Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Genet ; 18(12): e1010540, 2022 12.
Article in English | MEDLINE | ID: mdl-36508459

ABSTRACT

The global effort to sequence millions of SARS-CoV-2 genomes has provided an unprecedented view of viral evolution. Characterizing how selection acts on SARS-CoV-2 is critical to developing effective, long-lasting vaccines and other treatments, but the scale and complexity of genomic surveillance data make rigorous analysis challenging. To meet this challenge, we develop Bayesian Viral Allele Selection (BVAS), a principled and scalable probabilistic method for inferring the genetic determinants of differential viral fitness and the relative growth rates of viral lineages, including newly emergent lineages. After demonstrating the accuracy and efficacy of our method through simulation, we apply BVAS to 6.9 million SARS-CoV-2 genomes. We identify numerous mutations that increase fitness, including previously identified mutations in the SARS-CoV-2 Spike and Nucleocapsid proteins, as well as mutations in non-structural proteins whose contribution to fitness is less well characterized. In addition, we extend our baseline model to identify mutations whose fitness exhibits strong dependence on vaccination status as well as pairwise interaction effects, i.e. epistasis. Strikingly, both these analyses point to the pivotal role played by the N501 residue in the Spike protein. Our method, which couples Bayesian variable selection with a diffusion approximation in allele frequency space, lays a foundation for identifying fitness-associated mutations under the assumption that most alleles are neutral.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Alleles , Bayes Theorem , Genome, Viral , Mutation
2.
Nat Genet ; 56(5): 925-937, 2024 May.
Article in English | MEDLINE | ID: mdl-38658794

ABSTRACT

CRISPR base editing screens enable analysis of disease-associated variants at scale; however, variable efficiency and precision confounds the assessment of variant-induced phenotypes. Here, we provide an integrated experimental and computational pipeline that improves estimation of variant effects in base editing screens. We use a reporter construct to measure guide RNA (gRNA) editing outcomes alongside their phenotypic consequences and introduce base editor screen analysis with activity normalization (BEAN), a Bayesian network that uses per-guide editing outcomes provided by the reporter and target site chromatin accessibility to estimate variant impacts. BEAN outperforms existing tools in variant effect quantification. We use BEAN to pinpoint common regulatory variants that alter low-density lipoprotein (LDL) uptake, implicating previously unreported genes. Additionally, through saturation base editing of LDLR, we accurately quantify missense variant pathogenicity that is consistent with measurements in UK Biobank patients and identify underlying structural mechanisms. This work provides a widely applicable approach to improve the power of base editing screens for disease-associated variant characterization.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genotype , Phenotype , RNA, Guide, CRISPR-Cas Systems , Humans , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Bayes Theorem , Receptors, LDL/genetics , HEK293 Cells
3.
bioRxiv ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39314441

ABSTRACT

CRISPR tiling screens have advanced the identification and characterization of regulatory sequences but are limited by low resolution arising from the indirect readout of editing via guide RNA sequencing. This study introduces CRISPR-CLEAR, an end-to-end experimental assay and computational pipeline, which leverages targeted sequencing of CRISPR-introduced alleles at the endogenous target locus following dense base-editing mutagenesis. This approach enables the dissection of regulatory elements at nucleotide resolution, facilitating a direct assessment of genotype-phenotype effects.

4.
medRxiv ; 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37732177

ABSTRACT

CRISPR base editing screens are powerful tools for studying disease-associated variants at scale. However, the efficiency and precision of base editing perturbations vary, confounding the assessment of variant-induced phenotypic effects. Here, we provide an integrated pipeline that improves the estimation of variant impact in base editing screens. We perform high-throughput ABE8e-SpRY base editing screens with an integrated reporter construct to measure the editing efficiency and outcomes of each gRNA alongside their phenotypic consequences. We introduce BEAN, a Bayesian network that accounts for per-guide editing outcomes and target site chromatin accessibility to estimate variant impacts. We show this pipeline attains superior performance compared to existing tools in variant classification and effect size quantification. We use BEAN to pinpoint common variants that alter LDL uptake, implicating novel genes. Additionally, through saturation base editing of LDLR, we enable accurate quantitative prediction of the effects of missense variants on LDL-C levels, which aligns with measurements in UK Biobank individuals, and identify structural mechanisms underlying variant pathogenicity. This work provides a widely applicable approach to improve the power of base editor screens for disease-associated variant characterization.

5.
Science ; 376(6599): 1327-1332, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35608456

ABSTRACT

Repeated emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased fitness underscores the value of rapid detection and characterization of new lineages. We have developed PyR0, a hierarchical Bayesian multinomial logistic regression model that infers relative prevalence of all viral lineages across geographic regions, detects lineages increasing in prevalence, and identifies mutations relevant to fitness. Applying PyR0 to all publicly available SARS-CoV-2 genomes, we identify numerous substitutions that increase fitness, including previously identified spike mutations and many nonspike mutations within the nucleocapsid and nonstructural proteins. PyR0 forecasts growth of new lineages from their mutational profile, ranks the fitness of lineages as new sequences become available, and prioritizes mutations of biological and public health concern for functional characterization.


Subject(s)
COVID-19 , Genetic Fitness , SARS-CoV-2 , Bayes Theorem , COVID-19/virology , Genome, Viral , Humans , Mutation , Regression Analysis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
6.
medRxiv ; 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35194619

ABSTRACT

Repeated emergence of SARS-CoV-2 variants with increased fitness necessitates rapid detection and characterization of new lineages. To address this need, we developed PyR 0 , a hierarchical Bayesian multinomial logistic regression model that infers relative prevalence of all viral lineages across geographic regions, detects lineages increasing in prevalence, and identifies mutations relevant to fitness. Applying PyR 0 to all publicly available SARS-CoV-2 genomes, we identify numerous substitutions that increase fitness, including previously identified spike mutations and many non-spike mutations within the nucleocapsid and nonstructural proteins. PyR 0 forecasts growth of new lineages from their mutational profile, identifies viral lineages of concern as they emerge, and prioritizes mutations of biological and public health concern for functional characterization. ONE SENTENCE SUMMARY: A Bayesian hierarchical model of all SARS-CoV-2 viral genomes predicts lineage fitness and identifies associated mutations.

SELECTION OF CITATIONS
SEARCH DETAIL