Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Bioorg Med Chem ; 85: 117273, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37030194

ABSTRACT

GPR40 AgoPAMs are highly effective antidiabetic agents that have a dual mechanism of action, stimulating both glucose-dependent insulin and GLP-1 secretion. The early lipophilic, aromatic pyrrolidine and dihydropyrazole GPR40 AgoPAMs from our laboratory were highly efficacious in lowering plasma glucose levels in rodents but possessed off-target activities and triggered rebound hyperglycemia in rats at high doses. A focus on increasing molecular complexity through saturation and chirality in combination with reducing polarity for the pyrrolidine AgoPAM chemotype resulted in the discovery of compound 46, which shows significantly reduced off-target activities as well as improved aqueous solubility, rapid absorption, and linear PK. In vivo, compound 46 significantly lowers plasma glucose levels in rats during an oral glucose challenge yet does not demonstrate the reactive hyperglycemia effect at high doses that was observed with earlier GPR40 AgoPAMs.


Subject(s)
Blood Glucose , Hyperglycemia , Rats , Animals , Receptors, G-Protein-Coupled , Glucagon-Like Peptide 1 , Hypoglycemic Agents/pharmacology , Pyrrolidines/pharmacology , Pyrrolidines/chemistry , Insulin
2.
Toxicol Pathol ; 47(4): 461-468, 2019 06.
Article in English | MEDLINE | ID: mdl-31018785

ABSTRACT

Anatomic pathology and clinical pathology end points are standard components of almost every nonclinical general toxicity study conducted during the risk assessment of novel pharmaceuticals and chemicals. On occasion, an ultrastructural pathology evaluation using transmission electron microscopy (TEM) may be included in nonclinical toxicity studies. Transmission electron microscopy is most commonly used when a light microscopic finding may require further characterization that could inform on the pathogenesis and/or mechanism of action. Regulatory guidance do not address the use of TEM in general study designs nor whether these assessments should be performed in laboratories conducted in compliance with Good Laboratory Practices. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology (STP) formed a Working Group to assess the current practices on the use of TEM in nonclinical toxicity studies. The Working Group constructed a survey sent to members of societies of toxicologic pathology in the United States, Europe, Britain, and Japan, and responses were collected through the STP for evaluation by the Working Group. The survey results and regulatory context are discussed, as are "points to consider" from the collective experience of the Working Group. This survey indicates that TEM remains an essential diagnostic option for complementing toxicologic pathology evaluations. *This Points to Consider article is a product of a Society of Toxicologic Pathology (STP) Working Group commissioned by the Scientific and Regulatory Policy Committee (SRPC) of the STP. It has been reviewed and approved by the SRPC and Executive Committee of the STP but it does not represent a formal Best Practice recommendation of the Society; rather, it is intended to provide key "points to consider" in designing nonclinical studies or interpreting data from toxicity and safety studies intended to support regulatory submissions. The points expressed in this document are those of the authors and do not reflect views or policies of the employing institutions. Readers of Toxicologic Pathology are encouraged to send their thoughts on these articles or ideas for new topics to the Editor.


Subject(s)
Microscopy, Electron, Transmission , Pathology, Clinical/methods , Toxicology/methods , Advisory Committees , Animals , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Guidelines as Topic , Humans , Microscopy, Electron, Transmission/methods , Microscopy, Electron, Transmission/standards , Pathology, Clinical/legislation & jurisprudence , Pathology, Clinical/standards , Societies, Scientific , Toxicity Tests/methods , Toxicity Tests/standards , Toxicology/legislation & jurisprudence , Toxicology/standards , United States , United States Food and Drug Administration
3.
Toxicol Pathol ; 46(2): 147-157, 2018 02.
Article in English | MEDLINE | ID: mdl-29471778

ABSTRACT

The purpose of this study was to establish a 2-stage model of urinary bladder carcinogenesis in male Sprague-Dawley rats to identify tumor promoters. In phase 1 of the study, rats ( n = 170) were administered 100 mg/kg of the tumor initiator, N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN), twice weekly by oral gavage (po) for a period of 6 weeks. Phase 2 consisted of dividing rats into 4 groups ( n = 40 per group) and administering one of the following for 26 weeks to identify putative tumor promoters: (1) vehicle po, (2) 25 mg/kg/day rosiglitazone po, (3) 5% dietary sodium l-ascorbate, and (4) 3% dietary uracil. Rats were necropsied after 7.5 months, and urinary bladders were evaluated by histopathology. BBN/vehicle treatments induced the development of urothelial hyperplasia (83%) and papillomas (15%) but no transitional cell carcinomas (TCCs). Rosiglitazone increased the incidence and severity of papillomas (93%) and resulted in TCC in 10% of treated rats. Uracil was the most effective tumor promoter in our study and increased the incidence of papillomas (90%) and TCC (74%). Sodium ascorbate decreased the incidence of urothelial hyperplasia (63%) and did not increase the incidence of urothelial papillomas or TCC. These data confirm the capacity of our 2-stage model to identify urinary bladder tumor promoters.


Subject(s)
Ascorbic Acid/toxicity , Carcinogens/pharmacology , Carcinoma, Transitional Cell/chemically induced , Rosiglitazone/toxicity , Uracil/toxicity , Urinary Bladder Neoplasms/chemically induced , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley , Urinary Bladder/drug effects
4.
Vet Pathol ; 55(2): 331-340, 2018 03.
Article in English | MEDLINE | ID: mdl-29338616

ABSTRACT

C-terminal Src kinase (Csk) is one of the critical negative regulators of the Src family of kinases. The Src family of kinases are nonreceptor tyrosine kinases that regulate inflammation, cell proliferation, motility, and adhesion. To investigate potential histologic lesions associated with systemic loss of Csk gene activity in adult mice, conditional Csk-knockout mice were examined. Cre-mediated systemic excision of Csk induced by tamoxifen treatment resulted in multiorgan inflammation. Specifically, induction of Csk gene excision with three days of tamoxifen treatment resulted in greater than 90% gene excision. Strikingly, these mice developed enteritis that ranged from minimal and suppurative to severe, fibrinonecrosuppurative and hemorrhagic. Other inflammatory lesions included suppurative pneumonia, gastritis, and myocarditis, and increased numbers of inflammatory cells within the hepatic parenchyma. When tamoxifen treatment was reduced from three days to one day in an effort to lower the level of Csk gene excision and limit lesion development, the mice developed severe suppurative to pyogranulomatous pneumonia and minimal to mild suppurative enteritis. Lesions observed secondary to Csk gene excision suggest important roles for Csk in downregulating the proinflammatory activity of the Src family of kinases and limiting neutrophil-mediated inflammation.


Subject(s)
Inflammation/veterinary , Mice, Knockout/metabolism , Suppuration/veterinary , src-Family Kinases/metabolism , Animals , Blotting, Southern , CSK Tyrosine-Protein Kinase , Female , Gene Expression , Inflammation/metabolism , Inflammation/pathology , Male , Suppuration/metabolism , Suppuration/pathology
5.
Toxicol Pathol ; 43(6): 825-37, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26085543

ABSTRACT

Glucokinase (GK) catalyzes the initial step in glycolysis and is a key regulator of glucose homeostasis. Therefore, glucokinase activators (GKa) have potential benefit in treating type 2 diabetes. Administration of a Bristol-Myers Squibb GKa (BMS-820132) to healthy euglycemic Sprague-Dawley (SD) rats and beagle dogs in 1 mo toxicology studies resulted in marked and extended hypoglycemia with associated clinical signs of toxicity and degenerative histopathological changes in the stomach, sciatic nerve, myocardium, and skeletal muscles at exposures comparable to those expected at therapeutic clinical exposures. To investigate whether these adverse effects were secondary to exaggerated pharmacology (prolonged hypoglycemia), BMS-820132 was administered daily to male Zucker diabetic fatty (ZDF) rats for 1 mo. ZDF rats are markedly hyperglycemic and insulin resistant. BMS-820132 did not induce hypoglycemia, clinical signs of hypoglycemia, or any of the histopathologic adverse effects observed in the 1 mo toxicology studies at exposures that exceeded those observed in SD rats and dogs. This indicates that the toxicity observed in euglycemic animals was secondary to the exaggerated pharmacology of potent GK activation. This study indicates that ZDF rats, with conventional toxicity studies, are a useful disease model for testing antidiabetic agents and determining toxicities that are independent of prolonged hypoglycemia.


Subject(s)
Diabetes Mellitus/genetics , Enzyme Activators/toxicity , Hypoglycemia/chemically induced , Hypoglycemic Agents/toxicity , Rats, Zucker/metabolism , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus/pathology , Dogs , Eating/drug effects , Enzyme Activators/pharmacokinetics , Glucokinase/genetics , Hypoglycemia/pathology , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin Resistance/genetics , Male , Rats , Species Specificity , Toxicokinetics
6.
Toxicol Pathol ; 41(3): 508-18, 2013.
Article in English | MEDLINE | ID: mdl-22968286

ABSTRACT

Animal models of human disease are commonly utilized to gain insight into the potential efficacy and mode of action of novel pharmaceuticals. However, conventional (healthy) rodent and nonrodent models are generally utilized in nonclinical safety testing. Animal models of human disease may be helpful in understanding safety risks of compounds in nonclinical or clinical development, with their greatest value being in targeted or hypothesis-driven studies to help understand the mechanism of a particular toxicity. Limitations of animal models of disease in nonclinical safety testing include a lack of historical control, heterogeneity in disease expression, a limited life span, and confounding effects of the disease. In most instances, animal models of human disease should not be utilized to supplant testing in conventional animal models. While of potential benefit, testing in an animal model of human disease should only be taken after adequate consideration of relevance along with benefits and limitations of the proposed model.


Subject(s)
Disease Models, Animal , Drug Evaluation, Preclinical/methods , Toxicity Tests/methods , Animals , Humans , Mice , Rats , Risk Assessment
7.
Int J Toxicol ; 32(5): 336-50, 2013.
Article in English | MEDLINE | ID: mdl-24097127

ABSTRACT

Dapagliflozin, a first-in-class, selective inhibitor of sodium-glucose cotransporter 2 (SGLT2), promotes urinary glucose excretion to reduce hyperglycemia for the treatment of type 2 diabetes. A series of nonclinical studies were undertaken to evaluate dapagliflozin in species where it was shown to have pharmacologic activity comparable with that in humans at doses that resulted in supratherapeutic exposures. In vitro screening (>300 targets; 10 µmol/L) indicated no significant off-target activities for dapagliflozin or its primary human metabolite. Once daily, orally administered dapagliflozin was evaluated in Sprague-Dawley rats (≤6 months) and in beagle dogs (≤1 year) at exposures >5000-fold those observed at the maximum recommended human clinical dose (MRHD; 10 mg). Anticipated, pharmacologically mediated effects of glucosuria, osmotic diuresis, and mild electrolyte loss were observed, but there were no adverse effects at clinically relevant exposures, including in the kidneys or urogenital tract. The SGLT2-/- mice, which show chronic glucosuria, and dapagliflozin-treated, wild-type mice exhibited similar safety profiles. In rats but not dogs, dapagliflozin at >2000-fold MRHD exposures resulted in tissue mineralization and trabecular bone accretion. Investigative studies suggested that the effect was not relevant to human safety, since it was partially related to off-target inhibition of SGLT1, which was observed only at high doses of dapagliflozin and resulted in intestinal glucose malabsorption and increased intestinal calcium absorption. The rigorous assessment of supra- and off-target dapagliflozin pharmacology in nonclinical species allowed for a thorough evaluation of potential toxicity, providing us with confidence in its safety in patients with diabetes.


Subject(s)
Glucosides/toxicity , Hypoglycemic Agents/toxicity , Sodium-Glucose Transporter 2 Inhibitors , Animals , Benzhydryl Compounds , CHO Cells , Cricetulus , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Glucosides/administration & dosage , Glucosides/pharmacokinetics , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Male , Mice , Mice, Inbred ICR , Mice, Knockout , Rats , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2/genetics
8.
Anal Biochem ; 410(1): 84-91, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21094120

ABSTRACT

Nuclear magnetic resonance (NMR)-based metabolomic profiling identified urinary 1- and 3-methylhistidine (1- and 3-MH) as potential biomarkers of skeletal muscle toxicity in Sprague-Dawley rats following 7 and 14 daily doses of 0.5 or 1mg/kg cerivastatin. These metabolites were highly correlated to sex-, dose- and time-dependent development of cerivastatin-induced myotoxicity. Subsequently, the distribution and concentration of 1- and 3-MH were quantified in 18 tissues by gas chromatography-mass spectrometry. The methylhistidine isomers were most abundant in skeletal muscle with no fiber or sex differences observed; however, 3-MH was also present in cardiac and smooth muscle. In a second study, rats receiving 14 daily doses of 1mg/kg cerivastatin (a myotoxic dose) had 6- and 2-fold elevations in 1- and 3-MH in urine and had 11- and 3-fold increases in 1- and 3-MH in serum, respectively. Selectivity of these potential biomarkers was tested by dosing rats with the cardiotoxicant isoproterenol (0.5mg/kg), and a 2-fold decrease in urinary 1- and 3-MH was observed and attributed to the anabolic effect on skeletal muscle. These findings indicate that 1- and 3-MH may be useful urine and serum biomarkers of drug-induced skeletal muscle toxicity and hypertrophy in the rat, and further investigation into their use and limitations is warranted.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Methylhistidines/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Animals , Biomarkers/metabolism , Biomarkers/urine , Creatine/metabolism , Creatine/urine , Dose-Response Relationship, Drug , Female , Male , Methylhistidines/pharmacokinetics , Methylhistidines/urine , Muscular Diseases/chemically induced , Muscular Diseases/metabolism , Muscular Diseases/urine , Pyridines/toxicity , Rats , Rats, Sprague-Dawley , Time Factors
9.
Pharmacol Res Perspect ; 7(3): e00488, 2019 06.
Article in English | MEDLINE | ID: mdl-31149343

ABSTRACT

In this study, we describe a novel approach for collecting bile from dogs and cynomolgus monkeys for metabolite profiling, ultrasound-guided cholecystocentesis (UCC). Sampling bile by UCC twice within 24 hours was well tolerated by dogs and monkeys. In studies with atorvastatin (ATV) the metabolite profiles were similar in bile obtained through UCC and from bile duct-cannulated (BDC) dogs. Similar results were observed in UCC and BDC monkeys as well. In both monkey and dog, the primary metabolic pathway observed for ATV was oxidative metabolism. The 2-hydroxy- and 4-hydroxyatorvastatin metabolites were the major oxidation products, which is consistent with previously published metabolite profiles. S-cysteine and glucuronide conjugates were also observed. UCC offers a viable alternative to bile duct cannulation for collection of bile for metabolite profiling of compounds that undergo biliary excretion, given the similar metabolite profiles in bile obtained via each method. Use of UCC for metabolite profiling may reduce the need for studies using BDC animals, a resource-intensive model.


Subject(s)
Atorvastatin/administration & dosage , Bile/chemistry , Metabolomics/methods , Animals , Atorvastatin/pharmacokinetics , Bile Ducts/surgery , Chromatography, High Pressure Liquid , Dogs , Glucuronides/analysis , Macaca fascicularis , Oxidative Stress , Ultrasonography, Interventional
10.
Article in English | MEDLINE | ID: mdl-30553974

ABSTRACT

INTRODUCTION: Low intrinsic solubility leading to poor oral bioavailability is a common challenge in drug discovery that can often be overcome by formulation strategies, however, it remains a potential limitation that can pose challenges for early risk assessment and represent a significant obstacle to drug development. We identified a selective inhibitor (BMS-986126) of the IL-1 receptor-associated kinase 4 (IRAK4) with favorable properties as a lead candidate, but with unusually low intrinsic solubility of <1 µg/mL. METHODS: Conventional histopathology identified the issue of crystal formation in vivo. Subsequent investigative work included confocal Raman micro-spectroscopy, MALDI-MS, polarized light microscopy of fresh wet-mount tissue scrapings and transmission electron microscopy. RESULTS: BMS-986126 was advanced into a 2-week toxicology study in rats. The main finding in this study was minimal granulomatous inflammation in the duodenum, associated with the presence of birefringent crystals at the highest dosage of 100 mg/kg/day. Considering the safety margin, and the single location of the lesion, BMS-986126 was further progressed into IND-enabling toxicology studies where tolerability deteriorated with increasing dosing duration. Birefringent crystals and granulomatous inflammation were detected in multiple organs at dosages ≥20 mg/kg/day. Raman spectroscopy confirmed the identity of the crystals as BMS-986126. Therefore, follow up investigations were conducted to further characterize drug crystallization and to evaluate detection methods for their potential to reliably detect in vivo crystallization early. DISCUSSION: The purpose of our efforts was to identify critical factors influencing in vivo drug crystallization and to provide a preliminary assessment (based on one compound) which method would be best suited for identifying crystals. Results indicated a combination of methods was required to provide a complete assessment of drug crystallization and that a simple technique, scraping of freshly collected tissue followed by evaluation under polarizing light was suitable for detecting crystals. However, dosing for 2 weeks was required for crystals to grow to a clearly detectable size.


Subject(s)
Crystallization , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Pyrazoles/chemistry , Pyridines/chemistry , Animals , Biological Availability , Drug Discovery , Duodenum/pathology , Female , Interleukin-1 Receptor-Associated Kinases/chemistry , Macrophages, Alveolar/drug effects , Male , Primary Cell Culture , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Risk , Solubility , Spectrum Analysis, Raman
11.
J Pharmacol Exp Ther ; 324(2): 576-86, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17986646

ABSTRACT

Statins, because of their excellent efficacy and manageable safety profile, represent a key component in the current armamentarium for the treatment of hypercholesterolemia. Nonetheless, myopathy remains a safety concern for this important drug class. Cerivastatin was withdrawn from the market for myotoxicity safety concerns. BMS-423526 [{(3R,5S)-7-[4-(4-fluorophenyl)-6,7-dihydro-2-(1-methylethyl)-5H-benzo[6,7]cyclohepta[1,2-b]pyridin-3-yl]-3,5-dihydroxy-heptenoic acid} sodium salt], similar to cerivastatin in potency and lipophilicity, was terminated in early clinical development due to an unacceptable myotoxicity profile. In this report, we describe the guinea pig as a model of statin-induced cholesterol lowering and myotoxicity and show that this model can distinguish statins with unacceptable myotoxicity profiles from statins with acceptable safety profiles. In our guinea pig model, both cerivastatin and BMS-423526 induced myotoxicity at doses near the ED(50) for total cholesterol (TC) lowering in plasma. In contrast, wide differences between myotoxic and TC-lowering doses were established for the currently marketed, more hydrophilic statins, pravastatin, rosuvastatin, and atorvastatin. This in vivo model compared favorably to an in vitro model, which used statin inhibition of cholesterol synthesis in rat hepatocytes and L6 myoblasts as surrogates of potential efficacy and toxicity, respectively. Our conclusion is that the guinea pig is a useful preclinical in vivo model for demonstrating whether a statin is likely to have an acceptable therapeutic safety margin.


Subject(s)
Guinea Pigs/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Models, Animal , Animals , Cells, Cultured , Drug Evaluation, Preclinical/methods , Guinea Pigs/blood , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Rats , Rats, Sprague-Dawley
12.
J Med Chem ; 51(5): 1145-9, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-18260618

ABSTRACT

The C-aryl glucoside 6 (dapagliflozin) was identified as a potent and selective hSGLT2 inhibitor which reduced blood glucose levels in a dose-dependent manner by as much as 55% in hyperglycemic streptozotocin (STZ) rats. These findings, combined with a favorable ADME profile, have prompted clinical evaluation of dapagliflozin for the treatment of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glucosides/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Kidney/metabolism , Sodium-Glucose Transporter 2 Inhibitors , Administration, Oral , Animals , Benzhydryl Compounds , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Glucosides/chemistry , Glucosides/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Rats , Sodium-Glucose Transporter 2 , Stereoisomerism
13.
J Med Chem ; 51(9): 2722-33, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18412317

ABSTRACT

3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) inhibitors, more commonly known as statins, represent the gold standard in treating hypercholesterolemia. Although statins are regarded as generally safe, they are known to cause myopathy and, in rare cases, rhabdomyolysis. Statin-dependent effects on plasma lipids are mediated through the inhibition of HMGR in the hepatocyte, whereas evidence suggests that myotoxicity is due to inhibition of HMGR within the myocyte. Thus, an inhibitor with increased selectivity for hepatocytes could potentially result in an improved therapeutic window. Implementation of a strategy that focused on in vitro potency, compound polarity, cell selectivity, and oral absorption, followed by extensive efficacy and safety modeling in guinea pig and rat, resulted in the identification of compound 1b (BMS-644950). Using this discovery pathway, we compared 1b to other marketed statins to demonstrate its outstanding efficacy and safety profile. With the potential to generate an excellent therapeutic window, 1b was advanced into clinical development.


Subject(s)
Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Triazoles/chemical synthesis , Administration, Oral , Animals , Biological Availability , Chemical and Drug Induced Liver Injury/etiology , Cholesterol/biosynthesis , Cholesterol/blood , Crystallography, X-Ray , Dogs , Female , Guinea Pigs , Haplorhini , Humans , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , In Vitro Techniques , Liver/drug effects , Liver/metabolism , Models, Molecular , Muscle Cells/cytology , Muscle Cells/drug effects , Muscle Cells/metabolism , Pyrimidines/pharmacology , Pyrimidines/toxicity , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Triazoles/pharmacology , Triazoles/toxicity
14.
J Med Chem ; 50(6): 1365-79, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-17315987

ABSTRACT

Robust pharmaceutical treatment of obesity has been limited by the undesirable side-effect profile of currently marketed therapies. This paper describes the synthesis and optimization of a new class of pyrazinoisoindolone-containing, selective 5-HT2C agonists as antiobesity agents. Key to optimization of the pyrazinoisoindolone core was the identification of the appropriate substitution pattern and functional groups which led to the discovery of (R)-9-ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one (58), a 5-HT2C agonist with >300-fold functional selectivity over 5-HT2B and >70-fold functional selectivity over 5-HT2A. Oral dosing of 58 reduced food intake in an acute rat feeding model, which could be completely reversed by a selective 5-HT2C antagonist and caused a reduction in body weight gain in a 4-day rat model.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Indoles/chemical synthesis , Pyrazines/chemical synthesis , Serotonin 5-HT2 Receptor Agonists , Administration, Oral , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Blood-Brain Barrier/metabolism , Cell Line , Conditioning, Operant , Feeding Behavior/drug effects , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles , Male , Mice , Necrosis , Parietal Cells, Gastric/drug effects , Parietal Cells, Gastric/pathology , Pyrazines/chemistry , Pyrazines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Stereoisomerism , Weight Gain/drug effects
15.
Toxicol Sci ; 155(2): 379-388, 2017 02.
Article in English | MEDLINE | ID: mdl-28025230

ABSTRACT

The objective of this work was to investigate the mechanisms of hepatobiliary toxicity caused by thienopyrimidone MCHR1 antagonists using BMS-773174 as a tool molecule. Co-administration of the pan CYP inhibitor 1-aminobenzotriazole with BMS-773174 prevented hepatobiliary damage, and direct delivery of the diol metabolite BMS-769750 caused hepatobiliary toxicity, identifying the diol and possibly its downstream hydroxyacid (BMS-800754) metabolite as the toxic species. Rat liver gene expression revealed treatment-related changes in hepatic transporters and induction of oval cell-specific genes including deleted malignant tumor 1 (Dmbt1). The metabolites did not alter hepatic transporter activities, suggesting that transporter-mediated cholestasis was not involved. Because injury to biliary epithelium can result in adaptive hyperplasia, rat biliary epithelial cells (BECs) were isolated and exposed to the oxidative metabolites. BMS-769750 was cytotoxic to BECs, but not rat hepatocytes, suggesting a role of the diol in biliary epithelial injury. BMS-800754 was cytotoxic to rat hepatocytes therefore its contribution to hepatocyte injury in rats is a possibility. Induction of Dmbt1 in rat BECs was investigated because of its role in hepatic progenitor cell differentiation/proliferation during injury. Dmbt1 mRNA was induced by BMS-769750, but not BMS-800754 in BECs; this induction and cellular injury was confirmed with diol metabolites formed by other compounds with the same hepatobiliary liability. In conclusion, hepatobiliary injury by thienopyrimidinone MCHR1 antagonists was driven through a CYP-mediated bioactivation pathway. Induction of Dmbt1 mRNA coupled with cellular injury suggests that injury of biliary epithelium may be the first step toward an adaptive proliferative response causing BDH by these compounds.


Subject(s)
Biliary Tract/drug effects , Heterocyclic Compounds, 2-Ring/pharmacology , Liver/drug effects , Receptors, Somatostatin/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Gene Expression Profiling , Heterocyclic Compounds, 2-Ring/chemistry , Liver/metabolism , Male , Microscopy, Electron, Transmission , Rats , Rats, Sprague-Dawley
16.
Toxicol Sci ; 155(2): 348-362, 2017 02.
Article in English | MEDLINE | ID: mdl-27864544

ABSTRACT

BMS-986094, a 2'-C-methylguanosine prodrug that was in development for treatment of chronic hepatitis C infection was withdrawn from Phase 2 clinical trials because of unexpected cardiac and renal adverse events. Investigative nonclinical studies were conducted to extend the understanding of these findings using more comprehensive endpoints. BMS-986094 was given orally to female CD-1 mice (25 and 150 mg/kg/d) for 2 weeks (53/group) and to cynomolgus monkeys (15 and 30 mg/kg/d) for up to 6 weeks (2-3/sex/group for cardiovascular safety, and 5/sex/group for toxicology). Endpoints included toxicokinetics; echocardiography, telemetric hemodynamics and electrocardiography, and tissue injury biomarkers (monkey); and light and ultrastructural pathology of heart, kidney, and skeletal muscle (mouse/monkey). Dose-related and time-dependent findings included: severe toxicity in mice at 150 mg/kg/d and monkeys at 30 mg/kg/d; decreased left ventricular (LV) ejection fraction, fractional shortening, stroke volume, and dP/dt; LV dilatation, increased QTc interval, and T-wave flattening/inversion (monkeys at ≥ 15 mg/kg/d); cardiomyocyte degeneration (mice at 150 mg/kg/d and monkeys at ≥ 15 mg/kg/d) with myofilament lysis/myofbril disassembly; time-dependent proteinuria and increased urine ß-2 microglobulin, calbindin, clusterin; kidney pallor macroscopically; and tubular dilatation (monkeys); tubular regeneration (mice 150 mg/kg/d); and acute proximal tubule degeneration ultrastructurally (mice/monkeys); and skeletal muscle degeneration with increased urine myoglobin and serum sTnI. These studies identified changes not described previously in studies of BMS-986094 including premonitory cardiovascular functional changes as well as additional biomarkers for muscle and renal toxicities. Although the mechanism of potential toxicities observed in BMS-986094 studies was not established, there was no evidence for direct mitochondrial toxicity.


Subject(s)
Guanosine Monophosphate/analogs & derivatives , Heart/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Female , Guanosine Monophosphate/therapeutic use , Guanosine Monophosphate/toxicity , Heart/physiology , Hepatitis C, Chronic/drug therapy , Kidney/drug effects , Macaca fascicularis , Male , Mice , Muscle, Skeletal/drug effects , Toxicokinetics
17.
J Med Chem ; 59(19): 8848-8858, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27564419

ABSTRACT

The potent MCHR1 in vitro and in vivo antagonist activity of a series of cyclic tertiary alcohols derived from compound 2b is described. Subsequent pharmacokinetic and pharmacodynamic studies identified BMS-814580 (compound 10) as a highly efficacious antiobesity agent with a relatively clean in vitro and in vivo safety profile.


Subject(s)
Anti-Obesity Agents/chemistry , Anti-Obesity Agents/therapeutic use , Obesity/drug therapy , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Receptors, Somatostatin/antagonists & inhibitors , Animals , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/pharmacology , Dogs , Halogenation , Humans , Macaca fascicularis , Male , Mice , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Receptors, Somatostatin/metabolism , Structure-Activity Relationship
18.
J Am Vet Med Assoc ; 224(6): 879-86, 2004 Mar 15.
Article in English | MEDLINE | ID: mdl-15070058

ABSTRACT

OBJECTIVE: To determine whether the increasing prevalence of feline hyperthyroidism is the result of aging of the cat population and whether consumption of canned foods at various times throughout life is associated with increased risk of hyperthyroidism. DESIGN: Retrospective and case-control studies. STUDY POPULATION: Medical records of 169,576 cats, including 3,570 cats with hyperthyroidism, evaluated at 9 veterinary school hospitals during a 20-year period, and 109 cats with hyperthyroidism (cases) and 173 cats without hyperthyroidism (controls). PROCEDURE: Age-adjusted hospital prevalence of hyperthyroidism was calculated by use of Veterinary Medical Database records. On the basis of owners' questionnaire responses, logistic regression was used to evaluate associations between consumption of canned food and development of hyperthyroidism. RESULTS: Age-specific hospital prevalence of feline hyperthyroidism increased significantly from 1978 to 1997. Overall, consumption of pop-top canned (vs dry) food at various times throughout life and each additional year of age were associated with greater risk of developing hyperthyroidism. In female cats, increased risk was associated with consumption of food packaged in pop-top cans or in combinations of pop-top and non-pop-top cans. In male cats, increased risk was associated with consumption of food packaged in pop-top cans and age. CONCLUSIONS AND CLINICAL RELEVANCE: These findings suggest that the increasing prevalence of feline hyperthyroidism is not solely the result of aging of the cat population and that canned foods may play a role.


Subject(s)
Animal Feed/adverse effects , Cat Diseases/epidemiology , Food Preservation , Hyperthyroidism/veterinary , Age Factors , Aging/physiology , Animal Nutritional Physiological Phenomena , Animals , Case-Control Studies , Cats , Female , Hyperthyroidism/epidemiology , Logistic Models , Male , Prevalence , Retrospective Studies , Risk Factors , Sex Factors
19.
Diabetes ; 63(4): 1303-14, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24222349

ABSTRACT

Glucagon-like peptide 1-based therapies, collectively described as incretins, produce glycemic benefits in the treatment of type 2 diabetes. Recent publications raised concern for a potential increased risk of pancreatitis and pancreatic cancer with incretins based in part on findings from a small number of rodents. However, extensive toxicology assessments in a substantial number of animals dosed up to 2 years at high multiples of human exposure do not support these concerns. We hypothesized that the lesions being attributed to incretins are commonly observed background findings and endeavored to characterize the incidence of spontaneous pancreatic lesions in three rat strains (Sprague-Dawley [S-D] rats, Zucker diabetic fatty [ZDF] rats, and rats expressing human islet amyloid polypeptide [HIP]; n = 36/group) on a normal or high-fat diet over 4 months. Pancreatic findings in all groups included focal exocrine degeneration, atrophy, inflammation, ductular cell proliferation, and/or observations in large pancreatic ducts similar to those described in the literature, with an incidence of exocrine atrophy/inflammation seen in S-D (42-72%), HIP (39%), and ZDF (6%) rats. These data indicate that the pancreatic findings attributed to incretins are common background findings, observed without drug treatment and independent of diet or glycemic status, suggesting a need to exercise caution when interpreting the relevance of some recent reports regarding human safety.


Subject(s)
Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/therapeutic use , Pancreas/drug effects , Pancreatic Diseases/etiology , Animals , Diabetes Mellitus/physiopathology , Diet, High-Fat , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Incretins/adverse effects , Pancreas/pathology , Pancreatitis/etiology , Rats , Rats, Sprague-Dawley , Rats, Zucker , Weight Gain
20.
Diabetes Ther ; 5(1): 73-96, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24474422

ABSTRACT

INTRODUCTION: Dapagliflozin is a selective inhibitor of the sodium-glucose co-transporter 2 (SGLT2) that increases urinary glucose excretion to reduce hyperglycemia in the treatment of type 2 diabetes mellitus. A robust carcinogenicity risk assessment was undertaken to assess the chronic safety of dapagliflozin and SGLT2 inhibition. METHODS: Genotoxicity potential of dapagliflozin and its metabolites was assessed in silico, in vitro, and in vivo. Dapagliflozin was administered daily by oral gavage to mice, rats, and dogs to evaluate carcinogenicity risks, including the potential for tumor promotion. SGLT2(-/-) mice were observed to evaluate the effects of chronic glucosuria. The effects of dapagliflozin and increased glucose levels on a panel of human bladder transitional cell carcinoma (TCC) cell lines were also evaluated in vitro and in an in vivo xenograft model. RESULTS: Dapagliflozin and its metabolites were not genotoxic. In CD-1 mice and Sprague-Dawley rats treated for up to 2 years at ≥100× human clinical exposures, dapagliflozin showed no differences versus controls for tumor incidence, time to onset for background tumors, or urinary bladder proliferative/preneoplastic lesions. No tumors or preneoplastic lesions were observed in dogs over 1 year at >3,000× the clinical exposure of dapagliflozin or in SGLT2(-/-) mice observed over 15 months. Transcription profiling in Zucker diabetic fatty rats showed that 5-week dapagliflozin treatment did not induce tumor promoter-associated or cell proliferation genes. Increasing concentrations of glucose, dapagliflozin, or its primary metabolite, dapagliflozin 3-O-glucuronide, did not affect in vitro TCC proliferation rates and dapagliflozin did not enhance tumor growth in nude mice heterotopically implanted with human bladder TCC cell lines. CONCLUSION: A multitude of assessments of tumorigenicity risk consistently showed no effects, suggesting that selective SGLT2 inhibition and, specifically, dapagliflozin are predicted to not be associated with increased cancer risk.

SELECTION OF CITATIONS
SEARCH DETAIL