Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(42): E4016-25, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24082145

ABSTRACT

The pathological end-state of Parkinson disease is well described from postmortem tissue, but there remains a pressing need to define early functional changes to susceptible neurons and circuits. In particular, mechanisms underlying the vulnerability of the dopamine neurons of the substantia nigra pars compacta (SNc) and the importance of protein aggregation in driving the disease process remain to be determined. To better understand the sequence of events occurring in familial and sporadic Parkinson disease, we generated bacterial artificial chromosome transgenic mice (SNCA-OVX) that express wild-type α-synuclein from the complete human SNCA locus at disease-relevant levels and display a transgene expression profile that recapitulates that of endogenous α-synuclein. SNCA-OVX mice display age-dependent loss of nigrostriatal dopamine neurons and motor impairments characteristic of Parkinson disease. This phenotype is preceded by early deficits in dopamine release from terminals in the dorsal, but not ventral, striatum. Such neurotransmission deficits are not seen at either noradrenergic or serotoninergic terminals. Dopamine release deficits are associated with an altered distribution of vesicles in dopaminergic axons in the dorsal striatum. Aged SNCA-OVX mice exhibit reduced firing of SNc dopamine neurons in vivo measured by juxtacellular recording of neurochemically identified neurons. These progressive changes in vulnerable SNc neurons were observed independently of overt protein aggregation, suggesting neurophysiological changes precede, and are not driven by, aggregate formation. This longitudinal phenotyping strategy in SNCA-OVX mice thus provides insights into the region-specific neuronal disturbances preceding and accompanying Parkinson disease.


Subject(s)
Aging/metabolism , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Parkinsonian Disorders/metabolism , Substantia Nigra/metabolism , Synaptic Transmission , Aging/pathology , Animals , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Dopaminergic Neurons/pathology , Humans , Mice , Parkinsonian Disorders/genetics , Parkinsonian Disorders/pathology , Parkinsonian Disorders/physiopathology , Substantia Nigra/pathology , Substantia Nigra/physiopathology , alpha-Synuclein/biosynthesis , alpha-Synuclein/genetics
2.
Neurobiol Dis ; 62: 193-207, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24121116

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder classically characterized by the death of dopamine (DA) neurons in the substantia nigra pars compacta and by intracellular Lewy bodies composed largely of α-synuclein. Approximately 5-10% of PD patients have a familial form of Parkinsonism, including mutations in α-synuclein. To better understand the cell-type specific role of α-synuclein on DA neurotransmission, and the effects of the disease-associated A30P mutation, we generated and studied a novel transgenic model of PD. We expressed the A30P mutant form of human α-synuclein in a spatially-relevant manner from the 111kb SNCA genomic DNA locus on a bacterial artificial chromosome (BAC) insert on a mouse null (Snca-/-) background. The BAC transgenic mice expressed α-synuclein in tyrosine hydroxylase-positive neurons and expression of either A30P α-synuclein or wildtype α-synuclein restored the sensitivity of DA neurons to MPTP in resistant Snca-/- animals. A30P α-synuclein mice showed no Lewy body-like aggregation, and did not lose catecholamine neurons in substantia nigra or locus coeruleus. However, using cyclic voltammetry at carbon-fiber microelectrodes we identified a deficit in evoked DA release in the caudate putamen, but not in the nucleus accumbens, of SNCA-A30P Snca-/- mice but no changes to release of another catecholamine, norepinephrine (NE), in the NE-rich ventral bed nucleus of stria terminalis. SNCA-A30P Snca-/- mice had no overt behavioral impairments but exhibited a mild increase in wheel-running. In summary, this refined PD mouse model shows that A30P α-synuclein preferentially perturbs the dopaminergic system in the dorsal striatum, reflecting the region-specific change seen in PD.


Subject(s)
Basal Ganglia/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Norepinephrine/metabolism , alpha-Synuclein/genetics , Age Factors , Animals , Chromosomes, Artificial, Bacterial , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Septal Nuclei/metabolism , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL