Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Clin Chem ; 70(5): 759-767, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38484302

ABSTRACT

BACKGROUND: Identification of tumor-derived variants in circulating tumor DNA (ctDNA) has potential as a sensitive and reliable surrogate for tumor tissue-based routine diagnostic testing. However, variations in pre(analytical) procedures affect the efficiency of ctDNA recovery. Here, an external quality assessment (EQA) was performed to determine the performance of ctDNA mutation detection work flows that are used in current diagnostic settings across laboratories within the Dutch COIN consortium (ctDNA on the road to implementation in The Netherlands). METHODS: Aliquots of 3 high-volume diagnostic leukapheresis (DLA) plasma samples and 3 artificial reference plasma samples with predetermined mutations were distributed among 16 Dutch laboratories. Participating laboratories were requested to perform ctDNA analysis for BRAF exon 15, EGFR exon 18-21, and KRAS exon 2-3 using their regular circulating cell-free DNA (ccfDNA) analysis work flow. Laboratories were assessed based on adherence to the study protocol, overall detection rate, and overall genotyping performance. RESULTS: A broad range of preanalytical conditions (e.g., plasma volume, elution volume, and extraction methods) and analytical methodologies (e.g., droplet digital PCR [ddPCR], small-panel PCR assays, and next-generation sequencing [NGS]) were used. Six laboratories (38%) had a performance score of >0.90; all other laboratories scored between 0.26 and 0.80. Although 13 laboratories (81%) reached a 100% overall detection rate, the therapeutically relevant EGFR p.(S752_I759del) (69%), EGFR p.(N771_H773dup) (50%), and KRAS p.(G12C) (48%) mutations were frequently not genotyped accurately. CONCLUSIONS: Divergent (pre)analytical protocols could lead to discrepant clinical outcomes when using the same plasma samples. Standardization of (pre)analytical work flows can facilitate the implementation of reproducible liquid biopsy testing in the clinical routine.


Subject(s)
Circulating Tumor DNA , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Mutation , Neoplasms/genetics , Neoplasms/blood , Proto-Oncogene Proteins p21(ras)/genetics , ErbB Receptors/genetics , ErbB Receptors/blood , Proto-Oncogene Proteins B-raf/genetics , Netherlands
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685923

ABSTRACT

Molecular profiling may enable earlier detection of pancreatic cancer (PC) in high-risk individuals undergoing surveillance and allow for personalization of treatment. We hypothesized that the detection rate of DNA mutations is higher in pancreatic juice (PJ) than in plasma due to its closer contact with the pancreatic ductal system, from which pancreatic cancer cells originate, and higher overall cell-free DNA (cfDNA) concentrations. In this study, we included patients with pathology-proven PC or intraductal papillary mucinous neoplasm (IPMN) with high-grade dysplasia (HGD) from two prospective clinical trials (KRASPanc and PACYFIC) for whom both PJ and plasma were available. We performed next-generation sequencing on PJ, plasma, and tissue samples and described the presence (and concordance) of mutations in these biomaterials. This study included 26 patients (25 PC and 1 IPMN with HGD), of which 7 were women (27%), with a median age of 71 years (IQR 12) and a median BMI of 23 kg/m2 (IQR 4). Ten patients with PC (40%) were (borderline) resectable at baseline. Tissue was available from six patients (resection n = 5, biopsy n = 1). A median volume of 2.9 mL plasma (IQR 1.0 mL) and 0.7 mL PJ (IQR 0.1 mL, p < 0.001) was used for DNA isolation. PJ had a higher median cfDNA concentration (2.6 ng/µL (IQR 4.2)) than plasma (0.29 ng/µL (IQR 0.40)). A total of 41 unique somatic mutations were detected: 24 mutations in plasma (2 KRAS, 15 TP53, 2 SMAD4, 3 CDKN2A 1 CTNNB1, and 1 PIK3CA), 19 in PJ (3 KRAS, 15 TP53, and 1 SMAD4), and 8 in tissue (2 KRAS, 2 CDKN2A, and 4 TP53). The mutation detection rate (and the concordance with tissue) did not differ between plasma and PJ. In conclusion, while the concentration of cfDNA was indeed higher in PJ than in plasma, the mutation detection rate was not different. A few cancer-associated genetic variants were detected in both biomaterials. Further research is needed to increase the detection rate and assess the performance and suitability of plasma and PJ for PC (early) detection.


Subject(s)
Cell-Free Nucleic Acids , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Humans , Female , Child , Male , Pancreatic Juice , Prospective Studies , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Biocompatible Materials , Cell-Free Nucleic Acids/genetics , Pancreatic Neoplasms
3.
Clin Chem ; 68(7): 963-972, 2022 07 03.
Article in English | MEDLINE | ID: mdl-35616097

ABSTRACT

BACKGROUND: Efficient recovery of circulating tumor DNA (ctDNA) depends on the quantity and quality of circulating cell-free DNA (ccfDNA). Here, we evaluated whether various ccfDNA extraction methods routinely applied in Dutch laboratories affect ccfDNA yield, ccfDNA integrity, and mutant ctDNA detection, using identical lung cancer patient-derived plasma samples. METHODS: Aliquots of 4 high-volume diagnostic leukapheresis plasma samples and one artificial reference plasma sample with predetermined tumor-derived mutations were distributed among 14 Dutch laboratories. Extractions of ccfDNA were performed according to local routine standard operating procedures and were analyzed at a central reference laboratory for mutant detection and assessment of ccfDNA quantity and integrity. RESULTS: Mutant molecule levels in extracted ccfDNA samples varied considerably between laboratories, but there was no indication of consistent above or below average performance. Compared to silica membrane-based methods, samples extracted with magnetic beads-based kits revealed an overall lower total ccfDNA yield (-29%; P < 0.0001) and recovered fewer mutant molecules (-41%; P < 0.01). The variant allelic frequency and sample integrity were similar. In samples with a higher-than-average total ccfDNA yield, an augmented recovery of mutant molecules was observed. CONCLUSIONS: In the Netherlands, we encountered diversity in preanalytical workflows with potential consequences on mutant ctDNA detection in clinical practice. Silica membrane-based methodologies resulted in the highest total ccfDNA yield and are therefore preferred to detect low copy numbers of relevant mutations. Harmonization of the extraction workflow for accurate quantification and sensitive detection is required to prevent introduction of technical divergence in the preanalytical phase and reduce interlaboratory discrepancies.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Lung Neoplasms , Pathology, Clinical , Circulating Tumor DNA/genetics , Humans , Silicon Dioxide
4.
BMC Cancer ; 22(1): 165, 2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35151276

ABSTRACT

BACKGROUND: In breast cancer (BC), recurrent fusion genes of estrogen receptor alpha (ESR1) and AKAP12, ARMT1 and CCDC170 have been reported. In these gene fusions the ligand binding domain of ESR1 has been replaced by the transactivation domain of the fusion partner constitutively activating the receptor. As a result, these gene fusions can drive tumor growth hormone independently as been shown in preclinical models, but the clinical value of these fusions have not been reported. Here, we studied the prognostic and predictive value of different frequently reported ESR1 fusion transcripts in primary BC. METHODS: We evaluated 732 patients with primary BC (131 ESR1-negative and 601 ESR1-positive cases), including two ER-positive BC patient cohorts: one cohort of 322 patients with advanced disease who received first-line endocrine therapy (ET) (predictive cohort), and a second cohort of 279 patients with lymph node negative disease (LNN) who received no adjuvant systemic treatment (prognostic cohort). Fusion gene transcript levels were measured by reverse transcriptase quantitative PCR. The presence of the different fusion transcripts was associated, in uni- and multivariable Cox regression analysis taking along current clinico-pathological characteristics, to progression free survival (PFS) during first-line endocrine therapy in the predictive cohort, and disease- free survival (DFS) and overall survival (OS) in the prognostic cohort. RESULTS: The ESR1-CCDC170 fusion transcript was present in 27.6% of the ESR1-positive BC subjects and in 2.3% of the ESR1-negative cases. In the predictive cohort, none of the fusion transcripts were associated with response to first-line ET. In the prognostic cohort, the median DFS and OS were respectively 37 and 93 months for patients with an ESR1-CCDC170 exon 8 gene fusion transcript and respectively 91 and 212 months for patients without this fusion transcript. In a multivariable analysis, this ESR1-CCDC170 fusion transcript was an independent prognostic factor for DFS (HR) (95% confidence interval (CI): 1.8 (1.2-2.8), P = 0.005) and OS (HR (95% CI: 1.7 (1.1-2.7), P = 0.023). CONCLUSIONS: Our study shows that in primary BC only ESR1-CCDC170 exon 8 gene fusion transcript carries prognostic value. None of the ESR1 fusion transcripts, which are considered to have constitutive ER activity, was predictive for outcome in BC with advanced disease treated with endocrine treatment.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/mortality , Estrogen Receptor alpha/genetics , Gene Fusion/genetics , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Case-Control Studies , Disease-Free Survival , Female , Humans , Middle Aged , Predictive Value of Tests , Prognosis , Proportional Hazards Models , Retrospective Studies
5.
Gynecol Obstet Invest ; 87(6): 389-397, 2022.
Article in English | MEDLINE | ID: mdl-36450222

ABSTRACT

OBJECTIVES: Ovarian cancer has the worst overall survival rate of all gynecologic malignancies. For the majority of patients, the 5-year overall survival rate of less than 50% has hardly improved over the last decades. To improve the outcome of patients with all subtypes of ovarian cancer, large-scale fundamental and translational research is needed. To accommodate these types of ovarian cancer research, we have established a Dutch nationwide, interdisciplinary infrastructure and biobank: the Archipelago of Ovarian Cancer Research (AOCR). The AOCR will facilitate fundamental and translational ovarian cancer research and enhance interdisciplinary, national, and international collaboration. DESIGN: The AOCR biobank is a prospective ovarian cancer biobank in which biomaterials are collected, processed, and stored in a uniform matter for future (genetic) scientific research. All 19 Dutch hospitals in which ovarian cancer surgery is performed participate and collaborate in the AOCR biobank. PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients of 16 years and older with suspected or diagnosed ovarian, fallopian tube, or primary peritoneal cancer are recruited for participation. Patients who agree to participate give written informed consent for collection, storage, and issue of their biomaterials for future studies. After inclusion, different blood samples are taken at various predefined time points both before and during treatment. In case of a diagnostic paracentesis or biopsy, the residual biomaterials of these procedures are stored in the biobank. During surgery, primary tumor tissue and, if applicable, tissue from metastatic sites are collected and stored. From each patient, a representative histological hematoxylin and eosin stained slide is digitalized for research purposes, including reassessment by a panel of gynecologic pathologists. Clinical and pathological data are obtained on a per-study basis from Dutch registries. Research proposals for the issue of biomaterials and data are evaluated by both the Archipelago Scientific Committee and the Steering Committee. Researchers using the biomaterials from the AOCR biobank are encouraged to enrich the biobank with data and materials resulting from their analyses and experiments. LIMITATIONS: The implementation and first 4 years of collection are financed by an infrastructural grant from the Dutch Cancer Society. Therefore, the main limitation is that the costs for sustaining the biobank after the funding period will have to be covered. This coverage will come from incorporation of budget for biobanking in future grant applications and from fees from external researchers and commercial parties using the biomaterials stored in the AOCR biobank. Moreover, we will apply for grants aimed at sustaining and improving research infrastructures and biobanks. CONCLUSIONS: With the establishment of the Dutch nationwide, interdisciplinary Archipelago of Ovarian Cancer Research infrastructure and biobank, fundamental and translational research on ovarian cancer can be greatly improved. The ultimate aim of this infrastructure is that it will lead to improved diagnostics, treatment, and survival of patients with ovarian cancer.


Subject(s)
Biological Specimen Banks , Ovarian Neoplasms , Humans , Female , Translational Research, Biomedical , Prospective Studies , Ovarian Neoplasms/surgery
6.
BMC Cancer ; 21(1): 315, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33761899

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are actively secreted by cells into body fluids and contain nucleic acids of the cells they originate from. The goal of this study was to detect circulating tumor-derived EVs (ctEVs) by mutant mRNA transcripts (EV-RNA) in plasma of patients with solid cancers and compare the occurrence of ctEVs with circulating tumor DNA (ctDNA) in cell-free DNA (cfDNA). METHODS: For this purpose, blood from 20 patients and 15 healthy blood donors (HBDs) was collected in different preservation tubes (EDTA, BCT, CellSave) and processed into plasma within 24 h from venipuncture. EVs were isolated with the ExoEasy protocol from this plasma and from conditioned medium of 6 cancer cell lines and characterized according to MISEV2018-guidelines. RNA from EVs was isolated with the ExoRNeasy protocol and evaluated for transcript expression levels of 96 genes by RT-qPCR and genotyped by digital PCR. RESULTS: Our workflow applied on cell lines revealed a high concordance between cellular mRNA and EV-RNA in expression levels as well as variant allele frequencies for PIK3CA, KRAS and BRAF. Plasma CD9-positive EV and GAPDH EV-RNA levels were significantly different between the preservation tubes. The workflow detected only ctEVs with mutant transcripts in plasma of patients with high amounts (> 20%) of circulating tumor DNA (ctDNA). Expression profiling showed that the EVs from patients resemble healthy donors more than tumor cell lines supporting that most EVs are derived from healthy tissue. CONCLUSIONS: We provide a workflow for ctEV detection by spin column-based generic isolation of EVs and PCR-based measurement of gene expression and mutant transcripts in EV-RNA derived from cancer patients' blood plasma. This workflow, however, detected tumor-specific mutations in blood less often in EV-RNA than in cfDNA.


Subject(s)
Biomarkers, Tumor/blood , Circulating Tumor DNA/blood , Extracellular Vesicles/metabolism , Neoplasms/diagnosis , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cohort Studies , Extracellular Vesicles/genetics , Humans , Mutation , Neoplasms/blood , Neoplasms/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Am J Gastroenterol ; 115(12): 2103-2108, 2020 12.
Article in English | MEDLINE | ID: mdl-33105193

ABSTRACT

INTRODUCTION: Imaging-based surveillance programs fail to detect pancreatic ductal adenocarcinoma at a curable stage, creating an urgent need for diagnostic biomarkers. METHODS: Secretin-stimulated pancreatic juice (PJ) was collected from the duodenal lumen during endoscopic ultrasound. The yield of biomarkers and organoids was compared for 2 collection techniques (endoscope suction channel vs catheter-based) and 3 periods (0-4 vs 4-8 vs 8-15 minutes). RESULTS: Collection through the endoscope suction channel was superior to collection with a catheter. Collection beyond 8 minutes reduced biomarker yield. PJ-derived organoid culture was feasible. DISCUSSION: The optimal protocol for secretin-stimulated PJ collection is through the endoscope suction channel for 8 minutes allowing biomarker detection and organoid culture.


Subject(s)
Biomarkers/metabolism , Carcinoma, Pancreatic Ductal/diagnosis , Pancreatic Juice/metabolism , Pancreatic Neoplasms/diagnosis , Carcinoma, Pancreatic Ductal/metabolism , Early Detection of Cancer/methods , Endosonography , Humans , Pancreatic Neoplasms/metabolism , Prospective Studies
8.
BMC Cancer ; 16: 123, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26892682

ABSTRACT

BACKGROUND: Molecular characterization of circulating tumor cells (CTC) is promising for personalized medicine. We aimed to identify a CTC gene expression profile predicting outcome to first-line aromatase inhibitors in metastatic breast cancer (MBC) patients. METHODS: CTCs were isolated from 78 MBC patients before treatment start. mRNA expression levels of 96 genes were measured by quantitative reverse transcriptase polymerase chain reaction. After applying predefined exclusion criteria based on lack of sufficient RNA quality and/or quantity, the data from 45 patients were used to construct a gene expression profile to predict poor responding patients, defined as disease progression or death <9 months, by a leave-one-out cross validation. RESULTS: Of the 45 patients, 19 were clinically classified as poor responders. To identify them, the 75% most variable genes were used to select genes differentially expressed between good and poor responders. An 8-gene CTC predictor was significantly associated with outcome (Hazard Ratio [HR] 4.40, 95% Confidence Interval [CI]: 2.17-8.92, P < 0.001). This predictor identified poor responding patients with a sensitivity of 63% and a positive predictive value of 75%, while good responding patients were correctly predicted in 85% of the cases. In multivariate Cox regression analysis, including CTC count at baseline, the 8-gene CTC predictor was the only factor independently associated with outcome (HR 4.59 [95% CI: 2.11-9.56], P < 0.001). This 8-gene signature was not associated with outcome in a group of 71 MBC patients treated with systemic treatments other than AI. CONCLUSIONS: An 8-gene CTC predictor was identified which discriminates good and poor outcome to first-line aromatase inhibitors in MBC patients. Although results need to be validated, this study underscores the potential of molecular characterization of CTCs.


Subject(s)
Aromatase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Gene Expression Profiling/methods , Neoplastic Cells, Circulating , Oligonucleotide Array Sequence Analysis/methods , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , Neoplasm Metastasis , Prognosis , Risk Assessment
9.
Breast Cancer Res ; 16(3): R53, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24886537

ABSTRACT

INTRODUCTION: Endocrine therapies targeting cell proliferation and survival mediated by estrogen receptor α (ERα) are among the most effective systemic treatments for ERα-positive breast cancer. However, most tumors initially responsive to these therapies acquire resistance through mechanisms that involve ERα transcriptional regulatory plasticity. Herein we identify VAV3 as a critical component in this process. METHODS: A cell-based chemical compound screen was carried out to identify therapeutic strategies against resistance to endocrine therapy. Binding to ERα was evaluated by molecular docking analyses, an agonist fluoligand assay and short hairpin (sh)RNA-mediated protein depletion. Microarray analyses were performed to identify altered gene expression. Western blot analysis of signaling and proliferation markers, and shRNA-mediated protein depletion in viability and clonogenic assays, were performed to delineate the role of VAV3. Genetic variation in VAV3 was assessed for association with the response to tamoxifen. Immunohistochemical analyses of VAV3 were carried out to determine its association with therapeutic response and different tumor markers. An analysis of gene expression association with drug sensitivity was carried out to identify a potential therapeutic approach based on differential VAV3 expression. RESULTS: The compound YC-1 was found to comparatively reduce the viability of cell models of acquired resistance. This effect was probably not due to activation of its canonical target (soluble guanylyl cyclase), but instead was likely a result of binding to ERα. VAV3 was selectively reduced upon exposure to YC-1 or ERα depletion, and, accordingly, VAV3 depletion comparatively reduced the viability of cell models of acquired resistance. In the clinical scenario, germline variation in VAV3 was associated with the response to tamoxifen in Japanese breast cancer patients (rs10494071 combined P value = 8.4 × 10-4). The allele association combined with gene expression analyses indicated that low VAV3 expression predicts better clinical outcome. Conversely, high nuclear VAV3 expression in tumor cells was associated with poorer endocrine therapy response. Based on VAV3 expression levels and the response to erlotinib in cancer cell lines, targeting EGFR signaling may be a promising therapeutic strategy. CONCLUSIONS: This study proposes VAV3 as a biomarker and a rationale for its use as a signaling target to prevent and/or overcome resistance to endocrine therapy in breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/metabolism , Indazoles/pharmacology , Proto-Oncogene Proteins c-vav/genetics , Androstadienes/therapeutic use , Antineoplastic Agents, Hormonal/pharmacology , Aromatase Inhibitors/therapeutic use , Biomarkers, Tumor/genetics , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Enzyme Activators/pharmacology , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Female , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genetic Variation , Humans , Letrozole , MCF-7 Cells , Nitriles/therapeutic use , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , RNA Interference , RNA, Small Interfering , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Toremifene/pharmacology , Toremifene/therapeutic use , Triazoles/therapeutic use
10.
Cell Death Differ ; 31(3): 360-377, 2024 03.
Article in English | MEDLINE | ID: mdl-38365970

ABSTRACT

Phenotypic plasticity, defined as the ability of individual cells with stable genotypes to exert different phenotypes upon exposure to specific environmental cues, represent the quintessential hallmark of the cancer cell en route from the primary lesion to distant organ sites where metastatic colonization will occur. Phenotypic plasticity is driven by a broad spectrum of epigenetic mechanisms that allow for the reversibility of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions (EMT/MET). By taking advantage of the co-existence of epithelial and quasi-mesenchymal cells within immortalized cancer cell lines, we have analyzed the role of EMT-related gene isoforms in the regulation of epithelial mesenchymal plasticity (EMP) in high grade serous ovarian cancer. When compared with colon cancer, a distinct spectrum of downstream targets characterizes quasi-mesenchymal ovarian cancer cells, likely to reflect the different modalities of metastasis formation between these two types of malignancy, i.e. hematogenous in colon and transcoelomic in ovarian cancer. Moreover, upstream RNA-binding proteins differentially expressed between epithelial and quasi-mesenchymal subpopulations of ovarian cancer cells were identified that underlie differential regulation of EMT-related isoforms. In particular, the up- and down-regulation of RBM24 and ESRP1, respectively, represent a main regulator of EMT in ovarian cancer cells. To validate the functional and clinical relevance of our approach, we selected and functionally analyzed the Tropomyosin 1 gene (TPM1), encoding for a protein that specifies the functional characteristics of individual actin filaments in contractile cells, among the ovarian-specific downstream AS targets. The low-molecular weight Tpm1.8/9 isoforms are specifically expressed in patient-derived ascites and promote invasion through activation of EMT and Wnt signaling, together with a broad spectrum of inflammation-related pathways. Moreover, Tpm1.8/9 expression confers resistance to taxane- and platinum-based chemotherapy. Small molecule inhibitors that target the Tpm1 isoforms support targeting Tpm1.8/9 as therapeutic targets for the development of future tailor-made clinical interventions.


Subject(s)
Ovarian Neoplasms , Humans , Female , Cell Movement , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Wnt Signaling Pathway , Epithelial-Mesenchymal Transition , RNA-Binding Proteins/metabolism
11.
Breast Cancer Res Treat ; 139(1): 39-49, 2013 May.
Article in English | MEDLINE | ID: mdl-23592373

ABSTRACT

PIK3CA mutations occur frequently in breast cancer, predominantly in exons 9 and 20. The aim of this retrospective study is to evaluate the PIK3CA mutation status for its relationship with prognosis and first-line endocrine therapy outcome. PIK3CA exon 9 and 20 were evaluated for mutations in 1,352 primary breast cancer specimens by SnaPshot multiplex analyses. The mutation status was studied for their relationship with metastasis-free survival (MFS) in 342 untreated lymph node-negative (LNN) patients and to time to progression (TTP) in estrogen receptor (ER)-positive patients with metastatic disease treated with first-line tamoxifen (N = 447) or aromatase inhibitors (AIs; N = 84). We detected in 423 patients hotspot mutations for PIK3CA (31 %). Mutations in exon 20 were detected in 251 patients (59 %), with H1047L and H1047R mutations in 37 (15 %) and 214 (85 %) cases, respectively. Mutations in PIK3CA exon 9 were discovered in 173 patients (41 %), with E542K and E545K mutations in 57 (32 %) and 104 (60 %) cases as most prevalent ones. Evaluation of the untreated LNN patients for prognosis showed no relationship between MFS and PIK3CA mutations, neither for exon 9 [HR = 1.04 (95 % CI 0.57-1.89), P = 0.90] nor for exon 20 [HR = 0.98 (95 % CI 0.63-1.54); P = 0.94] when compared to wild-type. The PIK3CA mutation status was also not associated with treatment outcome after first-line tamoxifen. On the other hand, patients treated with first-line AIs showed a longer TTP when having a PIK3CA mutation in exon 9 [HR = 0.40 (95 % CI 0.17-0.95); P = 0.038] or exon 20 [HR = 0.50 (95 % CI 0.27-0.91); P = 0.024] compared to wild-types, both significant in uni- and multivariate analysis including traditional predictive factors. All results remained when only HER2-negative patients were evaluated for each cohort. PIK3CA mutations in ER-positive tumors were significantly associated with a favorable outcome after first-line AIs, which needs further confirmation in other datasets. Mutations were not associated with prognosis in untreated LNN patients nor predictive outcome after first-line tamoxifen therapy in advanced disease patients.


Subject(s)
Aromatase Inhibitors/therapeutic use , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Mutation , Phosphatidylinositol 3-Kinases/genetics , Tamoxifen/therapeutic use , Adult , Aged , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Class I Phosphatidylinositol 3-Kinases , DNA Mutational Analysis , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Middle Aged , Prognosis , Receptor, ErbB-2/genetics , Receptors, Estrogen/genetics , Receptors, Progesterone/genetics , Retrospective Studies , Treatment Outcome
12.
Sci Rep ; 13(1): 10424, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369746

ABSTRACT

Next generation sequencing of cell-free DNA (cfDNA) is a promising method for treatment monitoring and therapy selection in metastatic breast cancer (MBC). However, distinguishing tumor-specific variants from sequencing artefacts and germline variation with low false discovery rate is challenging when using large targeted sequencing panels covering many tumor suppressor genes. To address this, we built a machine learning model to remove false positive variant calls and augmented it with additional filters to ensure selection of tumor-derived variants. We used cfDNA of 70 MBC patients profiled with both the small targeted Oncomine breast panel (Thermofisher) and the much larger Qiaseq Human Breast Cancer Panel (Qiagen). The model was trained on the panels' common regions using Oncomine hotspot mutations as ground truth. Applied to Qiaseq data, it achieved 35% sensitivity and 36% precision, outperforming basic filtering. For 20 patients we used germline DNA to filter for somatic variants and obtained 245 variants in total, while our model found seven variants, of which six were also detected using the germline strategy. In ten tumor-free individuals, our method detected in total one (potentially germline) variant, in contrast to 521 variants detected without our model. These results indicate that our model largely detects somatic variants.


Subject(s)
Breast Neoplasms , Cell-Free Nucleic Acids , Humans , Female , Breast Neoplasms/genetics , Cell-Free Nucleic Acids/genetics , Mutation , Breast , High-Throughput Nucleotide Sequencing , Machine Learning
13.
BMJ Open ; 12(5): e059345, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35584883

ABSTRACT

INTRODUCTION: The locoregional failure (LRF) rate in human papilloma virus (HPV)-negative oropharyngeal squamous cell carcinoma (OPSCC) remains disappointingly high and toxicity is substantial. Response prediction prior to or early during treatment would provide opportunities for personalised treatment. Currently, there are no accurate predictive models available for correct OPSCC patient selection. Apparently, the pivotal driving forces that determine how a OPSCC responds to treatment, have yet to be elucidated. Therefore, the holistiC early respOnse assessMent for oroPharyngeaL cancer paTiEnts study focuses on a holistic approach to gain insight in novel potential prognostic biomarkers, acquired before and early during treatment, to predict response to treatment in HPV-negative patients with OPSCC. METHODS AND ANALYSIS: This single-centre prospective observational study investigates 60 HPV-negative patients with OPSCC scheduled for primary radiotherapy (RT) with cisplatin or cetuximab, according to current clinical practice. A holistic approach will be used that aims to map the macroscopic (with Intra Voxel Incoherent Motion Diffusion Kurtosis Imaging (IVIM-DKI); before, during, and 3 months after RT), microscopic (with biopsies of the primary tumour acquired before treatment and irradiated ex vivo to assess radiosensitivity), and molecular landscape (with circulating tumour DNA (ctDNA) analysed before, during and 3 months after treatment). The main end point is locoregional control (LRC) 2 years after treatment. The primary objective is to determine whether a relative change in the mean of the diffusion coefficient D (an IVIM-DKI parameter) in the primary tumour early during treatment, improves the performance of a predictive model consisting of tumour volume only, for 2 years LRC after treatment. The secondary objectives investigate the potential of other IVIM-DKI parameters, ex vivo sensitivity characteristics, ctDNA, and combinations thereof as potential novel prognostic markers. ETHICS AND DISSEMINATION: The study was approved by the Medical Ethical Committee of Erasmus Medical Center. The main results of the trial will be presented in international meetings and medical journals. TRIAL REGISTRATION NUMBER: NL8458.


Subject(s)
Carcinoma, Squamous Cell , Circulating Tumor DNA , Head and Neck Neoplasms , Oropharyngeal Neoplasms , Papillomavirus Infections , Carcinoma, Squamous Cell/pathology , Humans , Observational Studies as Topic , Oropharyngeal Neoplasms/pathology , Papillomaviridae/genetics , Papillomavirus Infections/complications , Squamous Cell Carcinoma of Head and Neck
14.
Eur J Cancer ; 177: 33-44, 2022 12.
Article in English | MEDLINE | ID: mdl-36323051

ABSTRACT

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) patients with positive AR-V7 expression in their circulating tumour cells (CTCs) rarely derive benefit from abiraterone and enzalutamide. DESIGN: We performed a prospective, multicenter, single arm phase II clinical trial (CABA-V7) in mCRPC patients previously treated with docetaxel and androgen deprivation therapy. OBJECTIVE: In this trial, we investigated whether cabazitaxel treatment resulted in clinically meaningful PSA response rates in patients with positive CTC-based AR-V7 expression and collected liquid biopsies for genomic profiling. RESULTS: Cabazitaxel was found to be modestly effective, with only 12% of these patients obtaining a PSA response. Genomic profiling revealed that CTC-based AR-V7 expression was not associated with other known mCRPC-associated alterations. CTC-based AR-V7 status and dichotomised CTC counts were observed as independent prognostic markers at baseline. CONCLUSIONS: AR-V7 positivity predicted poor overall survival (OS). However, cabazitaxel-treated AR-V7 positive patients and those lacking AR-V7 positivity, who received cabazitaxel as standard of care, appeared to have similar OS. Therefore, despite the low response rate, cabazitaxel may still be an effective treatment in this poor prognosis, AR-V7 positive patient population.


Subject(s)
Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostate-Specific Antigen , Receptors, Androgen/metabolism , Androgen Antagonists/therapeutic use , Protein Isoforms/genetics , Neoplastic Cells, Circulating/pathology , Nitriles/therapeutic use
15.
Transl Oncol ; 14(7): 101073, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33915518

ABSTRACT

BACKGROUND AND AIMS: Circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) may be used for diagnostic or prognostic purposes in patients with hepatocellular carcinoma (HCC). We aim to determine whether CTCs or ctDNA are suitable to determine oncogenic mutations in HCC patients. METHODS: Twenty-six mostly advanced HCC patients were enrolled. 30 mL peripheral blood from each patient was obtained. CellSearch system was used for CTC detection. A sequencing panel covering 14 cancer-relevant genes was used to identify oncogenic mutations. TERT promoter C228T and C250T mutations were determined by droplet digital PCR. RESULTS: CTCs were detected in 27% (7/26) of subjects but at low numbers (median: 2 cells, range: 1-15 cells) and ctDNA in 77% (20/26) of patients. Mutations in ctDNA were identified in several genes: TERT promoter C228T (77%, 20/26), TP53 (23%, 6/26), CTNNB1 (12%, 3/26), PIK3CA (12%, 3/26) and NRAS (4%, 1/26). The TERT C228T mutation was present in all patients with one or more ctDNA mutations, or detectable CTCs. The TERT C228T and TP53 mutations detected in ctDNA were present at higher levels in matched primary HCC tumor tissue. The maximal variant allele frequency (VAF) of ctDNA was linearly correlated with largest tumor size and AFP level (Log10). CtDNA (or TERT C228T) positivity was associated with macrovascular invasion, and positivity of ctDNA (or TERT C228T) or CTCs (≥ 2) correlated with poor patient survival. CONCLUSIONS: Oncogenic mutations could be detected in ctDNA from advanced HCC patients. CtDNA analysis may serve as a promising liquid biopsy to identify druggable mutations.

16.
Ann Transl Med ; 9(15): 1264, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34532401

ABSTRACT

Circulating tumor DNA (ctDNA) analysis is a promising non-invasive technique for active surveillance after chemoradiotherapy for locally advanced resectable esophageal carcinoma. In other malignancies false-positive results in ctDNA analysis have been reported due to clonal hematopoiesis. In this case, we present a 66-year-old male who had adenocarcinoma of the gastroesophageal junction for which he received neoadjuvant chemoradiotherapy and underwent a transhiatal esophagectomy. Postoperatively our patient received follow-up with ctDNA analysis using next generation sequencing (NGS) and droplet digital PCR (ddPCR). This case report illustrates a number of the current challenges in ctDNA diagnostics in esophageal carcinoma. Firstly, the TP53 c.524G>A; p.R175H mutation that was found in preoperative tumor biopsies became detectable in ctDNA only after distant metastases had already been confirmed by clinical symptoms and standard imaging- and biopsy techniques. Secondly our patient repeatedly had false-positive outcomes of ctDNA analysis. Genomic analysis of white blood cells revealed that the origin of these discordant mutations lies in clonal hematopoiesis. Failure to detect TP53 c.524G>A; p.R175H in cell-free DNA (cfDNA) is most likely due to the amount of ctDNA in the cfDNA fraction being below the limit of detection for NGS and ddPCR analyses. Clinicians should be aware of the possibility of finding mutations originating from clonal hematopoiesis when using ctDNA analysis during active surveillance for esophageal carcinoma. We recommend correlation of mutations in cfDNA with mutations in tumor biopsies.

17.
Mol Oncol ; 15(1): 57-66, 2021 01.
Article in English | MEDLINE | ID: mdl-33070443

ABSTRACT

Quantification of tumor-specific variants (TSVs) in cell-free DNA is rapidly evolving as a prognostic and predictive tool in patients with cancer. Currently, both variant allele frequency (VAF) and number of mutant molecules per mL plasma are used as units of measurement to report those TSVs. However, it is unknown to what extent both units of measurement agree and what are the factors underlying an existing disagreement. To study the agreement between VAF and mutant molecules in current clinical studies, we analyzed 1116 TSVs from 338 patients identified with next-generation sequencing (NGS) or digital droplet PCR (ddPCR). On different study cohorts, a Deming regression analysis was performed and its 95% prediction interval was used as surrogate for the limits of agreement between VAF and number of mutant molecules per mL and to identify outliers. VAF and number of mutant molecules per mL plasma yielded greater agreement when using ddPCR than NGS. In case of discordance between VAF and number of mutant molecules per mL, insufficient molecular coverage in NGS and high cell-free DNA concentration were the main responsible factors. We propose several optimization steps needed to bring monitoring of TSVs in cell-free DNA to its full potential.


Subject(s)
Circulating Tumor DNA/genetics , Gene Frequency/genetics , Mutation/genetics , Circulating Tumor DNA/blood , Cohort Studies , High-Throughput Nucleotide Sequencing , Humans , Regression Analysis
18.
Genome Med ; 13(1): 86, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006333

ABSTRACT

Here, we describe a novel approach for rapid discovery of a set of tumor-specific genomic structural variants (SVs), based on a combination of low coverage cancer genome sequencing using Oxford Nanopore with an SV calling and filtering pipeline. We applied the method to tumor samples of high-grade ovarian and prostate cancer patients and validated on average ten somatic SVs per patient with breakpoint-spanning PCR mini-amplicons. These SVs could be quantified in ctDNA samples of patients with metastatic prostate cancer using a digital PCR assay. The results suggest that SV dynamics correlate with and may improve existing treatment-response biomarkers such as PSA. https://github.com/UMCUGenetics/SHARC .


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Genomic Structural Variation , Molecular Diagnostic Techniques , Nanopore Sequencing , Neoplasms/diagnosis , Neoplasms/genetics , Computational Biology/methods , Female , Humans , Liquid Biopsy/methods , Male , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Organ Specificity/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, DNA
19.
Gynecol Oncol ; 117(2): 170-6, 2010 May.
Article in English | MEDLINE | ID: mdl-20132968

ABSTRACT

OBJECTIVE: Ovarian cancer is the leading cause of death from gynecological cancers in the Western world (Parkin et al., 2005). The overall 5-year survival is only 30% (Moss and Kaye, 2002), which is for a significant part due to platinum-based chemotherapy resistance. In this study, we performed a pathway analysis on nine published gene sets associated with platinum resistance in ovarian cancer, including a study by us. With this exploratory study, we aim to identify overlapping pathways associated with platinum-based chemotherapy resistance mechanisms in ovarian cancer. METHODS: Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA) were performed to determine which functional processes were differentially represented in the combined gene lists of nine studies (457 genes) compared to all Unigene identifiers or the Ingenuity knowledge base. RESULTS: The GO and IPA analysis resulted in the generation of 23 gene networks, and showed that 13 GO processes (>or=2 times enriched), 71 canonical pathways (p<0.05,), eight toxicity pathways (p<0.05) and 74 biological functions (p<0.005) are significantly associated with the 9-study gene set. CONCLUSION AND RECOMMENDATIONS: Several pathways identified have previously been shown to be associated with therapy resistance: these include 'oxidative stress response mediated by Nrf2,' 'TP53 signaling' and 'TGFbeta signaling.' The role of TGFbeta signaling and related miRNAs identified in the network analysis in epithelial-to-mesenchymal transition (EMT) and stemness as well as the possible relation with platin-based chemotherapy resistance are further discussed in detail. We propose that future international cooperation should aim at a uniform pooled analysis of the wealth of ovarian cancer array data already available. This will enhance the power of each separate ovarian cancer study and can lead to promising results.


Subject(s)
Antineoplastic Agents/pharmacology , Organoplatinum Compounds/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Drug Resistance, Neoplasm , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Oligonucleotide Array Sequence Analysis/methods
20.
Cancer Treat Rev ; 83: 101951, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31874446

ABSTRACT

Molecular profiling of tumor derived cell free DNA (cfDNA) is gaining ground as a prognostic and predictive biomarker. However to what extent cfDNA reflects the full metastatic landscape as currently determined by tumor tissue analysis remains controversial. Though technically challenging, whole exome sequencing (WES) of cfDNA enables thorough evaluation of somatic alterations. Here, we review the feasibility of WES of cfDNA and determine the sensitivity of WES-detected single nucleotide variants (SNVs) in cfDNA on individual patient data level using paired tumor tissue as reference (sharedSNVsAlltissueSNVs×100%). The pooled sensitivity was 50% (95% credible interval (CI): 29-72%). The tissue mutant allele frequency (MAF) of variants exclusively identified in tissue was significantly lower (12.5%, range: 0.5-18%) than the tissue MAF of variants identified in both tissue and cfDNA (23.9%, range: 17-38%), p = 0.004. The overall agreement (sharedSNVsAllSNVs×100%)between SNVs in cfDNA and tumor tissue was 31% (95% CI: 15-49%). The number of detected SNVs was positively correlated with circulating tumor DNA (ctDNA) fraction (p = 0.016). A sub analysis of samples with ctDNA fractions ≥ 25% improved the sensitivity to 69% (95% CI: 46-89%) and agreement to 46% (95% CI: 36-59%), suggesting that WES is mainly feasible for patients with high ctDNA fractions. Pre- and post-analytical procedures were highly variable between studies rendering comparisons problematic. In conclusion, various aspects of WES of cfDNA are largely in its investigative phase, standardization of methodologies is highly needed to bring this promising technique to its clinical potential.


Subject(s)
Bayes Theorem , Biomarkers, Tumor/analysis , Cell-Free Nucleic Acids/analysis , Circulating Tumor DNA/analysis , DNA, Neoplasm/analysis , Neoplasms/pathology , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation , Neoplasms/genetics , Neoplasms/therapy , Polymorphism, Single Nucleotide , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL