Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(10): e2219439120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36853944

ABSTRACT

Multiple myeloma (MM), a tumor of germinal center (GC)-experienced plasma cells, comprises distinct genetic subgroups, such as the t(11;14)/CCND1 and the t(4;14)/MMSET subtype. We have generated genetically defined, subgroup-specific MM models by the GC B cell-specific coactivation of mouse Ccnd1 or MMSET with a constitutively active Ikk2 mutant, mimicking the secondary NF-κB activation frequently seen in human MM. Ccnd1/Ikk2ca and MMSET/Ikk2ca mice developed a pronounced, clonally restricted plasma cell outgrowth with age, accompanied by serum M spikes, bone marrow insufficiency, and bone lesions. The transgenic plasma cells could be propagated in vivo and showed distinct transcriptional profiles, resembling their human MM counterparts. Thus, we show that targeting the expression of genes involved in MM subgroup-specific chromosomal translocations into mouse GC B cells translates into distinct MM-like diseases that recapitulate key features of the human tumors, opening the way to a better understanding of the pathogenesis and therapeutic vulnerabilities of different MM subgroups.


Subject(s)
Multiple Myeloma , Humans , Animals , Mice , Multiple Myeloma/genetics , Plasma Cells , B-Lymphocytes , Genes, cdc , Animals, Genetically Modified , Disease Models, Animal
2.
N Engl J Med ; 386(7): 629-639, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34904798

ABSTRACT

BACKGROUND: Patient outcomes are poor for aggressive B-cell non-Hodgkin's lymphomas not responding to or progressing within 12 months after first-line therapy. Tisagenlecleucel is an anti-CD19 chimeric antigen receptor T-cell therapy approved for diffuse large B-cell lymphoma after at least two treatment lines. METHODS: We conducted an international phase 3 trial involving patients with aggressive lymphoma that was refractory to or progressing within 12 months after first-line therapy. Patients were randomly assigned to receive tisagenlecleucel with optional bridging therapy (tisagenlecleucel group) or salvage chemotherapy and autologous hematopoietic stem-cell transplantation (HSCT) (standard-care group). The primary end point was event-free survival, defined as the time from randomization to stable or progressive disease at or after the week 12 assessment or death. Crossover to receive tisagenlecleucel was allowed if a defined event occurred at or after the week 12 assessment. Other end points included response and safety. RESULTS: A total of 322 patients underwent randomization. At baseline, the percentage of patients with high-grade lymphomas was higher in the tisagenlecleucel group than in the standard-care group (24.1% vs. 16.9%), as was the percentage with an International Prognostic Index score (range, 0 to 5, with higher scores indicating a worse prognosis) of 2 or higher (65.4% vs. 57.5%). A total of 95.7% of the patients in the tisagenlecleucel group received tisagenlecleucel; 32.5% of the patients in the standard-care group received autologous HSCT. The median time from leukapheresis to tisagenlecleucel infusion was 52 days. A total of 25.9% of the patients in the tisagenlecleucel group had lymphoma progression at week 6, as compared with 13.8% of those in the standard-care group. The median event-free survival in both groups was 3.0 months (hazard ratio for event or death in the tisagenlecleucel group, 1.07; 95% confidence interval, 0.82 to 1.40; P = 0.61). A response occurred in 46.3% of the patients in the tisagenlecleucel group and in 42.5% in the standard-care group. Ten patients in the tisagenlecleucel group and 13 in the standard-care group died from adverse events. CONCLUSIONS: Tisagenlecleucel was not superior to standard salvage therapy in this trial. Additional studies are needed to assess which patients may obtain the most benefit from each approach. (Funded by Novartis; BELINDA ClinicalTrials.gov number, NCT03570892.).


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Lymphoma, Large B-Cell, Diffuse/drug therapy , Receptors, Antigen, T-Cell/therapeutic use , Receptors, Chimeric Antigen/antagonists & inhibitors , Adult , Aged , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Combined Modality Therapy , Female , Humans , Lymphoma, Large B-Cell, Diffuse/mortality , Lymphoma, Large B-Cell, Diffuse/therapy , Male , Middle Aged , Progression-Free Survival , Salvage Therapy , Transplantation, Autologous
3.
Nat Immunol ; 13(11): 1092-100, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23001146

ABSTRACT

Germinal centers (GCs) are sites of intense B cell proliferation and are central for T cell-dependent antibody responses. However, the role of c-Myc, a key cell-cycle regulator, in this process has been questioned. Here we identified c-Myc(+) B cell subpopulations in immature and mature GCs and found, by genetic ablation of Myc, that they had indispensable roles in the formation and maintenance of GCs. The identification of these functionally critical cellular subsets has implications for human B cell lymphomagenesis, which originates mostly from GC B cells and frequently involves MYC chromosomal translocations. As these translocations are generally dependent on transcription of the recombining partner loci, the c-Myc(+) GC subpopulations may be at a particularly high risk for malignant transformation.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/metabolism , Cell Cycle/genetics , Germinal Center/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Cycle/immunology , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Gene Deletion , Gene Expression Regulation/immunology , Genes, Reporter , Genetic Loci , Germinal Center/immunology , Germinal Center/pathology , Green Fluorescent Proteins , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma/pathology , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-myc/deficiency , Proto-Oncogene Proteins c-myc/immunology , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Translocation, Genetic
4.
Haematologica ; 108(2): 543-554, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35522148

ABSTRACT

Histone methylation-modifiers, such as EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%), also identified by prior exome or RNA-sequencing studies, we here found recurrent alterations to KDM4C in chromosome 9p24, encoding a histone demethylase. Focal structural variation was the main mechanism of KDM4C alterations, and was independent from 9p24 amplification. We also identified KDM4C alterations in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNA-sequencing and genome sequencing data we predict that KDM4C structural variants result in loss-offunction. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as a tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as a putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Humans , Histones/metabolism , Histone Demethylases/genetics , Homozygote , Sequence Deletion , Lymphoma/genetics , Lymphoma, B-Cell/genetics , Whole Genome Sequencing , RNA , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase/genetics
5.
Proc Natl Acad Sci U S A ; 117(42): 26328-26339, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020261

ABSTRACT

Dendritic cell (DC) maturation is a prerequisite for the induction of adaptive immune responses against pathogens and cancer. Transcription factor (TF) networks control differential aspects of early DC progenitor versus late-stage DC cell fate decisions. Here, we identified the TF C/EBPß as a key regulator for DC maturation and immunogenic functionality under homeostatic and lymphoma-transformed conditions. Upon cell-specific deletion of C/EBPß in CD11c+MHCIIhi DCs, gene expression profiles of splenic C/EBPß-/- DCs showed a down-regulation of E2F cell cycle target genes and associated proliferation signaling pathways, whereas maturation signatures were enriched. Total splenic DC cell numbers were modestly increased but differentiation into cDC1 and cDC2 subsets were unaltered. The splenic CD11c+MHCIIhiCD64+ DC compartment was also increased, suggesting that C/EBPß deficiency favors the expansion of monocytic-derived DCs. Expression of C/EBPß could be mimicked in LAP/LAP* isoform knockin DCs, whereas the short isoform LIP supported a differentiation program similar to deletion of the full-length TF. In accordance with E2F1 being a negative regulator of DC maturation, C/EBPß-/- bone marrow-derived DCs matured much faster enabling them to activate and polarize T cells stronger. In contrast to a homeostatic condition, lymphoma-exposed DCs exhibited an up-regulation of the E2F transcriptional pathways and an impaired maturation. Pharmacological blockade of C/EBPß/mTOR signaling in human DCs abrogated their protumorigenic function in primary B cell lymphoma cocultures. Thus, C/EBPß plays a unique role in DC maturation and immunostimulatory functionality and emerges as a key factor of the tumor microenvironment that promotes lymphomagenesis.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , Dendritic Cells/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/physiology , Cell Differentiation , Cell Line , Female , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Monocytes/metabolism , Protein Isoforms/genetics , Signal Transduction , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Tumor Microenvironment/physiology
6.
Invest New Drugs ; 38(5): 1472-1482, 2020 10.
Article in English | MEDLINE | ID: mdl-32172489

ABSTRACT

BI 836826 is a chimeric immunoglobulin G1 antibody targeting CD37, a tetraspanin transmembrane protein predominantly expressed on normal and malignant B cells. This phase I, open-label study used a modified 3 + 3 design to evaluate the safety, maximum tolerated dose (MTD), pharmacokinetics, and preliminary activity of BI 836826 in patients with relapsed/refractory B cell non-Hodgkin lymphoma (NHL; NCT01403948). Eligible patients received up to three courses comprising an intravenous infusion (starting dose: 1 mg) once weekly for 4 weeks followed by an observation period of 27 (Course 1, 2) or 55 days (Course 3). Patients had to demonstrate clinical benefit before commencing treatment beyond course 2. Forty-eight patients were treated. In the dose escalation phase (1-200 mg) involving 37 Caucasian patients, the MTD was 100 mg. Dose-limiting toxicities occurred in four patients during the MTD evaluation period, and included stomatitis, febrile neutropenia, hypocalcemia, hypokalemia, and hypophosphatemia. The most common adverse events were neutropenia (57%), leukopenia (57%), and thrombocytopenia (41%), and were commonly of grade 3 or 4. Overall, 18 (38%) patients experienced infusion-related reactions, which were mostly grade 1 or 2. Preliminary evidence of anti-tumor activity was seen; three patients responded to treatment, including one complete remission in a Korean patient with diffuse large B cell lymphoma. BI 836826 plasma exposure increased more than proportionally with increasing doses. BI 836826 demonstrated preliminary activity; the most frequent adverse events were hematotoxicity and infusion-related reactions which were manageable after amending the infusion schedule. Although BI 856826 will not undergo further clinical development, these results confirm CD37 as a valid therapeutic target in B cell NHL.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Lymphoma, B-Cell/drug therapy , Tetraspanins/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/blood , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antigens, Neoplasm , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/blood , Antineoplastic Agents, Immunological/pharmacokinetics , Drug Resistance, Neoplasm , Female , Humans , Infusions, Intravenous , Lymphoma, B-Cell/blood , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Male , Maximum Tolerated Dose , Middle Aged , Receptors, IgG/genetics , Recurrence , Treatment Outcome , beta 2-Microglobulin/blood
7.
Proc Natl Acad Sci U S A ; 113(18): 5065-70, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27099294

ABSTRACT

Although canonical NF-κB signaling is crucial to generate a normal mature B-cell compartment, its role in the persistence of resting mature B cells is controversial. To resolve this conflict, we ablated NF-κB essential modulator (NEMO) and IκB kinase 2 (IKK2), two essential mediators of the canonical pathway, either early on in B-cell development or specifically in mature B cells. Early ablation severely inhibited the generation of all mature B-cell subsets, but follicular B-cell numbers could be largely rescued by ectopic expression of B-cell lymphoma 2 (Bcl2), despite a persisting block at the transitional stage. Marginal zone (MZ) B and B1 cells were not rescued, indicating a possible role of canonical NF-κB signals beyond the control of cell survival in these subsets. When canonical NF-κB signaling was ablated specifically in mature B cells, the differentiation and/or persistence of MZ B cells was still abrogated, but follicular B-cell numbers were only mildly affected. However, the mutant cells exhibited increased turnover as well as functional deficiencies upon activation, suggesting that canonical NF-κB signals contribute to their long-term persistence and functional fitness.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Survival/immunology , NF-kappa B/immunology , Signal Transduction/immunology , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL
8.
J Neurosci ; 37(50): 12297-12313, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29109239

ABSTRACT

Schwann cell c-Jun is implicated in adaptive and maladaptive functions in peripheral nerves. In injured nerves, this transcription factor promotes the repair Schwann cell phenotype and regeneration and promotes Schwann-cell-mediated neurotrophic support in models of peripheral neuropathies. However, c-Jun is associated with tumor formation in some systems, potentially suppresses myelin genes, and has been implicated in demyelinating neuropathies. To clarify these issues and to determine how c-Jun levels determine its function, we have generated c-Jun OE/+ and c-Jun OE/OE mice with graded expression of c-Jun in Schwann cells and examined these lines during development, in adulthood, and after injury using RNA sequencing analysis, quantitative electron microscopic morphometry, Western blotting, and functional tests. Schwann cells are remarkably tolerant of elevated c-Jun because the nerves of c-Jun OE/+ mice, in which c-Jun is elevated ∼6-fold, are normal with the exception of modestly reduced myelin thickness. The stronger elevation of c-Jun in c-Jun OE/OE mice is, however, sufficient to induce significant hypomyelination pathology, implicating c-Jun as a potential player in demyelinating neuropathies. The tumor suppressor P19ARF is strongly activated in the nerves of these mice and, even in aged c-Jun OE/OE mice, there is no evidence of tumors. This is consistent with the fact that tumors do not form in injured nerves, although they contain proliferating Schwann cells with strikingly elevated c-Jun. Furthermore, in crushed nerves of c-Jun OE/+ mice, where c-Jun levels are overexpressed sufficiently to accelerate axonal regeneration, myelination and function are restored after injury.SIGNIFICANCE STATEMENT In injured and diseased nerves, the transcription factor c-Jun in Schwann cells is elevated and variously implicated in controlling beneficial or adverse functions, including trophic Schwann cell support for neurons, promotion of regeneration, tumorigenesis, and suppression of myelination. To analyze the functions of c-Jun, we have used transgenic mice with graded elevation of Schwann cell c-Jun. We show that high c-Jun elevation is a potential pathogenic mechanism because it inhibits myelination. Conversely, we did not find a link between c-Jun elevation and tumorigenesis. Modest c-Jun elevation, which is beneficial for regeneration, is well tolerated during Schwann cell development and in the adult and is compatible with restoration of myelination and nerve function after injury.


Subject(s)
Gene Dosage , Myelin Sheath/physiology , Nerve Regeneration/physiology , Nerve Tissue Proteins/physiology , Proto-Oncogene Proteins c-jun/physiology , Schwann Cells/metabolism , Animals , Axons/pathology , Cell Nucleus/metabolism , Cell Transformation, Neoplastic , Female , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Proteins/biosynthesis , Myelin Proteins/genetics , Myelin Sheath/ultrastructure , Nerve Crush , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Proto-Oncogene Proteins c-jun/biosynthesis , Proto-Oncogene Proteins c-jun/genetics , RNA, Messenger/biosynthesis , Recovery of Function , Sciatic Nerve/injuries , Sciatic Nerve/pathology
9.
Br J Haematol ; 177(2): 226-242, 2017 04.
Article in English | MEDLINE | ID: mdl-28106907

ABSTRACT

The increased risk of subsequent primary malignancies (SPM) in survivors of adult-onset Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) remains a challenging clinical problem worldwide. The German cancer registry database, pooled from 14 federal states, was used to calculate the standardized incidence ratio (SIR) and excess absolute risk (EAR) of SPM in 128 587 patients registered with first primary HL/NHL between 1990 and 2012. Conversely, SIRs were also calculated for a subsequent HL/NHL following other first cancers. The risk of developing SPM was significantly increased over twofold for HL survivors (SIR = 2·14, EAR = 51·87 cases/10 000 person-years) and 1·5-fold for NHL survivors (SIR = 1·48, EAR = 55·23) compared with the general German population. For solid cancers, SIRs were significantly elevated (1·6- and 1·4-fold; respectively) and were highest (threefold) in patients below 30 years of age upon initial diagnosis. Overall, SIRs were consistently elevated for lip/oral cavity, colon/rectum, lung, skin melanoma, breast, kidney and thyroid. Significantly increased SIRs for oesophagus, stomach, liver, pancreas, testis, prostate, and brain/central nervous system were observed following NHL only. For certain SPM, SIRs remained significantly elevated more than 10 years following HL/NHL diagnosis. Positive reciprocal associations were demonstrated between HL/NHL and several solid cancers mentioned above; for some, common aetiological mechanisms seem plausible.


Subject(s)
Hodgkin Disease/epidemiology , Lymphoma, Non-Hodgkin/epidemiology , Neoplasms, Second Primary/epidemiology , Survivors/statistics & numerical data , Adolescent , Adult , Aged , Female , Germany/epidemiology , Humans , Male , Middle Aged , Registries , Young Adult
10.
Blood ; 125(1): 124-32, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25359993

ABSTRACT

Anaplastic large cell lymphoma (ALCL) is a distinct entity of T-cell lymphoma that can be divided into 2 subtypes based on the presence of translocations involving the ALK gene (ALK(+) and ALK(-) ALCL). The interferon regulatory factor 4 (IRF4) is known to be highly expressed in both ALK(+) and ALK(-) ALCLs. However, the role of IRF4 in the pathogenesis of these lymphomas remains unclear. Here we show that ALCLs of both subtypes are addicted to IRF4 signaling, as knockdown of IRF4 by RNA interference was toxic to ALCL cell lines in vitro and in ALCL xenograft mouse models in vivo. Gene expression profiling after IRF4 knockdown demonstrated a significant downregulation of a variety of known MYC target genes. Furthermore, our analyses revealed that MYC is a primary target of IRF4, identifying a novel regulatory mechanism of MYC expression and its target gene network in ALCL. MYC, itself, is essential for ALCL survival, as both knockdown of MYC and pharmacologic inhibition of MYC signaling were toxic to ALCL cell lines. Collectively, our results demonstrate that ALCLs are dependent on IRF4 and MYC signaling and that MYC may represent a promising target for future therapies.


Subject(s)
Gene Expression Regulation, Neoplastic , Interferon Regulatory Factors/metabolism , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Line, Tumor , Cell Survival , Female , Gene Expression Profiling , Humans , Lymphoma/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , RNA Interference , Retroviridae/metabolism , Signal Transduction
11.
Proc Natl Acad Sci U S A ; 111(42): E4513-22, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25288773

ABSTRACT

Deregulated transcription factor (TF) activities are commonly observed in hematopoietic malignancies. Understanding tumorigenesis therefore requires determining the function and hierarchical role of individual TFs. To identify TFs central to lymphomagenesis, we identified lymphoma type-specific accessible chromatin by global mapping of DNaseI hypersensitive sites and analyzed enriched TF-binding motifs in these regions. Applying this unbiased approach to classical Hodgkin lymphoma (HL), a common B-cell-derived lymphoma with a complex pattern of deregulated TFs, we discovered interferon regulatory factor (IRF) sites among the top enriched motifs. High-level expression of the proinflammatory TF IRF5 was specific to HL cells and crucial for their survival. Furthermore, IRF5 initiated a regulatory cascade in human non-Hodgkin B-cell lines and primary murine B cells by inducing the TF AP-1 and cooperating with NF-κB to activate essential characteristic features of HL. Our strategy efficiently identified a lymphoma type-specific key regulator and uncovered a tumor promoting role of IRF5.


Subject(s)
Chromatin/metabolism , Hodgkin Disease/genetics , Hodgkin Disease/metabolism , Interferon Regulatory Factors/metabolism , Transcription Factor AP-1/metabolism , Amino Acid Motifs , Animals , B-Lymphocytes/cytology , Cell Line, Tumor , Cell Lineage , Chemokines/metabolism , Chemotaxis , Cytokines/metabolism , Deoxyribonuclease I/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Inflammation , Leukocytes, Mononuclear/cytology , Lymphoma/metabolism , Lymphoma, Non-Hodgkin/metabolism , Mice , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Plasmids/metabolism , Spleen/cytology
14.
Proc Natl Acad Sci U S A ; 110(30): 12420-5, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23840064

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) represents a heterogeneous diagnostic category with distinct molecular subtypes that can be defined by gene expression profiling. However, even within these defined subtypes, heterogeneity prevails. To further elucidate the pathogenesis of these entities, we determined the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) in 248 primary DLBCL patient samples. These analyses revealed that loss of PTEN was detectable in 55% of germinal center B-cell-like (GCB) DLBCLs, whereas this abnormality was found in only 14% of non-GCB DLBCL patient samples. In GCB DLBCL, the PTEN status was inversely correlated with activation of the oncogenic PI3K/protein kinase B (AKT) pathway in both DLBCL cell lines and primary patient samples. Reexpression of PTEN induced cytotoxicity in PTEN-deficient GCB DLBCL cell line models by inhibiting PI3K/AKT signaling, indicating an addiction to this pathway in this subset of GCB DLBCLs. PI3K/AKT inhibition induced down-regulation of the transcription factor MYC. Reexpression of MYC rescued GCB DLBCL cells from PTEN-induced toxicity, identifying a regulatory mechanism of MYC expression in DLBCL. Finally, pharmacologic PI3K inhibition resulted in toxicity selectively in PTEN-deficient GCB DLBCL lines. Collectively, our results indicate that PTEN loss defines a PI3K/AKT-dependent GCB DLBCL subtype that is addicted to PI3K and MYC signaling and suggest that pharmacologic inhibition of PI3K might represent a promising therapeutic approach in these lymphomas.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/metabolism , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Cohort Studies , Humans , Lymphoma, Large B-Cell, Diffuse/enzymology , Lymphoma, Large B-Cell, Diffuse/pathology , Signal Transduction
15.
Blood ; 122(13): 2242-50, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23869088

ABSTRACT

Constitutive activation of the nuclear factor-κ B (NF-κB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-κB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the atypical nuclear IκB protein IκB-ζ to be upregulated in ABC compared with germinal center B-cell-like (GCB) DLBCL primary patient samples. Knockdown of IκB-ζ by RNA interference was toxic to ABC but not to GCB DLBCL cell lines. Gene expression profiling after IκB-ζ knockdown demonstrated a significant downregulation of a large number of known NF-κB target genes, indicating an essential role of IκB-ζ in regulating a specific set of NF-κB target genes. To further investigate how IκB-ζ mediates NF-κB activity, we performed immunoprecipitations and detected a physical interaction of IκB-ζ with both p50 and p52 NF-κB subunits, indicating that IκB-ζ interacts with components of both the canonical and the noncanonical NF-κB pathway in ABC DLBCL. Collectively, our data demonstrate that IκB-ζ is essential for nuclear NF-κB activity in ABC DLBCL, and thus might represent a promising molecular target for future therapies.


Subject(s)
Gene Regulatory Networks , Lymphoma, Large B-Cell, Diffuse/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Gene Knockdown Techniques , Humans , I-kappa B Proteins , Immunoprecipitation , Lymphoma, Large B-Cell, Diffuse/genetics , NF-kappa B/genetics , Polymerase Chain Reaction , RNA, Small Interfering , Signal Transduction/physiology , Transcriptome , Transduction, Genetic
16.
Eur J Cancer ; 196: 113436, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38008033

ABSTRACT

BACKGROUND: Secondary central nervous system lymphoma (SCNSL) confers a dismal prognosis and treatment advances are constrained by the lack of prospective studies and real-world treatment evidence. METHODS: Patients with SCNSL of all entities were included at first diagnosis and patient characteristics, treatment data, and outcomes were prospectively collected in the Secondary CNS Lymphoma Registry (SCNSL-R) (NCT05114330). FINDINGS: 279 patients from 47 institutions were enrolled from 2011 to 2022 and 243 patients (median age: 66 years; range: 23-86) were available for analysis. Of those, 49 (20 %) patients presented with synchronous (cohort I) and 194 (80 %) with metachronous SCNSL (cohort II). The predominant histology was diffuse large B-cell lymphoma (DLBCL, 68 %). Median overall survival (OS) from diagnosis of CNS involvement was 17·2 months (95 % CI 12-27·5), with longer OS in cohort I (60·6 months, 95 % CI 45·5-not estimable (NE)) than cohort II (11·4 months, 95 % CI 7·8-17·7, log-rank test p < 0.0001). Predominant induction regimens included R-CHOP/high-dose MTX (cohort I) and high-dose MTX/cytarabine (cohort II). Rituximab was used in 166 (68 %) of B-cell lymphoma. Undergoing consolidating high-dose therapy and autologous hematopoietic stem cell transplantation (HDT-ASCT) in partial response (PR) or better was associated with longer OS (HR adjusted 0·47 (95 % CI 0·25-0·89), p = 0·0197). INTERPRETATION: This study is the largest prospective cohort of SCNSL patients providing a comprehensive overview of an international real-world treatment landscape and outcomes. Prognosis was better in patients with SCNSL involvement at initial diagnosis (cohort I) and consolidating HDT-ASCT was associated with favorable outcome in patients with PR or better.


Subject(s)
Central Nervous System Neoplasms , Hematopoietic Stem Cell Transplantation , Lymphoma, Large B-Cell, Diffuse , Humans , Aged , Prospective Studies , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Rituximab/therapeutic use , Treatment Outcome , Transplantation, Autologous , Central Nervous System Neoplasms/drug therapy , Retrospective Studies , Observational Studies as Topic
17.
Blood Adv ; 7(4): 469-481, 2023 02 28.
Article in English | MEDLINE | ID: mdl-35917568

ABSTRACT

Proteasome inhibition is a highly effective treatment for multiple myeloma (MM). However, virtually all patients develop proteasome inhibitor resistance, which is associated with a poor prognosis. Hyperactive small ubiquitin-like modifier (SUMO) signaling is involved in both cancer pathogenesis and cancer progression. A state of increased SUMOylation has been associated with aggressive cancer biology. We found that relapsed/refractory MM is characterized by a SUMO-high state, and high expression of the SUMO E1-activating enzyme (SAE1/UBA2) is associated with poor overall survival. Consistently, continuous treatment of MM cell lines with carfilzomib (CFZ) enhanced SUMO pathway activity. Treatment of MM cell lines with the SUMO E1-activating enzyme inhibitor subasumstat (TAK-981) showed synergy with CFZ in both CFZ-sensitive and CFZ-resistant MM cell lines, irrespective of the TP53 state. Combination therapy was effective in primary MM cells and in 2 murine MM xenograft models. Mechanistically, combination treatment with subasumstat and CFZ enhanced genotoxic and proteotoxic stress, and induced apoptosis was associated with activity of the prolyl isomerase PIN1. In summary, our findings reveal activated SUMOylation as a therapeutic target in MM and point to combined SUMO/proteasome inhibition as a novel and potent strategy for the treatment of proteasome inhibitor-resistant MM.


Subject(s)
Multiple Myeloma , Proteasome Inhibitors , Humans , Animals , Mice , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Sumoylation , Proteasome Endopeptidase Complex/metabolism , Apoptosis , Ubiquitin-Activating Enzymes/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/pharmacology
18.
Eur J Hum Genet ; 31(8): 905-917, 2023 08.
Article in English | MEDLINE | ID: mdl-37188825

ABSTRACT

FINCA syndrome [MIM: 618278] is an autosomal recessive multisystem disorder characterized by fibrosis, neurodegeneration and cerebral angiomatosis. To date, 13 patients from nine families with biallelic NHLRC2 variants have been published. In all of them, the recurrent missense variant p.(Asp148Tyr) was detected on at least one allele. Common manifestations included lung or muscle fibrosis, respiratory distress, developmental delay, neuromuscular symptoms and seizures often followed by early death due to rapid disease progression.Here, we present 15 individuals from 12 families with an overlapping phenotype associated with nine novel NHLRC2 variants identified by exome analysis. All patients described here presented with moderate to severe global developmental delay and variable disease progression. Seizures, truncal hypotonia and movement disorders were frequently observed. Notably, we also present the first eight cases in which the recurrent p.(Asp148Tyr) variant was not detected in either homozygous or compound heterozygous state.We cloned and expressed all novel and most previously published non-truncating variants in HEK293-cells. From the results of these functional studies, we propose a potential genotype-phenotype correlation, with a greater reduction in protein expression being associated with a more severe phenotype.Taken together, our findings broaden the known phenotypic and molecular spectrum and emphasize that NHLRC2-related disease should be considered in patients presenting with intellectual disability, movement disorders, neuroregression and epilepsy with or without pulmonary involvement.


Subject(s)
Intellectual Disability , Movement Disorders , Humans , Disease Progression , Fibrosis , HEK293 Cells , Intellectual Disability/genetics , Phenotype , Seizures/genetics , Syndrome
19.
Nat Commun ; 14(1): 6947, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935654

ABSTRACT

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Subject(s)
Interferon Regulatory Factors , Lymphoma , Humans , B-Lymphocytes/metabolism , DNA , Gene Expression Regulation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Lymphoma/genetics
20.
Proc Natl Acad Sci U S A ; 106(14): 5831-6, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19321746

ABSTRACT

Although the identification and characterization of translocations have rapidly increased, little is known about the mechanisms of how translocations occur in vivo. We used anaplastic large cell lymphoma (ALCL) with and without the characteristic t(2;5)(p23;q35) translocation to study the mechanisms of formation of translocations and of ALCL transformation. We report deregulation of several genes located near the ALCL translocation breakpoint, regardless of whether the tumor contains the t(2;5). The affected genes include the oncogenic transcription factor Fra2 (located on 2p23), the HLH protein Id2 (2p25), and the oncogenic tyrosine kinase CSF1-receptor (5q33.1). Their up-regulation promotes cell survival and repression of T cell-specific gene expression programs that are characteristic for ALCL. The deregulated genes are in spatial proximity within the nuclear space of t(2;5)-negative ALCL cells, facilitating their translocation on induction of double-strand breaks. These data suggest that deregulation of breakpoint-proximal genes occurs before the formation of translocations, and that aberrant transcriptional activity of genomic regions is linked to their propensity to undergo chromosomal translocations. Also, our data demonstrate that deregulation of breakpoint-proximal genes has a key role in ALCL.


Subject(s)
Chromosome Breakage , Fos-Related Antigen-2/genetics , Gene Expression Regulation, Neoplastic , Inhibitor of Differentiation Protein 2/genetics , Lymphoma, Large-Cell, Anaplastic/genetics , Receptor, Macrophage Colony-Stimulating Factor/genetics , Translocation, Genetic , Cell Line, Tumor , Chromosomes, Human, Pair 2 , Chromosomes, Human, Pair 5 , Genome, Human , Humans , Lymphoma, Large-Cell, Anaplastic/pathology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL