil the dual-activity of CX-4945; when used in anti-cancer therapy, it may simultaneously prevent cancer-associated candidiasis.
Subject(s)
Antifungal Agents/pharmacology , Candida albicans/growth & development , Casein Kinase II/antagonists & inhibitors , Naphthyridines/pharmacology , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae/growth & development , PhenazinesABSTRACT
A broad series of 4,5,6,7-tetrahalogenated benzimidazoles and 4-(1H-benzimidazol-2-yl)-benzene-1,3-diol derivatives was tested against selected bacteria and fungi. For this study three plant pathogens Colletotrichum sp., Fusarium sp., and Sclerotinia sp., as well as Staphylococcus sp., Enterococcus sp., Escherichia sp., Enterobacter sp., Klebsiella spp. , and Candida spp. as human pathogens were used. MIC values and/or area of growth reduction method were applied in order to compare the activity of the synthesized compounds. From the presented set of 22 compounds, only 8, 16, 18 and 19 showed moderate to good inhibition against bacterial strains. Against Candida strains only compound 19 with three hydroxyl substituted benzene moiety presented high inhibition at nystatin level or lower.
Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Benzimidazoles/pharmacology , Bacteria/drug effects , Benzimidazoles/chemistry , Drug Evaluation, Preclinical , Fungi/drug effects , Microbial Sensitivity Tests , Structure-Activity RelationshipABSTRACT
The aim of this study was to investigate the antifungal activity of biochanin A (BCA) against planktonic growth and biofilms of six Candida species, including C. albicans, C. parapsilosis, C. glabrata, C. tropicalis, C. auris, and C. krusei. We applied various assays that determined (a) the antimicrobial effect on growth of Candida species, (b) the effect on formation of hyphae and biofilm, (c) the effect on the expression of genes related to hyphal growth and biofilm formation, (d) the influence on cell wall structure, and (e) the effect on cell membrane integrity and permeability. Moreover, disk diffusion tests were used to investigate the effect of a combination of BCA with fluconazole to assess their possible synergistic effect on drug-resistant C. albicans, C. glabrata, and C. auris. Our results showed that the BCA MIC50 values against Candida species ranged between 125 µg/mL and 500 µg/mL, and the MIC90 values were in a concentration range from 250 µg/mL to 1000 µg/mL. The treatment with BCA inhibited adhesion of cells, cell surface hydrophobicity (CSH), and biofilm formation and reduced hyphal growth in all the analyzed Candida species. Real-time qRT-PCR revealed that BCA down-regulated the expression of biofilm-specific genes in C. albicans. Furthermore, physical destruction of C. albicans cell membranes and cell walls as a result of the treatment with BCA was observed. The combination of BCA and fluconazole did not exert synergistic effects against fluconazole-resistant Candida.
ABSTRACT
This study aims to analyze the antifungal properties of quinalizarin, a plant-derived compound with proven anticancer effects. Quinalizarin exhibited antifungal activity against opportunistic pathogenic Candida species and Geotrichum capitatum. The treatment with this anthraquinone reduced hyphal growth, inhibited biofilm formation, and damaged mature Candida albicans biofilms. Real-time RT-PCR revealed that quinalizarin downregulated the expression of hyphae-related and biofilm-specific genes. The flow cytometry method used in the study showed that both apoptosis and necrosis were the physiological mechanisms of quinalizarin-induced C. albicans cell death, depending on the dose of the antifungal agent. A further study revealed an increase in the levels of intracellular reactive oxygen species and alterations in mitochondrial membrane potential after treatment with quinalizarin. Finally, quinalizarin was found to have low toxicity in a hemolytic test using human erythrocytes. In conclusion, we have identified quinalizarin as a potential antifungal compound.IMPORTANCEThis article is a study to determine the antifungal activity of quinalizarin (1,2,5,8-tetrahydroxyanthraquinone). Quinalizarin has potential antitumor properties and is effective in different types of tumor cells. The aim of the present study was to prove that quinalizarin can be used simultaneously in the treatment of cancer and in the treatment of intercurrent fungal infections. Quinalizarin was identified as a novel antifungal compound with low toxicity. These results may contribute to the development of a new drug with dual activity in the treatment of cancer-associated candidiasis.
ABSTRACT
Flavonoids are a diverse group of compounds originating from several natural plant sources. Various biological effects of flavonoids have been reported, including antimicrobial and antifungal activities. In this study, we showed the possibility of using commercial flavonoids, i.e. baicalein and quercetin, based on natural equivalents as compounds with antifungal properties against Candida albicans species. The effects of baicalein and/or quercetin were investigated using reference C. albicans strain and 50 clinical strains isolated from vulvovaginal candidiasis (VVC) patients. Baicalein and quercetin MIC values against C. albicans strains ranged between 0.5 and 256 µg/ml. We observed predominantly indifferent, synergistic, or partially synergistic interactions between both flavonoids and between the flavonoids and fluconazole in the treatment of planktonic cells of the C. albicans strains. Treatment with the flavonoid complex inhibited adhesion and aggregation of cells, cell surface hydrophobicity (CSH), flocculation, biofilm formation and reduced hyphal growth. Real-time RT-PCR revealed that baicalein and quercetin in combination down-regulated the expression of biofilm-specific genes. Finally, we observed increase in the cell membrane permeability of C. albicans and its physical destruction as a result of the synergistic activity of baicalein and quercetin. Our research evidences the effectiveness of baicalein and quercetin applied in combination as potential anti-Candida agents.
Subject(s)
Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Biofilms , Candida , Female , Flavanones , Flavonoids/pharmacology , Genitalia, Female , Humans , Microbial Sensitivity Tests , Quercetin/pharmacologyABSTRACT
Infections caused by Candida species have increased significantly in the past decades and are among the leading causes of morbidity and mortality worldwide, resulting in serious public health problems. Currently, conventional antifungals are often ineffective as Candida spp. have developed growing resistance to systemic drugs. Since inorganic metallacarboranes are known to affect cellular events, new derivatives of these abiotic compounds were tested against Candida albicans. Compounds based on cobalt bis-dicarbollide [COSAN] were studied on Candida albicans strains, including a panel of 100 clinical isolates. The presented data prove that metallacarborane derivatives are effective against clinical isolates of Candida albicans, even those resistant to systemic drugs, and show synergistic potential in combination with amphotericin B, and low toxicity against human cells and Danio rerio embryos. This paper is a consequential step in the investigations of the broad spectrum and valuable future medical applications of metallacarboranes, especially in the fight against drug-resistant pathogens.
Subject(s)
Antifungal Agents , Candida albicans , Humans , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Cobalt , Microbial Sensitivity TestsABSTRACT
Five isoforms of CK2 may exist simultaneously in yeast cells: free catalytic subunits CK2α', CK2α and three holoenzymatic structures composed of αα'ßß', α(2)ßß' and α'(2)ßß'. Each isolated and purified form exhibits properties typical for CK2, but they differ in substrate specificity as well as in sensitivity to specific modulators. All five isoforms of protein kinase CK2 from Saccharomyces cerevisiae were examined for their binding capacity with ATP/GTP and two commonly used ATP-competitive inhibitors TBB and TBI. Enzymes were tested with protein substrates differently interacting with CK2 subunits: Elf1, Fip1, Svf1, P2B and synthetic peptide. Obtained results show that K(m) for ATP varies from 2.4-53 µM for Elf1/CK2α' and Svf1/CK2α, respectively. Similar differences can be seen in case when GTP was used as phosphate donor. The inhibitory effect depends on composition of CK2/substrate complexes. Highest sensitivity to TBB shows all complexes containing αα'ßß' isoform with K (i) values between 0.2 and 1.1 µM. The prospect that TBB and TBI could be utilized to discriminate between different molecular forms of CK2 in yeast cells was examined. Both inhibitors, TBB as well as TBI, decreases cell growth to extents devoting interactions with different CK2 isoforms present in the cell but the presence of ß/ß'-dimer has a high importance towards sensitivity. Conceivably, a given inhibitor concentration can inhibit only selected CK2-mediated processes in the cell.
Subject(s)
Casein Kinase II/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Subunits/metabolism , Adenosine Triphosphate/metabolism , Casein Kinase II/antagonists & inhibitors , Guanosine Triphosphate/metabolism , Isoenzymes/metabolism , Kinetics , Microbial Viability/drug effects , Phosphates/metabolism , Protein Binding/drug effects , Protein Subunits/antagonists & inhibitors , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Substrate Specificity/drug effectsABSTRACT
Yarrowia lipolytica as an oleaginous yeast is capable of growing in various non-conventional hydrophobic substrate types, especially industrial wastes. In this study, the content of thiamine (vitamin B1), riboflavin (vitamin B2), pyridoxine (vitamin B6), biotin (vitamin B7) and folic acid (vitamin B9) in the wet biomass of Y. lipolytica strains cultivated in biofuel waste (SK medium), compared to the standard laboratory YPD medium, was assessed. Additionally, the biomass of Y. lipolytica A-101 grown in biofuel waste (SK medium) was dried and examined for B vitamins concentration according to the recommended microbial methods by AOAC Official Methods. The mean values of these vitamins per 100 g of dry weight of Y. lipolytica grown in biofuel waste (SK medium) were as follows: thiamine 1.3 mg/100 g, riboflavin 5.3 mg/100 g, pyridoxine 4.9 mg/100 g, biotin 20.0 µg/100 g, and folic acid 249 µg/100 g. We have demonstrated that the dried biomass is a good source of B vitamins which can be used as nutraceuticals to supplement human diet, especially for people at risk of B vitamin deficiencies in developed countries. Moreover, the biodegradation of biofuel waste by Y. lipolytica is desired for environmental protection.
ABSTRACT
There is a need to search for new antifungals, especially for the treatment of the invasive Candida infections, caused mainly by C. albicans. These infections are steadily increasing at an alarming rate, mostly among immunocompromised patients. The newly synthesized compounds (3a-3k) were characterized by physicochemical parameters and investigated for antimicrobial activity using the microdilution broth method to estimate minimal inhibitory concentration (MIC). Additionally, their antibiofilm activity and mode of action together with the effect on the membrane permeability in C. albicans were investigated. Biofilm biomass and its metabolic activity were quantitatively measured using crystal violet (CV) staining and tetrazolium salt (XTT) reduction assay. The cytotoxic effect on normal human lung fibroblasts and haemolytic effect were also evaluated. The results showed differential activity of the compounds against yeasts (MIC = 0.24-500 µg/mL) and bacteria (MIC = 125-1000 µg/mL). Most compounds possessed strong antifungal activity (MIC = 0.24-7.81 µg/mL). The compounds 3b, 3c and 3e, showed no inhibitory (at 1/2 × MIC) and eradication (at 8 × MIC) effect on C. albicans biofilm. Only slight decrease in the biofilm metabolic activity was observed for compound 3b. Moreover, the studied compounds increased the permeability of the membrane/cell wall of C. albicans and their mode of action may be related to action within the fungal cell wall structure and/or within the cell membrane. It is worth noting that the compounds had no cytotoxicity effect on pulmonary fibroblasts and erythrocytes at concentrations showing anticandidal activity. The present studies in vitro confirm that these derivatives appear to be a very promising group of antifungals for further preclinical studies.
ABSTRACT
Silymarin is a complex of plant-derived compounds obtained from the seed shells of the milk thistle (Silybum marianum). It is used in medicine primarily to protect the liver. The mixture contains mainly flavonolignans, with silybin as a paramount bioactive component of the extract. This article presents the potential health benefits for silymarin as an antifungal drug against five references strains: C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei with MIC (minimum inhibitory concentration) values ranging from 30 to 300 µg/mL. Additionally, this study revealed that the compound suppressed the growth of cells of most of the tested clinical Candida albicans strains with MIC values between 30 and 1200 µg/mL. Based on the fractional inhibitory concentration index (FICI), the combination of silymarin with antifungal drugs caspofungin, fluconazole, and amphotericin B did not significantly change the MIC values for the tested Candida strains. Furthermore, no antagonistic reactions were observed in any combination of drugs. In addition, this substance shows anti-virulence properties including the destabilization of mature biofilm and the inhibition of the secretion of hydrolases. qRT-PCR-based experiments demonstrated that the SAP4 gene involved in virulence was downregulated by silymarin. These results indicate completely new advantages of dietary supplementation with this natural plant extract.